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PREFACE

This second volume of our treatise on commutative algebra deals
largely with three basic topics, which go beyond the more or less classical
material of volume I and are on the whole of a more advanced nature
and a more recent vintage. These topics are: (a) valuation theory; (b)
theory of polynomial and power series rings (including generalizations to
graded rings and modules); (c) local algebra. Because most of these
topics have either their source or their best motivation in algebraic geom-
etry, the algebro-geometric connections and applications of the purely
algebraic material are constantly stressed and abundantly scattered through-
out the exposition. Thus, this volume can be used in part as an introduc-
tion to some basic concepts and the arithmetic foundations of algebraic
geometry. The reader who is not immediately concerned with geometric
applications may omit the algebro-geometric material in a first reading
(see "Instructions to the reader," page vii), but it is only fair to say that
many a reader will find it more instructive to find out immediately what
is the geometric motivation behind the purely algebraic material of this
volume.

The first 8 sections of Chapter VI (including § 5bis) deal directly with
properties of places, rather than with those of the valuation associated
with a place. These, therefore, are properties of valuations in which the
value group of the valuation is not involved. The very concept of a valua-
tion is only introduced for the first time in § 8, and, from that point on,
the more subtle properties of valuations which are related to the value
group come to the fore. These are illustrated by numerous examples, taken
largely from the theory of algebraic function fields 14, 15). The
last two sections of the chapter contain a general treatment, within the
framework of arbitrary commutative integral domains, of two concepts
which are of considerable importance in algebraic geometry (the Riemann
surface of a field and the notions of normal and derived normal models).

The greater part of Chapter VII is devoted to classical properties of
Polynomial and power series rings (e.g., dimension theory) and their
applications to algebraic geometry. This chapter also includes a treatment
of graded rings and modules and such topics as characteristic (Hilbert)
functions and chains of syzygies. in the past, these last two topics repre-
sented some final words of the algebraic theory, to be followed only by
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deeper geometric applications. With the modern development of homo-
logical methods in commutative algebra, these topics became starting points
of extensive, purely algebraic theories, having a much wider range of
applications. We could not include, without completely disrupting the
balance of this volume, the results which require the use of truly homological
methods (e.g., torsion and extension functors, complexes, spectral se-

quences). However, we have tried to include the results which may be
proved by methods which, although inspired by homological algebra, are
nevertheless classical in nature. The reader will find these results in
Chapter VII, 12 and 13, and in Appendices 6 and 7. No previous
knowledge of homological algebra is needed for reading these parts of the
volume. The reader who wants to see how truly homological methods
may be applied to commutative algebra is referred to the original papers
of M. Auslander, D. Buchsbaum, A. Grothendieck, D. Rees, J.-P. Serre,
etc., to a forthcoming book of D. C. Northcott, as well, of course, as to the
basic treatise of Cartan-Eilenberg.

Chapter VIII deals with the theory of local rings. This theory pro-
vides the algebraic basis for the local study of algebraic and analytical
varieties. The first six sections are rather elementary and deal with more
general rings than local rings. Deeper results are presented in the rest of
the chapter, but we have not attempted to give an encyclopedic account of
the subject.

While much of the material appears here for the first time in book
form, there is also a good deal of material which is new and represents
current or unpublished research. The appendices treat special topics of
current interest (the first 5 were written by the senior author; the last
two by the junior author), except that Appendix 6 gives a smooth treatment
of two important theorems proved in the text. Appendices 4 and 5 are
of particular interest from an algebro-geometric point of view.

We have not attempted to trace the origin of the various proofs in this
volume. Some of these proofs, especially in the appendices, are new.
Others are transcriptions or arrangements of proofs taken from original
papers.

We wish to acknowledge the assistance which we have received from
M. Hironaka, T. Knapp, S. Shatz, and M. Schlesinger in the work of
checking parts of the manuscript and of reading the galley proofs. Many
improvements have resulted from their assistance.

The work on Appendix 5 was supported by a Research project at
Harvard University sponsored by the Air Force Office of Scientific Re-
search.

Cambridge, Massachusetts OSCAR ZARISKI



INSTRUCTIONS TO THE READER

As this volume contains a number of topics which either are of some-
what specialized nature (but still belong to pure algebra) or belong to
algebraic geometry, the reader who wishes first to acquaint himself with
the basic algebraic topics before turning his attention to deeper and more
specialized results or to geometric applications, may very well skip some
parts of this volume during a first reading. The material which may thus
be postponed to a second reading is the following:

CHAPTER VI
All of § 3, except for the proof of the first two assertions of Theorem

3 and the definition of the rank of a place; § 5: Theorem 10, the lemma and
its corollary; § Sbis (if not immediately interested in geometric applica-
tions); § 11: Lemma 4 and pages 5 7-67 (beginning with part (b) of
Theorem 19) ; § 12; § 14: The last part of the section, beginning with
Theorem 34'; § 15 (if not interested in examples) ; 16, 17, and 18.

CHAPTER VII
3, 4, 4bis, 5 and 6 (if not immediately interested in geometric appli-

cations) ; all of § 8, except for the statement of Macaulay's theorem and
(if it sounds interesting) the proof (another proof, based on local algebra,
may be found in Appendix 6); § 9: Theorem 29 and the proof of Theorem
30 (this theorem is contained in Theorem 25); § 11 (the contents of this
section are particularly useful in geometric applications).

CHAPTER VIII
All of § 5, except for Theorem 13 and its Corollary 2; 10; § 11:

Everything concerning multiplicities; all of 12, except for Theorem 27
(second proof recommended) and the statement of the theorem of Cohen-
Macaulay; 13.

All appendices may be omitted in a first reading.

VII
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VI. VALUATION THEORY

§ 1. Introductory remarks. Homomorphic mappings of rings
into fields are very common in commutative algebra and in its applica-
tions. We may cite the following examples:

EXAMPLE 1. The reduction of integers mod p. More precisely, let p
be a prime number; then the canonical mapping of the ring J of integers
onto the residue class ring J/Jp maps J onto a field with p elements.
More generally, we may consider a ring D of algebraic integers (Vol.
Ch. V, § 4, p. 265), a prime ideal in D, and the mapping of D onto
These examples are of importance in number theory.

ExAMPLE 2. We now give examples pertaining to algebraic geometry.
Let k be a field and K an extension of k. Let (x1, . . . , x,,) be a point in
the affine n-space over K. With every polynomial F(X1, . . . , X,,)
with coefficients in k we associate its value F(x1, . . . , at the given
point. This defines a homomorphic mapping of the polynomial ring
k[X1, . . . , into K. Now let us say that a point (x'1, . . . , of

is a specialization of (x1, . . . , over k if every polynomial
F E k[X1, . . . , which vanishes at (x1, . . . , vanishes also at
(x'1,. . . , x',,). Then (by taking differences) two polynomials G, H
with coefficients in k which take the same value at (x1, . . . , take also
the same value at (x'1, . . . , This defines a mapping of k[x1, . . . ,X,j
onto k[x

. . , x (C K), which maps x1 on x for 1 � i � n. Such a
mapping, and more generally any homomorphic mapping 97 of a ring R
into afield, such that 97(x) 0 for some x E R, is called a specialization (of
k[x1, . . . , into K in our case). Note that this definition implies
that p(l) 1 if 1 E R. If, as in the above example, the specialization is
the identity on some subfield k of the ring, then we shall say that the
specialization is over k.

•EXAMPLE 3. From function theory comes the following example:
with any power series in n variables with complex coefficients we
associate its constant term, i.e., its value at the origin.

Since any integral domain may be imbedded in its quotient field, a
homomorphic mapping of a ring A into a field is the same thing as a
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homomorphic mapping of A onto an integral domain. Thus, by Vol. I,
Ch. III, § 8, Theorem 10 a necessary and sufficient condition that a
homomorphismf of a ring A map A into a field is that the kernel off be
a prime ideal.

From now on we suppose that we are dealing with a ring A which is
an integral domain. Let K be a field containing A (not necessarily its
quotient field), and letf be a specialization of A. An important problem
is to investigate whether f may be extended to a specialization defined
on as big as possible a subring of K. An answer to this question will be
given in § 4. We may notice already that this problem is not at all
trivial.

EXAMPLE 4. Consider, in fact, a ring k[X, Y] two
variables over a field k, and the specialization f of k[X, Y] onto k de-
fined by f(a) = a for a in k, f(X) =f( Y)= 0 ("the value at the origin").
The value to be given to the rational function X/ Y at the origin is not
determined byf (since it appears as 0/0). We have k[X/ Y, Y] k[X, Y],
and any maximal ideal in Y, Y] whkh contains Y contains also
X and thus contracts to the maximal ideal (X, Y) k[X, YJ. Since
there are infinitely many such maximal ideals (they are the ideals
generated by h(X/ Y) and Y, where h(t) is any irreducible polynomial
in k[t]) follows that f admits infinitely many extensions to the ring
k[X, Y, X/Y].

However, there are elements of K to which the given specialization f
of A may be extended without further ado and in a unique fashion.
Consider, in fact, the elements of K which may be written in the form
a/b with a in A, b in A, and f(b) 0. These elements constitute the
quotient ring where is the kernel of f and is a prime ideal. For
such an element a/b let us write g(a/b) =f(a)/f(b). It is readily verified
that g is actually a mapping: if a/b =a'/b' withf(b) 0 andf(b') 0, then
f(a)/f(b) =f(a')/f(b') since ab' = ba' and since f is a homomorphism.
One sees also in a similar way that g is a homomorphism of extending
f (see Vol. 1, Ch. IV, § 9, Theorem 14). Since g takes values in the
same field as f does, g is a specialization of The ring is some-
times called the specialization ring of f; it is a local ring if A is noetherian
(Vol. I, Ch. IV, § 11, p. 228).

In Example I this local ring is the set of all fractions rn/n whose de-
nominator n is not a multiple of p. In Example 2 it is the set of all
rational functions in X1,. . . , X,, which are "finite" at the point
(x1,.. . , (i.e., whose denominator does not vanish at this point).
In Example 3 it is the power series rng itself, as a power series with
non-zero constant term is invertible.
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On the other hand there are (when the specialization f is not an iso-
morphic mapping) elements of K to which f cannot be extended by any
means. These elements are those which can be written under the form
a/b, with a and b in A, with 0 and f(b)= 0, for the value g(a/b) of
a/b in an extensiong of f must satisfy the relation g(a/b) .f(b) =f(a) (since
(a/b) b = a), but this is impossible. The elements a/b of the above
form are the inverses of the non-zero elements in the maximal ideal of
the specialization ring of f.

We are thus led to studying the extreme case in which all elements of
K which are not in A are of this latter type. In this case A is identical
with the specialization ring of f, and every element of Kwhich is not in
A must be of the form 1/x, where x is an element of A such thatf(x)= 0.

§2. Places
DEFINITION 1. Let K be an arbitrary field. A place of K is a homo-

morphic mapping ofa subring Kai of K into afield such that the follow-
ing conditions are satisfied:

(1) then 1/xEKai
(2) Ofor some x in Kai.

In many applications of ideal theory (and expecially in algebraic geo-
metry) a certain basic field k is given in advance, called the ground field,
and the above arbitrary field K is restricted to be an extension of k:
k c: K. In that case, one may be particularly interested in places of K
which reduce to the identity on k, i.e., places which satisfy the follow-
ing additional condition:
(3) c c a subfield of zi).

Any place of K which satisfies (3) is said to be a place of K over k,
or a place of K/k.

EXAMPLES OF PLACES:

EXAMPLE 1. Let A be a UFD, and a an irreducible element in A.
Phe ideal Aa is a prime ideal, whence A/Aa an integral domain. De-
note by its quotient field. The canonical homomorphism of A onto
A/Aa is a specializationf of A into 4. The specialization ring B off is
the set of all fractions x/y, with x E A, y E A, y Aa (i.e., y prime to a).

denote by g the extension of f to B. The homomorphic mapping
g is a place: in fact, by the unique factorization, any element z of the
qUotient field Kof A which does not belong to B can be written in the

h
y/x, with y E A, x E A, y Aa, x E Aa; then its inverse 1/z= x/y

elongs to B and satisfies the relation g(1/z) = 0.
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We call the place g which is thus determined by an irreducible ele-
ment a of A an a-adic place (of the quotient field of A).

EXAMPLE 2. A similar example may be given if one takes for A a
Dedekind domain and if one considers the homomorphic mapping f of
A into the quotient field of denoting a prime ideal of A). The
extension g of f to the local ring of f is again a place [notice that
is a PID (Vol. I, Ch. V, § 7, Theorem 16), to which the preceding ex-
ample may be applied]. This place is called the place of A.

We shall show at once the following property of places: if is a place
of K, then has no proper extensions in K. Or more precisely: if q is
a homomorphic mapping of a subring L of K (into some field), such that
L and = on then L = Kai. We note first that, by condition
(1), the element 1 of K belongs to Kai. It follows then from condition
(2) that must be the element 1 of LI. Now, let x be any element of L.
We cannot have simultaneously I /x E Kai and 0, for then we
would have I = (x. l/x>p = xp .0 = 0, a contradiction.
It follows therefore, by condition (1), that x E Kai. Hence L = Kai,
as asserted.

It will be proved later 4, Theorem 5', Corollary 4) that the above
is a characteristic property of places.

We introduce the symbol oo and we agree to write xPI' oo if x Kai.
The following assertions are immediate consequences of conditions (1)
and (2) above:

(a) if xPI' oo and yPI' oo, then (x = 0°;
(b) if xPI' = oo and yPI' 0, then (xy)P1' = oo;
(c) if x 0, then xPI' = 0 if and only if oo.

If x we shall call xPI' the £?I'-value of x, or the value of x at the place
and we shall say that x is finite at or has finite if

x E Kai. The ring Kai shall be referred to as the valuation ring of
the place

It is clear that the elements x E form a subring of zi. It is
easily seen that this subring is actually a field, for if a = 0, then, by
condition (1), also 1/x E Kai, and hence 1/a= We call this field
the residue field of The elements of which are not of
elements of K do not interest us. Hence we shall assume that the
residue field of is the field 4 itself.

If K is an extension of a ground field k, if is a place of K/k and if s
is the transcendence degree of 4 over k (s may be an infinite cardinal), we
call s the dimension of the place over k, or in symbols: s dim If
K has transcendence degree r over k, then 0 s r. The place of
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K/k is algebraic (over k) ifs = 0; rational if k. On the other extreme
we have the case 5 r. In this case and under the additional assump-
tion that r is finite, is an isomorphism (Vol. 1, Ch. II, § 12, Theorem
29), and furthermore it follows at once from condition (1) that = K,
whence is merely a of K. Places which are iso-
rnorphisms of K will be called trivial places of K (or trivial places of
K/k, if they are k-isomorphisms of K).

It is obvious that the trivial places of K are characterized by the
condition Kai = K. On the other hand, if is a place of K and K1 is a
subfield of 'K, then the restriction of to K1 is obviously a place of
K1. Therefore, if K1c: Kai then is a trivial place of K1. In parti-
cular, if K has characteristic p 0, then any place of K is trivial on the
prime subfield of K (for I e Kai).

From condition (1) of Definition 1 it follows that if an element x of
is such that then 1/x belongs to Kai and hence x is a unit in Kai.
Hence the kernel of consists of all non-units of the ring Kai. The
kernel of is therefore a maximal ideal in Kai; in fact it is the only
maximal ideal in Kai. (However, the valuation ring Kai of a place is
not necessarily a local ring, since according to our definition, a local ring
is noetherian (Vol. I, Ch. IV, § 11, p. 228), while, as we shall see later

10, Theorem 16), a valuation ring need not be noetherian.) The
maximal ideal in will be denoted by and will be referred to as the
prime ideal of the place The field and the residue field of

are isomorphic.
Let L be a subring of K. Our definition of places of K implies that

if L is the valuation ring of a place of K, then L contains the reciprocal
of any element of K which does not belong to L; and, furthermore, L
must contain k if L is the valuation ring of a place of K/k. We now
prove that also the converse is true:

THEOREM 1. Let L be a subring of K. If L contains the
of any element of K which does not belong to L, then there exists a place of
K such that L is the valuation ring of If, furthermore, K contains a
ground field k and L contains k, then there also exists a place of K/k
such that L is the valuation ring of

PROOF. Assume that L contains the reciprocal of any element of K
which does not belong to L. Then it follows in the first place that
1 E L. We show that the non-units of L form an ideal. For this
it is only necessary to show that if x and y are non-units of L, then also
X±y is a non-unit, and in the proof we may assume that both x andy are
different from zero. By assumption, either y/x or x/y belongs to L.
Let, say, y/x e L. Then x+y= x(1 +y/x), and since 1 +y/x eL and x
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is a non-unit in L, we conclude that x +y is a non-unit in L, as asserted.
Let, then, be the ideal of non-units of L, and let be the canonical
homomorphism of L onto the field Then condition (1) of
Definition 1 is satisfied, with Kai = L (while 4 is now the field for
if x E K and x L, then 1/x EL, whence 1/x E and therefore = 0.
It is obvious that also condition (2) is satisfied, since

L onto
Assume now that the additional condition kc: L is also satisfied. Then

the field contains the isomorphic image of k. We may therefore
identify each element c of k with its image and then also condition
(3) is satisfied. Q.E.D.

An important property of the valuation ring Kai of a place is that it
is integrally closed in K. For let x be any element of K which is in-
tegrally dependent on Kai: x" + + + a,, =0, a2 E Kai. Divid-
ing by x" we find 1 = — a1(1/x)— a2(1/x)2— ... — a,,(1/x)7z. If x Kai,
then 1/x E Kai, = 0, and hence equating the f-values of both sides
of the above relation we get I =0, a contradiction. Hence x E and
Kai is integrally closed in K, as asserted.

DEFINITION 2. If and are places of K (or of K/k), with residue
fields 4 and respectively, then and are said to be isomorphic
places (or k-isomorphic places) if there exists an isomorphism (or a k-
isomorphisin of onto 4' such that =

A necessary and sufficient condition that two p!aces and of K (or
of K/k) be isomorphic (or k-isomorphic) is that their valuation rings
and Kai' coincide. It is obvious that the condition is necessary.
Assume now that the condition is satisfied, and let q be the canonical
homomorphism of K, onto Then is an isomorphism of

onto and similarly is an isomorphism of zYonto
Hence . is an isomorphism of 4 onto showing
that and are isomorphic places. If, moreover, and are places
of K/k, then is a k-isomorphism of onto whence and s" are k-
isomorphic places.

It is clear that k-isomorphic places of K/k have the same dimension
over k.

Isomorphic algebraic places of K/k will be referred to as conjugate
places (over k) if their residue fields are subfields of one and the same
algebraic closure k of k. In that case, these residue fields are con-
jugate subfields of k/k.

If is a place of K/k, where k is a ground field, then K and the
residue field of have the same characteristic (since k 4). Con-
versely, assume that is a place of K such that K and have the same
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characteristic p. (Note that this assumption is satisfied for any place
of K if K has characteristic 0, for in that case the restriction

ofK is an isomorphism.) Let 1' denote the prime subfield
of K. We know that if p 0 then the restriction of to 1' is an
phism. If p 0 and if J denotes the ring of integers in I', then Jc:
(since 1 e Ks.) and the restriction of to J must be an isomorphism (for
otherwise would be of characteristic 0). Hence again the restriction
of to f'is an isomorphism (and we have fc It follows at once (as
in the proof of the last part of Theorem 1) that is isomorphic to a place
of K/i'. We thus see that the theory of places over ground fields is
essentially as general as the theory of arbitrary places in the equal
characteristic case (i.e., in the case in which K and zl have the same
characteristic).

§ 3. Specialization of places. Let and be places of K. We
say that is a specialization and we write —p- if the valuation
ring of is contained in the valuation ring of and we say
that is a proper specialization of if is a proper subring of Ks..
If both and are places of K/k and is a specialization of then

we shall write
It is clear that —p- if and only if either one of the following condi-

tions is satisfied: (a) oo implies xPi' oo; (b) xei' = 0 implies
= 0 (for, 0 implies co, whence oo, or
= 0). Hence we have, in view of (b):

(1) —- and
k

In particular, if both and are places of K/k and , then we
conclude at once with the following result: If x1, , x,, are any
elements of K which are finite at (and therefore also at then any
algebraic relation, over k, between the of the is also satisfied by
the -values of the x. Thus, our definition of specialization of places is
a natural extension of the notion of specialization used in algebraic
geometry.

Every place of K is a specialization of any trivial place of K. Further-
more, isomorphic places are specializations of each other. Conversely,
if two places arid are such that each is a specialization of the other,
then they are isomorphic places. As a generalization of the last state-
ment, we have the following theorem:

THEOREM 2. Let and be places of K, with residue fields 4 and
respectively. Then if and only if there exists a place of 4

such that = on Ks.'.
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PROOF. Assume that —- b". We set
Kai' a subring of zl. On the other hand, we have,

by (1), that is a prime ideal in Let now and denote the
canonical homomorphisms of Kai' onto and respec-
tively, and let be the restriction of to Kai'. Since is the kernel
of the product is an isomorphism of Onto
Similarly is an isomorphism of OntO 4'. Since

is a homomorphism of Onto We
set . . = Then is a homomorphism of

onto zi'. If is an element of which is not in and x is some
fixed element of Kai such that then x Kg',

(1 0. We have thus proved that is a place of with
residue field LI', and that Hence and Pfl2 coincide on
Kg'.

Conversely, if we have = on Kga', where is a place of then
it is clear that oo implies oo, whence Kai' and is a

specialization of This completes the proof.
We note that and coincide not only on Kai' but also on in

the following sense: if x e Kai and x (whence e LI and xPI" oo),
then = 00. For, if x Kai', then 0, and hence

0 (since Pfl2 on Kg'), i.e., 0 and = oo,

as asserted.
We note also that in the special case of isomorphic places is

an isomorphism of i.e., is a trivial place of zl.
It is clear that the place whose existence is asserted in Theorem 2

is uniquely determined by and and that if both and are
places over k, then also is a place over k (i.e., a place of zl/k).

COROLLARY. If and are places of K/k and then
dim dim Furthermore, if the residue field of has finite
transcendence degree over k and is a specialization of over k, then
dim dim Pp/k if and only if and are k-isomorphic places.

We shall now investigate the following question: given a place of
K, find all the places of K of which is a specialization. From
Theorem 1 2) it follows at Once that any ring (in K) which contains
the valuation ring of a place of K is itself a valuation ring of a place of K.
Hence our question is equivalent to the following: find all the subrings
of K which contain Kai. The answer to this equation is given by the
following theorem:

THEOREM 3. Any subring of K which contains Kai is necessarily the
quotient ring of Kai wit/i respect to some prime ideal of Kai. If and
are ideals in then either contains or contains 9)1k (and hence
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the set of rings between Kg, and K is totally ordered by set-theoretic
sion c). If is a place of K/k and if tr.d. K/k = oo, then has
only a finite number of prime ideals, and the number of prime ideals of
(other than Kg, itself) is at most equal to r — s, where s dim

PROOF. Let L be a ring between Kai and K: Kai < L < K. Then L is
the valuation ring K2 of a place of which is a specialization and
hence the prime ideal is also a prime ideal in Kai. Any element
of which is not in is a unit in K2 (since is the ideal of non-
units of K2 and since Kaic: K4. Hence the quotient ring of with
respect to the prime ideal (i.e., the set of all quotients a/b, where
a, b E Kai and b is contained in K2. On the other hand, we now
show that any element x of K2 belongs to the above quotient ring.
This is obvious if x E Kai. Assume that x Kai. If we set y 1/x,
theny e (since is a valuation ring). Furthermore, x (since

Kai), and hence x is a unit in K2. Therefore also y is a unit in
and so y It follows that x( l/y) belongs to the quotient

ring of Kai with respect to This proves the first part of the theorem.
Let and be any two proper ideals in Kai (not necessarily prime

ideals) and assume that Let x be an element of not in
2' and let y be any element of y 0. Then x/y and hence

y/x E y e (since is an ideal and x e Hence
Assume npw that is a place of K/k and that tr.d. K/k = r oo. Let

and be two prime ideals in Kai and let us assume that, say,
Let i= 1, 2, be the quotient ring of Kai with respect to

and let be a place of K whose valuation ring is L.. We have
L2 > L1, and hence is a proper specialization of On the other
hand, is a specialization of It follows by Theorem 2, Corol-
lary, that dim Pp/k dim < dim r. This shows that the
number of prime ideals of is finite and that the number of prime
ideals in other than itself, is at most r — s. This completes the
proof of the theorem.

DEFINITION 1. The ordinal typef of the totally ordered set of proper
prime ideals of (q (0), q q1 precedes zf 'T2) is called
the rank of the place

t In most axiomatic systems of set theory it is possible to attach to every
totally ordered set E a well-defined object o(E) in such a way that we have
o(E) = o(F) if and only if E and F are isomorphic ordered sets (i.e., if there exists
a one..to..one mappingf of E onto F such that the relations and
are equivalent). The object o(E) is called the ordinal type of E. Further-
more, if E is isomorphic to the set {1, 2, . . . , n} (i.e., if E is a finite, totally
ordered set with n elements), we shall identify its ordinal type with its cardinal
number n.
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COROLLARY 1. If K has finite transcendence degree r over k, then any
place of K/k has rank r — s, where s dim

The rank of a place of K is zero if and only if is a trivial place of K.
The rank of is I if and only if is not a trivial place of K and is not

a proper specialization of any place of K. A necessary and
sufficient condition that a place be of rank one is that its valuation
ring be a maximal (proper) subring of K. We shall see later 4,
Theorem 4, Corollary 3) that any maximal (proper) subring of K is in
fact the valuation ring of a place of K, provided the subring is a proper
ring, i.e., not a field.

We shall have occasion to use in § 6 the following corollary:
COROLLARY 2. If a1, a2, . . . , am are elements of K, not all zero, then

for at least one integer j, I m, it is true that cc,

Since K is the quotient field of it is sufficient to consider the case
in which all the a are in Kai. In that case we take for a3 the element
which generates the greatest ideal in the set of principal ideals (a1).

If is of finite rank m, there are exactly m — I rings L. between
and K, and we have Kai < L1< L2 < ... < K. If is a place
of K whose valuation ring is L., then is of rank m —1, is a speciah
ization of if i <• (i= 0, 1, .. , m — 1; We have thus a
specialization chain for

(2)

which joins a place of rank I to the given place of rank m. This
chain is maximal in the sense that it cannot be refined by insertion of
other places which are not isomorphic to any of the m places We
shall call the chain (2) a composition chain for Any place of

which is a specialization is isomorphic to one of the places (assum-
ing of course that is not a trivial place of K), and if

/ThF ,ThF ,I7IF
m—1 m—2 1

is any other composition chain for then and are isomorphic
places (i=0, 1, . .. , m—1).

If r = tr.d. K/k 00, then of particular importance are the places
which are of dimension r — 1. It is clear that the rank of such a place
is I (Corollary 1). The (r— places of fields of algebraic
functions of r independent variables are of particular importance in the
theory of algebraic varieties. A discussion of these places will be found
in § 14.
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§ Existence of places. We shall prove the following existence
theorem:

THEOREM 4. Let o be a subring of K containing 1, and let be an
ideal in o, different from o. Then there exists a place of K such that

and
PROOF. Let M denote the set of all subrings R. of K such that

o c: R1 and The set M is since o E M. We par-
tially order the rings R by inclusion. Let {Ra} be a
totally ordered subset N of M, and let R be the join of the rings Ra.
We cannot have a relation of the form I a1e1 ± a2e2 + ... ± amem,
a1 E E R, for the e's would then belong to some E N (since
J\T is linearly ordered), and we would have a contradiction
(since E M). It follows that R91 R, and hence R E M. We have
therefore proved that every totally ordered subset N of M has an upper
bound R in M. By Zorn's lemma, M contains, then, maximal elements.
We shall prove that every maximal element of M is the valuation ring
of a place of K, satisfying the required conditions.

Let L be a maximal element of M. The ring L satisfies, then, the
following conditions (1) o L, L91 L; (2) if L' is any subring of K such
that L <L', then L'. The remainder of the proof will be based
on the following lemma:

LEMMA. Let R be a subring of a field K, containing 1, and let be a
proper ideal in R. Then for any element x of K at least one of the
extended ideals R[x], R[1/x] respec-
tively.

PROOF OF LEMMA. Assume the contrary: R[x], =
R[1/x]. That means that we have two representations of the element
1 of R:

(1) 1 — a E 0 i n;

(1') 1 0 m.

We shall suppose that the relations (1) and (1') are of the smallest pos-.
sible degrees n and m. Let, say, m n. We multiply (1) by I — b0
and (1') by

1—b0 = (I—b0)a0+ .. . +

(I— = + ... +
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Thus,
I — b0 = (1 — b0)a0 + + (1 —

1

a relation of the same form as (1) and of degree less than ii,
contrary to our assumption that (1) is of lowest possible degree.

We now apply the lemma to the case R_—L, If x is any ele-
ment of K, and if we set L' L[x], L" L[1/x], then the lemma tells us
that at least one of the following two relations must hold: L',

L". This implies by the maximality property of L, that either
L = L' or L =L", i.e., either x E L or 1/x E L. Hence L is a valuation
ring of a place of K 2, Theorem 1).

The prime ideal of is the ideal of non-units of L, whence
L o the proof of the theorem is now complete.

We note that if is a trivial place of K then = (0). Hence if the
ideal is not the zero ideal, any place satisfying the conditions of the
theorem is necessarily non-trivial.

COROLLARY 1. If o is an integral domain, not a field, and if K is a
field Containing V as subring, then there exist non-trivial places of K such
that

For o contains ideals different from (0) and o.
COROLLARY 2. A field K possesses only trivial places if and only if K

is an absolutely algebraic field, of characteristic p 0 (i.e., if and only if K
is an algebraic extension of the prime field of characteristic p 0).

For, the absolutely algebraic fields, of characteristic p 0, are the only
fields with the property that all their subrings are fields, whereas the
valuation ring of a non-trivial place is not a field.

COROLLARY 3. If o is a proper ring and a maximal subring of afield K,
then o is the valuation ring of a place of K.

This follows at once from Corollary 1. Note that is then neces-
sarily of rank 1 (see § 3, Definition 1).

Of great importance for applications to algebraic geometry is the fol-
lowing consequence of our existence theorem:

THEOREM 5. If o is an integral domain contained in afield K and if rn
is a prime ideal in o, in o, then there exists a place of K such that
Kai o and Wlai fl V = In.

PROOF. Let o' denote the quotient ring of o with respect to in and
let in' = o'rn = ideal of non-units in o'. From our assumptions on itt it
follows that in' o'. Hence there exists a place of K such that
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o', n in'. Since in' is a maximal ideal in o' and since
1 it follows that fl o' = in'. Hence fl o = in, since
-in' flo=flt.

The following is essentially an equivalent formulation of Theorem 5:
THEOREM 5'. (The extension theorem). If o is an integral domain and

K is afield containing o, then any specialization of o can be extended to a
place of K. In particular, ifk is a subfield of K then any place of k can
be extended to a place of K.

For if in denotes the kernel of then in o (by definition of specializa-
tions), and there exists a place of K such that K, o and n o = in.
If denotes the restriction of to o, is an isomorphism of onto

(since in is the kernel of both and sb). This isomorphism can be
extended to an isomorphism of the residue field of into some field
containing ocp. If .92 is such an extension, then the place of K is an
extension of 'p.

We now give a number of important consequences of Theorems 5
and 5'.

For applications to algebraic function fields, or, more generally, to
fields K in which a subfield k has been specified as ground field, it is
important to analyze Theorem 5' in the special case =1 (whence
m = (0)), with reference to the following question: does there exist in this
case a non-trivial place which is an extention of If is such a place
then K, contains the quotient field of o in K, and the restriction of
to that quotient field is also the identity. Therefore, we may as well
assume that o is a field, say o = k, and the non-trivial places which we
are seeking are the places of K/k. If K is an algebraic extension of k,
then K, K, since must be integrally closed in K
and since every element of K is integrally dependent on k. Hence if K
is an algebraic extension of k, then K/k possesses only trivial places. On
the other hand, assume that K has positive transcendence degree over k.
Then if x is any transcendental element of K over k, the polynomial
ring k[x] is a proper ring (i.e., not a field) and admits at least one speciali-
zation over k which is not an isomorphism (in fact, there are infinitely
many such specializations of k[x], for each irreducible polynomial in
k[x] can be used to define a We have therefore the following.

COROLLARY I. If K is afield extension of a ground field k, then K/k has
non-trivial places if and only if K has positive transcendence degree over k.

To this corollary we can now add the following very useful additional
result:

COROLLARY 2. If a field K has positive transcendence degree over a
subfield k, then there exist algebraic places of K/k.
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For consider the set M of all valuation rings in K which belong to
places of K/k (i.e., valuation rings which contain k). By Corollary 1,
M is By Theorem 1, § 2, the intersection of any descending
chain of valuation rings in K is again a valuation ring. Hence, by Zorn's
lemma, M contains minimal elements (it is understood that M is
tially ordered by set-theoretic inclusion). Let R be a minimal element
of M and let be a place of K/k such that Kai R. We assert that
is algebraic over k. For, assuming the contrary, i.e., assuming that the
residue field of has positive transcendence degree over k, then it
would follow from Corollary I that there exists a place of
zi/k. Then the composite place = is a place of K/k whose
valuation ring is a proper subset of R, a contradiction.

COROLLARY 3. If q is a specialization of an integral domain and if
K is afield containing o, then there exists a place of K which is an extension
of and whose residue field is algebraic over the quotient field of O(p.

Let k be the quotient field of the op of o. We fix a place
of K which is an extension of and whose residue field therefore

contains k. If 4 is algebraic over k then is the desired place. If 4
is not algebraic over k, then we fix, by Corollary 2, an algebraic place
of 4/k. The composite place = of K is an extension of (since

is the identity of 0(p) and its residue field is algebraic over k (since
is an algebraic place of 4/k).

COROLLARY 4. Let o be an integral domain and let K be a field con-
taining o as subring. If a specialization of 0 is such that it has no proper
extensions within K, then is a place of K (this is the converse of a result
proved in the beginning of § 2).

This is a direct consequence of Theorem 5'.
The two corollaries that follow have already been proved in the pre-

ceding chapter in the more general case of arbitrary commutative rings
with identity. However, as in the case of domains they are very simple
consequences of Theorem 5, we give here a second proof of these
results.

COROLLARY 5. Let £ and o be integral domains such that 0 is a subring
of C and such that every element of £ is integrally dependent on o.
Then for every prime ideal m in 0 there exists a prime ideal 9)1 in £ such
that 9)1

The assertion being trivial if m =0, we assume m o. If K is the
quotient field of there exists a place of K such that 0 and

n = m (Theorem 5). Since K, is integrally closed in K and is
integral over 0, it follows from o that Hence fl £ is
a prime ideal 9)1 in £, and we have 9)1 n 0=
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COROLLARY 6. The rings and o being as in the preceding corollary,
let a be an ideal in o. Then if a o, we have

Since o contains an identity, there exists a prime ideal m in o such that
a in o (for instance, there exist maximal ideals containing a). By
Corollary 5, let be a prime ideal in such that o = in. Then
clearly and since Cac £mc it follows that £a

Place-theoretic properties of integrally closed domains are of parti-
cular importance in the arithmetic theory of algebraic varieties. Many
of these properties are based on the following theorem:

THEOREM 6. If o is an integral domain and K is a field containing o,
the intersection of all the valuation rings K such that

o is the integral closure of o in K.
PROOF. Since every K, is integrally closed, every K, containing o

contains the integral closure ö of o. So we have only to show that if x
is an element of K which does not belong to ö, then there exists a place

of K, such that K, o and x K,. To show this, we consider the
ring o' = o[y], where y = 1/x. Our basic remark is to the effect that y
is a non-unit in o'. For, if y were a unit in o', then we would have a
relation of the form: 1/y = x = + + ... a. e o, or

— — ... — =0, and hence x would be integrally dependent
on o, contrary to assumption. Since y is a non-unit in o', the ideal o3'
is different from o'. By Theorem 4, there exists, then, a place of K
such that Hence y is also a non-unit in K,, and
consequently x K,.

COROLLARY. Let o be an integral domain and let K be afield containing
o. If o is integrally closed in K, then o is the intersection of all the valua-
tion rings K, of places of K such that

K is a field of algebraic functions over a ground field k,
then all the results established in this section continue to hold if by a
"place of K" we always mean a "place of K/k," provided that kc: o.
For, every place such that o is k-isomorphic to a place of K/k.

§ 5. The center of a place in a subring. Let o be an integral
domain, let K be a field containing o and let be a place of K. We say
that is finite on o if has finite value at each element of o, or—
equivalently_if o K,. If is finite On o then the restriction of
to o is a specialization of o. If this specialization is the identical
mapping of o onto itself, then we shall say that is a place of K
Over o.

Let be a place of K which is finite on o. The set = o of
those elements of o at which has value zero is clearly a prime ideal in
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o. This prime ideal is called the center of in o. The center p is
always different from o since I it is the zero ideal if and only if
the restriction of to o is an isomorphism (in particular, = (0) if
is a place of K over o). It is clear that the residue class ring o/p is iso-
morphic to the subring of the residue field 4 of

Since any element of o which is not in the center p of in o is a unit
in the valuation ring Kai, it follows that is also finite on the local ring
o, of the specialization induced by in o, and it is clear that the center
of in o, is the maximal ideal po, in o,. Conversely, if p is a prime
ideal in o, different from o, and if is a place of K such that (1) is
finite on o, and (2) the center of in o, is the maximal ideal m in o,,
then is also finite on o and has center in o (since m fl o = p). Note
that condition (1) by itself is only equivalent to the following condition:

is finite on o and its center in o is contained in p.
Isomorphic places have the same center in any ring o on which they

are finite. On the other hand, if we have two places and such that
is a specialization of then if is finite on o also is finite on o

(since and the center of in o is contained in the center of
in o (for

Theorem 5 4) said that any prime ideal (different from (1)) in a
subring o of a field K is the center in o of a place of K. A more precise
result can be proved:

THEOREM 7. Let o be a subring of a field K, p and a two prime ideals
in o such that ci. Suppose that is a place of K with center in o.
Then there exists a place of K which is a specialization of and which
admits q as a center in o.

PROOF. Without loss of generality we may assume that is the
residue field of Consider now the subring of the residue field

of the prime ideal q/p of o/p, and the canonical homomor-
phism of o/p onto By Theorem 5' 4), this homomor-
phism can be extended to a place of the field The product

= is then a place of K. Its valuation ring contains o, and its
center on o is obviously q.

COROLLARY. Let be an integral domain, o a subring of over which
is integral, a prime ideal in the prime ideal n o, and q a prime

ideal in o containing Then there exists a prime ideal in containing
and such that n o = q.

For, let K be a field containing There exists a place of K with
center in Then the center of in o is = o n Theorem 7
shows the existence of a specialization of with center q in o. Since

is integral over o, the valuation ring of .92 contains Thus admits
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a center in and this center is a prime ideal containing Further-
more, we have fl o q, since q is the center of in o.

REMARK. This corollary has already been proved in Vol. I, Ch. V,
p. 259, without any assumption on zero divisors.

The places of a field K which have given center in a given subring
o of K are among the places of K whose valuation ring contains the
quotient ring 0p, but they are those which satisfy the additional condi-
tion fl By Theorem 6, § 4, we know that the integral
closure of in K is the intersection of all the valuation rings which
contain 0p. We shall now prove the following stronger result.

THEOREM 8. Let o be an arbitrary subring of a field K and let be a
given prime ideal in o, different from o. Let £ be the quotient ring of o
with respect to If N denotes the set of all valuation rings R in K which
belong to places of K having center in o, then

fl R = integral closure of £ in K.
ReN

PROOF. It will be sufficient to show that every valuation ring S in K
which contains £ contains as subset some member of N. Let .9 be a
place of K such that S = K.91 and let n o = q, where q is a prime ideal
in o. Since £, q is the contraction of some prime ideal in £
(namely of n £), and hence qc By Theorem 7 (where q and
have now be interchanged) there exists a place of K which is a
specialization of and admits as center in o. Then Kaic S, and since

E N, the proof is complete.

COROLLARY. If o is integrally closed in K, then fl R =
ReN

For in that case also o, is integrally closed in K.
As an application of the notion of the center of a place we shall now

give a complete answer to the following question: given a Dedekind
domain R, find all the places of the quotient field of R which are finite
onR.

THEOREM 9. Let R be a Dedekind domain, K its quotient field. The
non-trivial places of K which are finite on R are the places of R (see
§ 2, Example 2) and these places are all of rank 1.

PROOF. Let be a non-trivial place of K which is finite on R.
Since is non-trivial, and since K is the quotient field of R, the center
of in R is a proper prime ideal The valuation ring of contains
the quotient ring In order to show that these two rings are equal,
we need only prove that is a maximal subring of K, and this will
Prove Theorem 9.
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It has been proved (Vol. I, Ch. V, § 6, Theorem 15) that there exists an
element m of such that every element of may be written as
where u is a unit in and q a non-negative integer. It follows, upon
division, that every element of K may also be written under the form vms,
where v is a unit in and s an integer. Let S be a subring of K
properly containing Then S contains some element vms, with
s <0. Thus, since S contains it contains m' =
hence S contains for every integer n, and therefore also every ele-
ment (u a unit in q—any integer), it follows that S = K.
Q.E.D.

COROLLARY 1. The only non-trivial places of the field of rational
numbers are the p-adic ones (p, a prime number).

In fact, the valuation ring of such a place must contain the ring J of
ordinary integers.

COROLLARY 2. Let k be a field, and K= k(X) the field of rational
functions in one indeterminate X over k. The non-trivial places of K/k
are:

(a) The p(X)-adic places (MX), an irreducible polynomial in k[X]).
(b) The place whose valuation ring consists of all fractions a(X)/b(X)

(a, b: polynomials) such that ba bb.

(Equivalent places may be obtained by replacing in the rational func-
tions f(X) either

(a) X by a root of the irreducible polynomial p(X) or
(b) 1/X by 0.)

Let be a non-trivial place of K/k. If its valuation ring contains
X, it contains k[X], and we are in case (a). Otherwise 1/X is in
and is a non-unit in this ring. Thus contains the polynomial ring
k[1/X], and the center of in this ring must be a prime ideal containing
1/X, i.e., it must be the principal ideal (1/X). Then the valuation ring
of consists of all fractions a'(l/X)/b'(l/X) (a', b': polynomials over k)
such that b'(O) 0. The verification of the fact that this is the valuation
ring described in (b) may be left to the reader.

REMARK. The last corollary expresses the fact that the non-trivial places
of k(X)/k correspond to the elements of the algebraic closure k of k (more pre-
cisely to the classes of conjugate elements of k) and to the symbol oo: the
value of the rational functionf(X) at the place corresponding to x in k (to oo)
being f(x) (f(oo)). Notice that all these places have dimension 0 and rank 1,
and that their valuation rings are quotient rings of polynomial rings. The
places of K/k, where K is a field of rational functions in several variables over
k, are of more complicated types (see § 15).
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COROLLARY 3. An integrally closed local domain R in which the ideal
of non-units is the only proper prime ideal is the valuation ring of a place
of rank 1.

For, R is a Dedekind domain (Vol. 1, Ch. V, § 6, Theorem 13), and if
p is the ideal of non-units in R then R = Note that R is a discrete
valuation ring of rank I (in the sense of Vol. 1, Ch. V, end of § 6, p. 278;
see also § 10 of this chapter, Theorem 16, Corollary 1).

We shall conclude this section with the derivation of another criterion
for a domain to be a valuation ring. Let o be an integral domain, q a
prime ideal in o, and let be a place of the quotient field K of o which is
finite on o and has center q. Since n o = q, the integral domain o/q
can be canonically identified with a subring of the residue field of
Thus 4 is an extension of the quotient field z10 of o/q. We shall say
that the place is of the first or of the second kind, with respect to o,
according to whether the transcendence degree of Over z10 is zero or
positive.

THEOREM 10. Given an integrally closed integral domain o and a
prime ideal q in o, q o, a necessary and sufficient condition for the quotient
ring 0q to be a valuation ring is that there should not exist a place of the
quotient field of o such that has center q and is of the second kind with
respect to o.

For proof of Theorem 10 we shall first prove a general lemma:
LEMMA. Let o be an integrally closed integral domain, let K be the

quotient field of o and let q be a prime ideal in o. If an element t of K is a
root of a polynomial f(X) = + + ... ± where the coeffi-
cients a are in o but not all in ci, then either t or 1/t belongs to the quotient
ring

PROOF. The element 1/t is a root of the polynomial a0 + a1X+ +
a,X'. Our assumptions are therefore symmetric in t and 1/t. There
exists a place having center q. We shall show that t or 1/t E
according as oo or oo. Let, say, oo. Let us assume
that a0, a1,. . , E q, a1 q; herej is some integer such that 0 n.
If j =0, then the equation f(t) = 0, upon division by a0, implies that t is
integrally dependent on 0q, and hence t E Oq since 0q is integrally closed
(Vol. I, Ch. v, § 3, p. 261). We cannot have j= n, for in the contrary
case the existence of a place having center q and such that tPI' oo
would imply that a contradiction. We shall therefore
assume that 0<j < n.

Let
= a0t'+a1t''+ ... +a51t±a1
= + 4- ... +
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Let be any place which is finite on o. If oo, then also 00,

and also oo since + = 0. If tPi' = oo, then oo, and since
+ 'q/t = 0, it follows that = 0. Hence, in all cases we have oo

and oo. Since this holds for all places which are finite on o, it
follows that the elements and both belong to o. Now, by assumption,
there exists a place having center q and such that oo. For such
a place we will have 0 since afi =0, i =0, 1,.. . , j =1, and

0 (in view of the assumption made on the coefficients a0, a1,... , a.).
Therefore the element of o does not belong to q, and consequently
t = — E 0q. This completes the proof of the lemma.

We note the following consequence of the lemma:
COROLLARY. Let o be an integrally closed integral domain, let K be the

quotient field of o and let q be a prime ideal in o. If an element t of K is
such that neither t nor lit belongs to the quotient ring 0q and if denotes
the ring o[t], then the extended ideal = q is prime, the contracted ideal

n o coincides with q, and the of t is transcendental over o/q.
For, q consists of all elements of the form + + +
E q, n an arbitrary integer 0. If + + ... + = a E 0,

then it follows from the lemma that a E q, showing that q fl o = q.

Hence the integral domain o/q can be regarded as a subring of If
we have a relation of the form + e1lfl_1 + . . . + =0, where

E o/q and I is the a-residue of t, and if we fix an element a1 in o such
that is the q-residue of then + . . . + E i.e., there
must exist elements ira' IT2, , ir1, , in q such that

h

+ — + (a1 — + ... + — ira) =0. Therefore, by

the lemma, we must have — E q, a1 = =0, showing that t is trans-
cendental over v/ q. Hence o/ n[t] is an integral domain, and since this
ring is the residue class ring it follows that is a prime ideal.

[In terms of dimension theory: dim =1+ dim q.]
The proof of Theorem 10 is now immediate. The necessity of the

condition is obvious, for if 0q is a valuation ring, any place which is
finite on o and has center q necessarily has 0q as valuation ring, and thus
the residue field of coincides (to within an isomorphism) with the
quotient field of o/q. To prove the sufficiency of the condition, we
assume that 0q is not a valuation ring and we show that there exists a
place of K which has center q and is of second kind with respect to o.
For this purpose, we consider an element t of K such that neither t nor
I /t belongs to 0q (such an element exists since o, is not a valuation ring)
and we pass to the ring = o[t] and to the ideal = i3 ci. By the above
corollary, is a prime ideal, different from Let be a place of K
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which is finite on and has center in ii. Then it follows from the
corollary that the center of in o is q and that is of the second kind
with respect to o (since the residue field of contains

The following consequence of Theorem 10 has been useful in the
geometric applications of valuation theory:

COROLLARY OF THEOREM 10. Let {Oa}, a E A, be a collection of sub-
rings of afield K, integrally closed in K and indexed by a set A, and let for
each Va a proper prime ideal in Da be given. Assume that the following
conditions are satisfied: (a) if then fl = (b) for any two rings

(a, A) there exists a third ring o,, in the collection such that
and o,,. Let = U = U Then is a valua-

aeA aeA
tion ring if and only if there does not exist a place of K which satisfies,
for each a, the following conditions: has center in Va and is of the
second kind with respect to Va•

From condition (b) it follows that is a ring, integrally closed in K,
and (a) implies that the set is a proper prime ideal in Any place

of K which has center in has center a E A; and
conversely. The residue class ring can be regarded, canonically,
as the union of the rings It follows that a place of K which has
center in is of the second kind with respect to if and only if
is of the second kind with respect to each of the rings and the corol-
lary now follows from Theorem 10.

§
5bIs• The notion of the center of a place in algebraic geo-

metry. The concept of center of a place has been first introduced in
algebraic geometry, and in fact the theorems given in the preceding
section are merely generalizations of similar theorems concerning
algebraic varieties. We shall briefly review here the algebro-geometric
background of the material presented in the preceding section. For
further details, see Chapter VII, § 3.

If K is a field, the n-dimensional affine space over K is the set of all
points (z1, . , (i.e., ordered n-tuples) whose (non-homogeneous)
coordinates z1, z2,. , z, are elements of K. We now assume that K
is an algebraically closed field and that it contains a ground field k. If

is an ideal in the polynomial ring X2,. . . , (= k[X]) in n
indeterrninates, with coefficients in the ground field k, the variety of
is the set of all points (Z)( = (Z1, Z2, . . , Zn)) in AnK such that f(Z) = 0 for

polynomial f(X) in An algebraic affine variety in AnK (defined
Over k) is any subset of which is the variety of some ideal in k[X].
If V is a variety in ARK, defined over k, the polynomials in k[XJ which
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vanish at all points of V obviously form an ideal. This ideal, called the
ideal of the variety V, is the greatest ideal in k[X] whose variety is V.
It is clear that the ideal of a variety V coincides with its own radical and
is therefore (see Vol. 1, Ch. IV, § 4, Theorem 5) an intersection of
prime ideals. If the ideal of V is itself a prime ideal, then V is said to
be irreducible (over k) (cf. Ch. VII, § 3).

Let V be an afline variety in defined and irreducible over the
ground field k, and let be the prime ideal of V in k[X]. The residue
class ring is called the coordinate ring of V. We shall denote this
ring by k[V]. If x2 denotes the ti-residue of X1, then k[V] =
k[x1, x2,. . . , (= k[x]). The point (x1, x2,. . . , is called a general
point of V over k. The quotient field k(x) of k[x] is called the function
field of V, over k, and will be denoted by k(V). The dimension r
of V is the transcendence degree of k( V) over k. We have of course

Since the p-residues x2 of the X1 are not generally elements of K, the
general point (x) is not always actually a point of the space How-
ever, if K has transcendence degree r over k, there always exist k-
isomorphisms of k( V) into K (since K is algebraically closed). If 'i- is
one such isomorphism, and if xi- = z1, then also the point (z1, z2,.. . ,

of is called a general point of V over k. It is now a standard pro-
cedure in algebraic geometry to assume once and for all an algebraically
closed field K which has infinite transcendence degree over k (a so-called
universal domain K). This guarantees that any irreducible variety V,
over k, in (n arbitrary) carries general points (which are actually
points of the affine space ASK).

Let be a place of k( V)/k such that the residue field of is contained
in K (which is not a serious restriction on at least if K is a universal
domain, for in that case every place of k( V)/k is isomorphic to a place

satisfying the above condition). If is finite on the coordinate ring
and if, say, z1 (z1 E K), then the point (z) is called the center of the
place on V. (It is obvious that (z) is indeed a point of V, for if a
polynomial f(X) belongs to the ideal of V then f(x) = 0 and hence

0.) The elements g(x) of k[V] which vanish at the point
(z) form a prime ideal the prime ideal of (z) in k{V]. We have
g(x) E if and only if i.e., if and only if g(x) E 9)lai. Hence
the prime ideal of the center on the variety V is merely the center

of
the of a point P= (z1, z2,. . . , zn), over k (in symbols:

dim P/k, or dim (z)/k) we mean the transcendence degree of k(z) over k.
Two points (z) and (z') in are said to be k-isomorphic if there exists



§ 5bis CENTER OF A PLACE IN ALGEBRAIC GEOMETRY 23

a k-isomorphism r of the field k(z) onto the field k(z') such that
I � i � n. For instance, any two general points of our irre-

ducible variety V1 over k, are k-isomorphic1 and any general point of V1
over k, has dimension r over k1 where r —dim V. We now list some of
the properties of the center of a place on V. (We remind the reader
that a place of k(V) admits a center on an affIne variety if and only if

is finite on k[V].)
PROPERTY 1. A place of k( V)/k is trivial if and only if its center on

V is a general point of V over k.
The proof is straightforward and may be left to the reader.
PROPERTY 2. If Q is the center on V of a place of k(V)/k then

dim Q/k � dim � dim V1 and is trivial if and only if dim =
dim V.

Obvious.
Given two points Q=(z11 z21 . , z,,) and Q'=(z11, , zn') in

Q' is said to be a specialization of Q over k if there exists a specializa-
tion of the ring krzl onto the ring k[z'] such that is the identity on k

F T k , k , . ,and = z1. Q —* Q. If Q —* Q then dim Q /k
dim Q/k. If we have both Q Q' and Q' Q1 then Q and Q' are k-
isomorphic points1 and conversely. If Q Q' and dim Q'/k dim Q/k1
then again and Q' are k-isomorphic points1 for any proper k-homo-
morphism of the integral domain k[z] lowers the transcendence degree
of the domain. (See Vol. Il Ch. II, § 12, Theorem 29).

PROPERTY 3. Let and .2 be places of k(V)/k and let P and Q be their
respective centers on V. If .2 then also P Q.

Obvious.

PROPERTY 4. Let P and Q be points of V such that P Q. Suppose
that is a place of k(V)/k which admits P as center on V. Then there
exists a place .2 of k(V)/k which is a specialization of over k and has
center Q on V.

This is the analogue of Theorem 71 § 51 and the proof is the same.
If Q is a point of V and is the prime ideal of Q in the coordinate ring

kEy], then the quotient ring of k[V] with respect to is called the local
ring of V at Q (or also briefly: the local ring of Q (on V)). This ring
shall be denoted by o(Q; V)1 and the maximal ideal in that ring shall be
denoted by m(Q; V).

PROPERTY 5. If Q is the center on V of a place of k(V)/k then
o(Q; V)c: and m(Q; V) = n o(Q; V). Conversely, if these
two conditions are satisfied for a given point Q on V and a given place of
k( V), then the center of on V is a point k-isomorphic to Q. If only
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condition o(Q; V)c: is satisfied, then Q is a specialization, over k, of
the center of on V.

Obvious.
It follows that every point Q of V is the center of some place of

k(V)/k.
PROPERTY 6. If Q is a point of V then the integral closure of o(Q; V)

is the intersection of all the valuation rings which belong to places of
k(V)/k having center Q on V.

This is a particular case of Theorem 8, § 5.
To be able to speak of the center of a place of k(V)/k also in the

case in which is not finite on k[V], it is only necessary to adjoin to V
its points at infinity and to consider thus the enlarged projective variety

We shall discuss this question later in the next chapter (see
Ch. VII, § 4bis). At this stage it will suffice to say that if V is regarded
as a variety in the projective n-space, then every place of k( V) has a well-
defined center on V. This is important, since it allows one to introduce
the concept of a birational correspondence in a purely valuation-
theoretic fashion. Two irreducible varieties V and V', over k, are
birationally equivalent if their function fields k(V) and k(V') are k-
isomorphic. In that case, after fixing a definite k-isomorphism between
k(V) and k(V'), we may identify these two fields. Assuming therefore
that k(V) k( V'), we can set up a correspondence T between the points
of V and V' in the following fashion: a point Q of V and a point Q' of V'
are corresponding points if there exists a place of k(V)( k(V')) whose
center on V is Q and whose center on V' is Q'. Such a correspondence
T is called a birational correspondence. The fact that every point of V s
the center of at least one place guarantees that in a birational correspon-
dence between two birationally equivalent varieties to every point of one
variety corresponds at least one point of the other variety.

§ 6. Places and field extensions. Let K be a field and K* an
overfield of K. It follows easily from our definition of a place that if

is a place of K* then the restriction of to K is a place of K. If
g,o and are places of K and K* respectively, we say that is an
extension of if is the restriction of to K. Our object in this
section is to study the extensions in K* of a given place of K.

LEMMA 1. If is an extension of then n K= Con-
versely, if this last relation holds for given places and of K and K*
respectively, then there exists an extension of which is isomorphic
to The relation n K== implies n K= and is
equivalent to and
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PROOF. The first part of the lemma is self-evident. Assume now
that fl K= K,, and let be the restriction of to K. Then

= K,, and hence and are isomorphic places of K. Hence

= where f is an isomorphism of the residue field of onto
the residue field 4 of Extend f to an isomorphism f* of the residue
field of and set = Then and are isomorphic
places, and is an extension of which proves the second part of
the lemma. Furthermore, it is clear that n K= and this
proves one half of the last part of the lemma. Assume now that we
have K, and 9)1, for two given places and of K and
K* respectively. If x is any element of K, not in K,, then 1/x belongs
to hence 1/x E and therefore x 0 This completes the
proof of the lemma.

Note in particular the case in which is a trivial place of K (p1) = an
isomorphism of K). If is the identity automorphism of K, then the
extensions of to K* are the places of K*/K. It follows from
Lemma 1 that if is an arbitrary trivial place of K, then any extension
of to K* is isomorphic with a place of K*/K.

The existence of extensions to K* of any given place of K is assured
by the extension theorem (Theorem 5', § 4), where o, K and are now
to be identified with K,, K* and respectively.

We shall generally denote by (or by z1*) the residue field of a
place of K (or of a place of K*). If is the restriction of
in K, then z1*, and the transcendence degree of z1* over 4 shall be
called the relative dimension of and shall be denoted by dimK
In the special case in which is a place of K*/K, we have = K, and
our definition is in agreement with our earlier definition of the dimen-
sion of

LEMMA 2. Let be a place of K* and let be the restriction of
to K. Let x1, x2, , be elements of and let be

their (in z1*). If the are linearly dependent over K, then the
are linearly dependent over zl.
PROOF. We have, by assumption, a relation of the form a1x1 ±

a2x2 + ... + amxm 0, where the a1 belong to K and are not all zero.
We select a coeflicient which satisfies the following conditions: a, 0
and oo for i= 1, 2,..., m (see Theorem 3, Corollary 2, § 3).
Dividing the above linear relation by a1 and passing to the we
find u1e1 + ± ... 0, where u, = E zi. Since the

are not all zero (u1, for instance, is 1), the lemma is proved.
COROLLARY 1. The relative dimension of is not greater than the

transcendence degree of K*/K.



26 VALUATION THEORY Ch. Vi

For let be a transcendence basis of 4*/4 and let be an element of
K such that xfl* = By assumption, any finite set of monomials in the

consists of elements which are linearly independent over J. Hence, by
the above lemma, the corresponding monomials in the are also linearly
independent over K, i.e., the x1 are algebraically independent over K.

COROLLARY 2. If K* is a finite algebraic extension of K, of degree n,
then also z1* is a finite algebraic extension of and we have [z1* : zl]
[K*:K].

The integer [z1* : zl] is called the relative degree of with respect to
(or with respect to K).

THEOREM 11. For any place of K there exist extensions in K*
such that dimK is any preassigned cardinal number 0 and trans-
cendence degree of K*/K.

PROOF. Let be a transcendence basis of K*/K and let {u1} be a
set of indeterminates over 4, in (1, 1) correspondence with the set {y1}.
Let f be the (uniquely determined) homomorphism of the polynomial
ring onto the polynomial ring zl[{u1}] such that u1 and

on Kai. By Theorem 5', § 4, f can be extended to a place of
K*. Then is an extension of and since the residue field of
contains the elements u1 it follows that dimK is greater than or equal
to the transcendence degree of K*/K. It follows by Corollary I of the
preceding lemma that dimK is exactly equal to the transcendence
degree of K*/K.

We now observe that there also exist extensions of having rela-
tive dimension zero. This follows directly from Theorem 5', Corol-
lary 3

To complete the proof of the theorem, let a be any cardinal number
between 0 and the transcendence degree of K*/K. We fix a subset
L = of K* which has cardinal number a and which consists of
ments which are algebraically independent over K. Let K' be the
field of K* which is generated over K by the elements x1 of L. Since
K'/K has transcendence degree a, it follows by the preceding proof that
there exists an extension of in K' such that the relative dimension
of (over K) is equal to a. Again by the preceding proof, there
exists an extension of in K* whose relative dimension (over K')
is zero. Then it is clear that is an extension of and that the
relative dimension of (over K) is equal to a. This completes the
proof of the theorem.

COROLLARY. If K is a field of algebraic functions of r independent
variables, over a ground field k, there exist places of K/k of any dimension
s,
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This follows from the preceding theorem if we replace K* and K by
K and k respectively and take for the identity automorphism of k.

§ 7. The case of an algebraic field extension. We shall now
study the case in which K* is an algebraic extension of K. Let be a
place of K and let be an extension of to K*. We denote by
the integral closure of in K*. If we denote by the ideal

n then the contraction of to is a maximal ideal in
namely the ideal of non-units of It follows from Vol. 1,
Ch. V, § 2, Complement (2) to Theorem 3, that is a maximal ideal
in

THEOREM 12. Let K* be an algebraic extension of K, let be an
extension of a place of K and let be the integral closure of in K*.
[f n then is the quotient ring of with respect
to

PROOF. It is clear that the quotient ring in question is contained in
Now, let a 0 be any element of and let

a E K, a0 0, be the minimal equation for a over K.
Letj be the smallest of the integers 0, 1, . . . , n, such that oo,
i =0, 1, . . , n. Then it is clear that = 0, if i <j. If we set

= then we have + + . . . ± 0, and the b1 are ele-
ments of not all in ¶43* (since b1 1). Since is integrally
closed, it follows from the lemma in § 5 that either a or 1/a belongs to
the quotient ring of with respect to Were a not in this
quotient ring, 1/a would be a non-unit in that ring, whence we would
have 0, = oo, which is impossible. This completes the
proof.

COROLLARY 1. If P1' i* and are two non-isomorphic extensions of P1',
then fl fl

Obvious.
COROLLARY 2. If is any maximal ideal in then the quotient

ring of with respect to is the valuation ring of a place of K*
Which is an extension of

I' or, by Theorem 4, § 4, there exists a place of K* such that
and Since is integrally dependent on

and since is the only maximal ideal in it follows that
fl Therefore and This shows

that is, to within an isomorphism, an extension of 6, Lemma 1).
Since cj the corollary follows from the theorem just
proved above.
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Before stating the next corollary we give the following definition:
DEFINITION. If K* is a normal extemcion of afield K, then two places

of K* are said to be conjugate over K if there exists a K-auto-
morphism s of K* such that

COROLLARY 3. Let K* be a finite normal extension of K and let be

a place of K. If and are extensions of in K*, then is iso-
morphic to a conjugate of

Let and be the centers of and in the ring
Since is integral over Kai and since and both lie over the
ideal in it follows by V, § 9, Theorem 22, that and are
conjugate prime ideals over K. Consequently some conjugate of
the place will have center in and hence and are
isomorphic since, by Theorem 12, these two places have the same
valuation ring.

The above corollary can be extended to infinite normal extensions K*
of K. The proof is as follows:

Given the two extensions and of to K*, let M denote the
set of all pairs (F, s) such that: (1) F is a field between K and K* and is
a normal extension of K; (2) s is a K-automorphism of F; (3) if and

are the restrictions of and to F then If (F, s)
and (G, t) are two such pairs, we write (F, s) < (G, t) if F< G and s is the
restriction of t to F. Then M becomes a partially ordered set. It is
clear that M is an inductive set and hence, by Zorn's lemma, M contains
maximal elements. Let (F0, s0) be a maximal element of M. To prove
the corollary we have only to show that F0 = K*. Assuming the con-
trary, we take an element x in K*, not in F0, and we adjoin to F0 the
element x and all its conjugates over K. We thus obtain a field F1

t In § 2 (p. 6) we have defined conjugate algebraic places of a field K over
a ground field k. In the present definition we have introduced the concept of
conjugate places, with respect to a field K, of a normal extension of K. The two
definitions agree whenever they are both applicable, nameiy when K is a normal
algebraic extension of k and when we are dealing with places of K over k. In
fact, let and be two places, over k, of a normal algebraic extension K of k.
If these places are conjugate in the sense of the present definition, then it is
obvious that they have the same residue field and are isomorphisms of K*
onto that common residue field; they are therefore conjugate over k also in the
sense of the definition of § 2. (Observe that both places must be trivial, in
view of § 4, Theorem 5', Corollary 1.) Conversely, assume that and
are places of K/k (necessarily algebraic) which are k-conjugate in the sense of
the definition given in § 2, and let Lii and J2 be their residue fields. Since
both and must be trivial places, z11 and J2 are k-isomorphic normal
extensions of k. Since they are subfields of one and the same algebraic
closure k of k, they must coincide. Therefore if we set then s is
an automorphism of K/k and have i.e., and are also con-
jugate in the sense of the present definition.



§7 CASE OF AN ALGEBRAIC FIELD EXTENSION 29

which is a normal extension of K and such that F0 < F1c: K*. Let the
restrictions of to F0 and F1 be respectively and similarly, let

and be the restrictions of to F0 and F1 respectively. We
fix an automorphism of F1 such that s1 is an extension of s0, and we
set = Since = it follows that and are
both extensions of By the finite case of the corollary we have
therefore that = where r is a suitable F0-automorphism of F1.
Then showing that (F1, 51r) E M. This is a contradiction
with the maximality of (F0, since F0 < F1 and is the restriction of
s1r to F0.

A similar argument could be used to prove that also Theorem 22 of
Vol. I, Ch. V, § 9, holds for infinite normal algebraic extensions. On
the other hand, the above proof of the corollary already establishes
Theorem 22 in the infinite case, for every prime ideal is the center of
some place.

COROLLARY 4. If K* is a finite algebraic extension of K and is a
place of K, then the number of non-isomorphic extensions of in is not
greater than the degree of separability [K* :

This is an immediate consequence of Theorem 12, Corollary 3 if K*
is a normal extension of K. In the general case, it is sufficient to pass
to the least normal extension K1* of K which contains K* and to ob-
serve that: (a) every extension of in K* is the restriction of an
extension of in K1* (for has an extension in K1*); (b) two exten-
sions of in K1* which differ by a of K1* have the
same restriction in K*; (c) if G and H are the Galois groups of K1*/K
and K1*/K* respectively, then the index of the subgroup H of G is
equal to the degree of separability [K* :

In view of the intrinsic importance of the above corollary, we shall
give below another proof which makes no use of the theorems developed
in this section. The proof will be based on the following lemma which
expresses the independence of any finite set of places such that none is a
specialization of any other place in the set.

LEMMA 1. If , are places of a field K such that
if then there exists elements s'.. , in K such that

and if (i,j=1, 2,. . . ,s).
PROOF. We first consider the case s=2. Since ± there

exists an element x in K such that oo, = oo. If 0, we
set 1/x. If we set 1). In a similar fashion we
can find

We assume now that s > 2 and we use induction with respect to s. By
Our induction hypothesis, there exists an element x such that 0, x,
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1=2, 3, ,s— 1. We show that there exists an element
such that 0, 00, 0, 1 2, 3,... ,s — 1, and Yfis 00. If

oo, there is nothing to prove. If = oo, we set = x/(x —1) if
1, and = x/(x ± 1) if I and the characteristic of the

residue field of is 2. If the characteristic is 2 and 1, we
set y5==(x3+x2+x)/(x3+x± 1).

In a similar fashion we find, for each i== 2, 3, ... , s, an element
such that Yfli 0, 00, 00 and 0, if 1, i(i= 2, 3,.. . , s).
If we then set . . we have 00;
1=2, 3,. . . , s. The existence of e2, .., is proved in a similar
manner.

The above Corollary of Theorem 12 can now be proved as follows:
Let , be non-isomorphic extensions of in K*.

Since each has relative dimension zero, no is a specialization of
any if There exist then elements . . ., in K* satis-
fying the conditions of the above lemma (with replaced by
We assert that for any integer e 0 the elements are linearly inde-
pendent over K (here p is the characteristic of K; if p = 0, we set pe 1).
For assume that we have a linear relation of the form

a 2e
2pe + + asespe _ 0, where the a are in K and are not all zero.

Upon dividing by one of the coefficients we may assume that one of the
coefficients, say aj, is equal to 1, while the remaining coefficients have
finite p-values. But then, passing to the we find the absurd
relation 1=0.

Since for a suitable integer e the elements are all separable over K,
it follows that s [K*: K]5, establishing the corollary.

We shall need later on the following approximation theorem which
expresses the independence of places in a much stronger form than does
Lemma 1.

LEMMA 2. If , are places of a field K, such that
4 if i then given s arbitrary elements a1, , belonging

to the residue fields of respectively, there exists an element
u in K such that = a, i= 1, 2, . . . , s.

PROOF. Using the elements ... , of Lemma 1 we set
= e1/(e1 + + + The s elements have then the

properties: = 1, = 0 if We shall make use of the in the
present proof, in the following fashion: instead of proving the existence
of an element u satisfying the conditions of the lemma, we shall prove
that for each i = 1, 2, . . . , s there exists an element u such that = a1,

oo if For, once this is proved, the element u = u
u 2+ + will satisfy all our requirements.
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Let us prove, for instance, that there exists an element u1 such that
= a1, oo if 1. We begin with the case s = 2. Let z1 be

an arbitrary element of K such that = a1. If oo, we set
jj1=Z1. If oo, then we may set u1=z1/(1

We now assume that s > 2 and we use induction with respect to s.

There exists then an element z1 in K such that z1fY'1 = a1, oo,

j= 2, 3,.. . , s—i. If also oo, we set u1=z1. If oo, we

may set u1 = z1/(1 +
This completes the proof of the lemma.
We shall conclude our study of extensions of places in algebraic field

extensions by a theorem which is of importance for applications, since
it covers a situation which occurs whenever two integral domains are
given, one of which is integrally dependent on the other.

THEOREM 13. Let be an integrally closed integral domain, and let

C* be an integral domain which is integrally dependent on Let q be a

prime ideal in and let be a prime ideal in which lies over q. If
is a place of the quotient field K of which has center q in then at least
one of the extensions of[Y' to the quotientfieldK* of Z)* has center in £r*.

PROOF. Since is integrally dependent on K* is an algebraic
extension of K. We also observe that we may replace £r* by its integral
closure in K*, since there is at least one prime ideal in which lies
over q* (Vol. I, Ch. V, § 2, Theorem 3). Hence we may assume that

is integrally closed.
We first consider the case in which K* is a finite normal extension of

K. We fix an extension of in K* and we denote by q'* the
center of in Since both and are integrally closed and
since both q'* and q* lie over q, the prime ideals q'* and q* are conjugate
over K (Vol. I, Ch. V, § 9, Theorem 22). If, say, q'* =T(q*), where 'i-

is a K-automorphism of K*, then the place = is an extension of
and has center
If is a finite of K, not necessarily normal, we consider the

least normal extension K' of K which contains K* and we denote by
C the integral closure of in K'. There exists a prime ideal q' in
such that q' fl £J* = qk, and by the preceding case, there exists an exten-
sion of in K' such that n = q'. Then if is the restric-
tion of to K*, the place will be an extension of with center
• Now, let K* be an arbitrary algebraic extension of K. Our theorem
is equivalent with the assertion that (1), where K is the
integral closure in K* of the valuation ring For, if there exists an
extension of which has center q*, then C and there-
fore 1 Kq*. Conversely, if (1), then the ideal Kq* in
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is contained in a maximal ideal of By Theorem 12,
Corollary 2, the quotient ring of with respect to is the valuation
ring of an extension of The prime ideal of contracts in

to a prime ideal which contains q* (since q*) and contracts to
the ideal in C. Hence = (see Vol. I, Ch. V, p. 259,
complement 1 to Theorem 3), and thus q* is the center of

Now, the proof that (1) is achieved by observing that if

= (1), then 1= E E q*, and from this

tion one concludes easily that there exists an intermediate ring
tween C and with the following properties: the quotient field K' of

is a finite algebraic extension of K, and if q' = q* fl then = (1),
where K'ai is the integral closure of Kai in K'. The relation q' = (1)
is, however, in contradiction with the fact that our theorem holds true
for the finite algebraic extension K'of K. This completes the proof of
the theorem.

COROLLARY. The assumption and notations being the same as in
Vol. I, Ch. V, § 13, Theorem 34 (the theorem of Kummer), given any place

of K which has center in R and given any irreducible factor f1(X) of
F(X), there exists an extension PF of to K' such that is a root of
f1(X).

Apply the theorem to the case in which = R', = + R'F1(y).

§ 8. Valuations. Let K be a field and let K' denote the multiplica-
tive group of K, i.e., let K' be the set of elements of K which are dif-
ferent from zero. Let 1' be an additive abelian totally ordered group.

DEFINITION. A valuation of K is a mapping v of K' into P such that the
following conditions are satisfied:

(a) v(xy) = v(x) ± v(y)

(b) v(x+y) min{v(x),v(y)}

For any x in K', the corresponding element v(x) of 1' is called the
value of x in the given valuation. The set of all elements of P which are
values of elements of K' is clearly a subgroup of 1' and is called the
value group of v. The elements of I' which do not belong to the value
group do not interest us. We shall therefore assume that I' itself is the
value group of v, i.e., that v is a mapping of K' onto 1'.

A valuation v is non-trivial if v(a) 0 for some a in K' ; in the contrary
case v is said to be a trivial valuation.

Condition (a) signifies that v is a homomorphism of the multiplicative
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group K' onto the additive group 1'. Hence v(1)= 0; v(— 1)+v(— 1)=
v(l) 0, and hence v( —1) 0 since 1' is a totally ordered group. More
generally, if an element w of K' is a root of unity, say if W7z =1, then
nv(w) = 0, whence v(w) = 0 (for 1' is totally ordered).

From v( — 1) 0 it follows that v( — x) = v(x), and hence, by (b):

(b') v(x —y) mm {v(x), v(y)}

We also note the following consequences of the properties (a), (b)
arid (b'):

(1) v(y/x) = v(y)—v(x),

(2) v(1/x) = —v(x),

(3) v(x) < v(y) v(x±y) — v(x).

To prove (3), we first observe that v(x ±y) v(x), by (b). On the other
hand, if we write x in the form (x +y) —y and apply (b'), we find

v(x) mm {v(x ± y), v(y)}. Hence v(x) v(x +y), since, by assumption,
v(x) <v(y). Combining with the preceding inequality v(x +y) v(x)
we find (3).

The following are easy generalizations of (b) and (3):

(4) xi) mm {v(x1), v(x2),. . . , for all K;

(5) xi) = mm {v(x1), v(x2),. . . , if the minimum is

reached by only one of the v(x1).
Relation (4) follows by a straightforward induction. To prove (5), let i
be the unique value of the index j for which v(x,) attains its minimum.
We have

v( x.) mm {v(x1)} > v(x1),

and now (5) follows from (3).
Let v and v' be two valuations of K, with value groups 1' and 1"

respectively. We shall say that v and v' are equivalent valuations if there
exists an order preserving isomorphism p of 1' onto 1" such that v'(x) =
[V(x)]cp for all x in K'. We shall make no distinction between equivalent
Valuations; we agree in fact to identify any two valuations of K if they
are equivalent.

If a particular subfield k of K has been specified as ground field, then
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a valuation v of K is said to be a valuation over k, or a valuation of K/k,
if v(c) = 0 for all c in k, c 0, i.e., if v is trivial on k.

The set of elements x of K such that v(x) 0 is clearly a ring. This
ring will be denoted by and will be called the valuation ring of v.

Since, for every x in K, we have either v(x) 0 or v(x) 0, i.e., either
v(x) 0 or v(1/x) 0 (by (2)), it follows that either x or l/x belongs to
the valuation ring. This justifies the name "valuation ring" (see
Theorem 1, § 2).

The "divisibility relation in K with respect to i.e., the relation
defined by the condition that there exists an element z in such

that x is equivalent to the relation "v(x) v(y)." This follows at
once from (a).

In order that both x and 1/x belong to it is necessary and sufficient
that v(x) 0 and — v(x) 0, i.e., that v(x) = 0. In other words: the
multiplicative group of units in coincides with the kernel of the homo-
morphism v of K' onto P.

The non-units in are therefore the elements y in K such that
v(y) >0. It follows directly from (a) and (b') that the set of non-units
in is a prime ideal. We shall denote this prime ideal by and
refer to it as the prime ideal of the valuation v. Notice that any element
of K which does not belong to is the reciprocal of an element of
Since is the set of all non-units in it,is a maximal ideal in in
fact the greatest proper ideal in

In the case of a non-trivial valuation, is not the zero ideal, and
is a proper subring of K. For a trivial valuation v we have Re—K,

Since is a maximal ideal, is a field. This field will be called
the residue field of the valuation v and will be denoted by or simply
by D. The image of an element x of under the canonical homomor-
phism will be called the v-residue of x.

If v is a valuation of K over a ground field k, then k and k can be
canonically identified with a subfield of the residue field D of v. The
transcendence degree of D/k is called the dimension of the valuation v
(over k).

It is obvious that equivalent valuations of K have the same valuation
ring and the same residue field. Conversely, if two valuations v and v'
of K have the same valuation ring, then they are equivalent. For let P and
1" be the value groups of v and v' and assume that
R = Re'. The two valuations v and v' are homomorphisms of K'
onto P and 1" respectively. By assumption, they have the same kernel,
namely the set of units R. Hence v1v' is an isomorphism 'p of P
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onto 1". The e!ements of positive value are the same in both valuations,
namely they are the non-units of R. Hence p transforms the set of
positive elements of I' onto the set of positive elements of 1" and is
therefore order preserving. Since v' vp, our assertion is proved.

§ 9. Places and valuations. Let v be a valuation of K, with value
group 1'. It has been pointed out in the preceding section that if x is
an element of K, not in then I /x belongs to (1 /x belongs then even
to Now, we know from § 2 that this property of characterizes
valuation rings of places of K. Hence every valuation v of K determines
a class of isomorphic places of K such that Kai = These places are
non-trivial if and only if v is non-trivial. If g,o is any place in the class
determined by a given valuation v, and if x is any element of K, then the
relations

= o, = 0, oo

are respectively equivalent to the relations

and therefore are also respectively equivalent to the relations

v(x) > 0, v(x) < 0, v(x) = 0,

since = and =
We now show that, conversely, every place g,o of K is associated (in the

above fashion) with a valuation of K. The case of a trivial place g,o is
trivial, and we shall therefore assume that g,o is non-trivial. Let E
denote the set of units in (E= — Then E is a subgroup of
the multiplicative group K' of K. Let 1' denote the quotient group
K'/E and let us write the group operation in 1' additively. Let v be
the canonical homomorphism of K' onto 1'. Then condition (a) of the
definition of valuations is satisfied for v. We now introduce a relation
of order in the group 1'. It will be sufficient to define the set 1÷ of
positive elements of 1'. We define 1+ as the transform of by v.
Since is closed under multiplication, 1÷ is closed under addition.
Since is an ideal in and since E is a subset of it follows that

is the set-theoretic sum of a family of E-cosets in K'. Hence
with the zero element deleted, is the full inverse image of 1÷ under
Or, in other words: if y E K', y then v(y) 1÷. Now, let a be
any element of 1' and let a = v(x), x G K'. If a then x E In
that case, I/x and hence — a = v(1/x) 1÷. If a and a 0,
then x and x E, whence x Ks,. But then 1/x e a =
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v(1/x) E 1'+. We have thus proved that 1'+ satisfies all the conditions
for the set of positive elements of an ordered group.

It remains to show that condition (b) of the definition of valuations is
satisfied. We have to show that if x, y E K' and v(x) v(y), then
v(x v(x), or—what is the same—that v(1 ±y/x) 0. But that is
obvious, since the assumption v(x) v(y) implies that y/x is an element
of and hence also 1 +y/x belongs to

Since by our construction of v the valuation ring of v is the ring
the proof is complete.

It is clear that if is a place of K and v is the corresponding valuation
of K, then the residue fields of g,o and v are isomorphic. In particular,
if K contains a ground field k and if g,o is a place of K/k, then the residue
fields of and v are k-isomorphic, and hence and v have the same
dimension. Note that, for a given valuation v a particular place asso-
ciated with v is the canonical homomorphism of onto (=

Although places and valuations are closely related concepts, they are
nevertheless distinct concepts. The value of an element x at a place g,o
is, roughly speaking, the analogue of the value of a function at a point,
while the value of x in the corresponding valuation v is the analogue of
the order of a function at a point. We shall, in fact, adopt this function
theoretic teminology when we deal with places and valuations. If,
namely, g,o is a place and v is the corresponding valuation, then for any
x in K we shall refer to v(x) as the order of x at If a = v(x) and a is
positive (whence x vanishes at to the order a.
If a is negative (whence xeI' = oo), then we say that x is infinite at g,o to
the order — a. The order of x at is zero if and only if 0, oo.

It must be pointed out explicitly that the above definition of the order
of the elements of K at a given place g,o of K presupposes that among the
(infinitely many) equivalent valuations determined by one has been
selected and fixed in advance. Without a fixed choice of v, the defini-
tion of the order is ambiguous. The ambiguity may remain even
the value group 1' is fixed, for 1' may very well possess non-identical
order preserving automorphisms.

It is well known that, with the exception of the additive group of
integers, every totally-ordered abelian group does possess such auto-
morphisms. Hence, it is only when the value group is the group of
integers that the order of any element of K at the given place g,o is deter-
mined without any ambiguity. There is, of course, one canonical
valuation v associated with a class of isomorphic places and that is
the canonical mapping of K' onto K'/E, where E is the set of units of

However, in practice one replaces K'/E by some isomorphic
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ordered group of a more concrete type (for instance, by a subgroup of
the additive group of real numbers, if v is of rank 1; see § 10 below) and
when that is done then the ambiguity referred to above reappears.

If a particular subfield k of K has been specified as a ground field then
the valuations v of K/k are characterized by the condition that k is con-
tained in It follows that the valuations of K/k are associated with
the places of K/k.

The following theorem seems, in some respects, to be an analogue of
the extension theorem for places (Theorem 5', § 4) but is actually a much
more trivial result:

THEOREM 14. Let o be an integral domain, K the quotient field of o,
and let v0 be a mapping of o (the zero excluded) into a totally ordered
abelian group 1' satisfying the following conditions:

(1) v0(xy) v0(x) + v0(y),

(2) v0(x +y) mm {v0(x), v0(y)}.

Then v0 can be extended to a valuation v of K by setting v(x/y) v0(x) —

v0(y), and this valuation v is the unique extension of v0 to K.
PROOF. If y/x =y'/x' then xy' x'y, v0(x) + v0(y') v0(x') + v0(y), i.e.,

v0(x) — v0(y) = v0(x') — v0(y'), and this shows that v is well defined and
is, of course, the unique valuation of K which coincides with v0 on A.
Furthermore, v satisfies conditions (a) and (b) of the definition of valua-
tions. For, we have:

— v0(yy') v0(x') — [v0(y) + v0(y')]

= [v0(x) — v0(y)] + [v0(x') — v0(y')J

/x\ /x'\
= vt-I+vt—1,\yI \yJ

i.e., condition (a) is satisfied. We also have:

=

mm {v0(xy'), v0(x'y)} — v0(yy')

= mm +vo(yy')}_vo(yy')

= mmlvi —j,vt\yJ \yJJ
showing that condition (b) is also satisfied.
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By analogy with § 5 we say that a valuation v of a field K is non-
negative on a subring A of K if the valuation ring contains A, i.e., if
each element of A has non-negative order for v. In this case the set
A n of all elements of A which have positive orders for v is a prime
ideal in A; it is called the center of v in A. The ideal is also the
center of the (equivalent) places associated with v. It follows that if A
is a subring of a field K and if is a prime ideal in A, then there exists
a valuation v of K having as center in A.

In the algebro-geometric case, when dealing with a valuation v of the
function field k( V) of an irreducible variety V/k, and assuming that v
is non-negative on the coordinate ring V], we shall mean by the
center of v on V the irreducible subvariety of V/k which is defined by
the prime ideal n k[V]. Thus, while the center of a place which
is finite on k[V], is a point Q of V, the center of the corresponding valua-
tion is the irreducible subvariety of V which has Q as general point
over k.

EXAMPLES OF VALUATIONS:

EXAMPLE (1). A finite field K admits only trivial valuations. In fact,
all its non-zero elements are roots of unity.

EXAMPLE (2). Let A be UFD, K its quotient field. Given a non-
zero element x in K, we consider the (unique) factorization

x = u fl pvp(x)
peP

u denoting a unit in A, and P a maximal set of mutually non-associated
irreducible elements in A. For a given x 0 in K, there is always only
a finite number of elements p in P such that 0, and the integers

are all 0 if and only if x E A. The uniqueness of such a fac-
torization shows immediately that vp(xy) = + vp(y). Denoting by

the integer mm vp(y)), the fact that x ±y may be written in
the form afl with a in A, shows that +y) � mm vp(y)).
In other words, for each p in P, is a valuation of K. Its valuation
ring is obviously the quotient ring AAP, and its center in A is the prime
ideal Ap. This valuation is called the p-adic valuation of K. Its value
group is the additive group of integers.

EXAMPLE (3). Let R be a Dedekind domain, K its quotient field.
By Theorem 9, § 5, we know that if v is a non-trivial valuation of K
which is non-negative on R, then the valuation ring of v is the quotient
ring R with respect to a proper prime ideal in R, and that in fact
for every proper prime ideal in R the quotient ring is a valuation
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ring. Let then 4 be any proper prime ideal in R and let vp denote the
(unique) valuation of K whose valuation ring is In the course of
the proof of Theorem 9 we have seen that every non-zero element x of

is of the form eta, where e is a unit in and t is some fixed element
of R which belongs to 4 but not to In other words, we have shown
that is a unique factorization domain, that t is an irreducible element
in and that every other irreducible element of is an associate of t.
It follows, as a special case of the preceding example, that if we set

v is a valuation of K and is the valuation ring of
v. Therefore v = Vp (up to equivalence). The center of Vp in R is
obviously the prime ideal This valuation v is called the
valuation of the quotient field K of R. We have therefore shown that
every valuation v of the quotient field K of a Dedekind domain R such that v
is non-negative on R is (or, is equivalent to) a valuation of K, where

is a suitable prime ideal in R, and that the value group of v is (or is order
isomorphic with) the additive group of integers.

In particular, all the non-trivial valuations of the field of rational
numbers, are equivalent top-adic valuations, where p is a prime number.
Similarly, each non-trivial valuation of the field k(X)/k of rational func-
tions of one variable is equivalent to a valuation of the following type:

(a) a p(X)-adic valuation, where p(X) is an irreducible polynomial in
k{X];

(b) the valuation defined by = deg. f(X) — deg. g(X).
(See Theorem 9, Corollary 2, § 5).

The above analysis can be applied to fields of algebraic numbers
(finite algebraic extensions of the field of rational numbers). If K is such
a field and v is a non-trivial valuation of K, then the valuation ring con-
tains the ring J of ordinary integers and therefore must also contain
the integral closure of J in K, i.e., the ring o of algebraic integers in K.
Since o is a Dedekind domain (Vol. I, Ch. V, § 8, p. 284), v is a
valuation of K, is a prime ideal in o, and the value group of v is
the additive group of integers. The center of v in J is a prime ideal Jp,
where p is a prime number and n J= Jp. Given a prime number p'
there is only a finite number of prime ideals in o such that n J=p
(they are the prime ideals of op). Hence, there is only a finite number
of mutually non-equivalent valuations v of K in which a given prime
number p has positive value v(p).

§ 10. The rank of a valuation. Let K be a field and let v be a
valuation of K. By the rank of v we mean the rank of any place such
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that Kai = (see § 3, Definition 1). We proceed to interpret the rank
of v directly in terms of the value group P of v.

A non-empty subset of P is called a segment if it has the following
property: if an element a of P belongs to zl, then all the elements fi of P
which lie between a and — a (the element — a included) also belong to
A subset of 1' is called an isolated subgroup of P if is a segment and a
proper subgroup of P.

It is clear that the set of all segments of P is totally ordered by the
relation of inclusion. We shall say, namely, that
cedes 2 if the segment is a proper subset of the segment We
proceed to prove that the ordinal type of the set of all isolated subgroups of
P is equal to the rank of v. This assertion is included in the theorem
stated and proved below.

If A is any subset of the valuation ring we shall denote by Av the
set of all elements a of P which are of the form v(x), x E A, x 0, and by
— Av the set of elements — a, aE Av. We denote by the
ment in P of the union of the two sets Av and — Av.

THEOREM 15. If is a proper ideal in R,, (i.e., (0), Re), then is
a segment in P. The mapping -÷ transforms in (1, 1)
fashion the set of all proper ideals in onto the set of all segments of P
which are different from P. The segment P

is a
is a proper ideal is and

tains only positive elements of P. Hence Psi is (it contains
the zero of F) and is a proper subset of P.

Since we have + ¶Iiv. In other words: if a E 91v and
fi > a, then E This shows that is a segment.

Since is an ideal, we have xEc for all x in Here E—the set of
units in the kernel of the mapping v of K' onto P. Hence
consists of and is therefore the full inverse image of under
v* Hence the mapping —p- is univalent. It is obvious that if

and are ideals in Rv and then Hence the mapping
reverses order.

Let be an arbitrary segment of P, different from P, and let L be the
set of all positive elements of P which do not belong to zi. We set

= Lv-1. The fact that is a segment implies that L + L.
Hence Furthermore, if x, y E and if, say, v(x) v(y), then
v(x —y) v(x) E L, and hence v(x —y) E L (since is a segment) and
x—y E (since We have proved that is an ideal. Since
L is and does not contain the zero of 1', is a proper ideal.
Thus everything is proved, except the last part of the theorem.
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We observe that an ideal is prime if and only if its complement in
is closed under multiplication. Hence is prime if and only if the

set of elements of is closed under addition. But since
is a segment, this property of the set of elements of
is equivalent to the group property of Hence is a subgroup

of 1' (necessarily isolated) if and only if is a proper prime ideal of
This completes the proof of the theorem.

In the sequel we shall also speak of the rank of any ordered abelian
group 1'; we mean by that the ordinal type of the set of all isolated
groups of 1'.

THEOREM 16. The valuation ring is noetherian if and only if the
value group 1' of v is the additive group of integers.

PROOF. We first show that if is noetherian then v must be of
rank 1. For suppose that v is of rank greater than 1. Since the nulh
group is an isolated subgroup of 1', there must exist an isolated subgroup
zl different from (0). Fix a positive element a in Then a < 2a

<na < Since is a proper subgroup of 1' we can find in
1' a positive element fi which does not belong to 4. Since is a segment
and since the elements na belong to zl, it follows that fi > na, n 1, 2,..
We thus have in 1' a strictly descending sequence fi, fi — a, fi — 2a,...
of positive elements. Such a sequence determines an infinite strictly
descending sequence of segments of 1', and therefore, by Theorem 15,
we have an infinite strictly ascending sequence of ideals in Hence

is not noetherian.
Let now v be of rank 1. If is noetherian, there must be a least

positive element in 1', say a. Then if n is any integer, no element of 1'
can lie between na and (n + 1)a, for in the contrary case there would also
be elements between 0 and a. Hence the set of all multiples na of a
(n =0, ± 1, ± 2,.. .) is a segment. Since this set is also a subgroup of
1', it follows that this set coincides with 1', for otherwise v would be of
rank > 1. We thus proved that if is noetherian, then 1' is
morphic with the additive group of integers. The converse is obvious,
for the group of integers contains no infinite strictly descending sequence
of segments.

We give another proof of Theorem 16, which does not make use of
Theorem 15. We first observe that the following holds in any valuation
ring if an ideal in has a finite basis, then is a principal ideal.

or if {x1, x2, . . , is a basis of and if, say, x1 is an element of the
basis having least value in v, then x1/x1 E and hence '21 is the
cipal ideal (x1). Let us suppose now that is noetherian. By the
above remark, is then a principal ideal ring. Let t be a generator of
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the maximal ideal of Then any element of which is not
divisible by t is a unit. A familiar and straightforward argument shows
that no element of (different from zero) can be divisible by all powers
of t (if x = E n 1, 2, . . . , then the principal ideals (a1),
(a2), . ., (an),... would form a strictly ascending chain). It follows
that every elen'ient x of x 0, can be put (uniquely) in the form atlz,
where n 0 and a is a unit. This shows that the principal ideals (ta),
n = 1, 2, . . . , are all the proper ideals of Hence the maximal ideal
(t) of is the only proper prime ideal of whence v is of rank 1.
Furthermore, it is immediately seen that if K' denotes, as usual, the
multiplicative group of the field K and E is the set of units in then
the quotient group K'/E, written additively, is isomorphic to the group
of integers. The given valuation v is necessarily equivalent to the
valuation v' obtained by setting v'(atlz) = n, if a is a unit.

A valuation of rank I is said to be discrete if its value group is the addi-
tive group of integers. Thus, Theorem 16 states that a valuation ring

is noetherian if and only if v is a discrete valuation of rank 1.
COROLLARY 1. An integrally closed local domain in which the ideal of

non-units is the only proper prime ideal is a discrete valuation ring of
rank 1.

This follows from § 5, Theorem 9, Corollary 3.
COROLLARY 2. If R is an integrally closed noetherian domain and is

a minimal prime ideal in R, then the quotient ring is a discrete valuation
ring of rank 1.

For, the ring satisfies then the assumptions of the preceding
corollary (cf. Vol. 1, Ch. V, § 6, Theorem 14, Corollary).

We add another important result concerning noetherian integrally
closed domains R. Let S denote the set of minimal prime ideals in R.
If S, we denote by vp the unique valuation of the quotient field K
of R which is non-negative on R and has center By Corollary 2, the
valuation ring of vp is and each vp is discrete, of rank 1.

COROLLARY 3. Let K be the quotient field of an integrally closed
noetherian domain R. If w is any element of K, w 0, then (1) there is only
a finite number of prime ideals in the set S such that vv(w) 0; (2) W
belongs to R if and only vp(w) Ofor all in S ; furthermore (3) w is a unit
in R and only vp(w) = Ofor all in S.

If w E R, then Rw = fl fl where s 0, the ti,.
are minimal prime ideals in R, n I and s = 0 if and only if w is a unit
(see Vol. 1, Ch. V, § 6, Theorem 14, Corollary 1). If follows at once
that = n1, 1=1, 2, . . . , s, and vp(w) =0 if S and

This proves (1) in the case in which w e R and therefore
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also in the general case. If w E K, w 0, we write w = w1/w2, E R.
If vp(w1) vp(w2) for all in S, then in view of the relations

Rw1 = fl
PES

Rw2 = fl
pEs

it follows that Rw1c: Rw2 and hence w1/w2 E R. This proves (2). The
last part of the corollary is now obvious.

We now go back to the study of general valuations and we add first
some remarks about isolated subgroups, which we shall presently make
use of.

Let be an isolated subgroup of 1'. It is immediately seen that the
canonical homomorphism of 1' onto 1'/zl defines a total ordering in 174,
in the following fashion: an element of 1'/zl shall be, by definition,
negative if it corresponds to a element of 1'. From now
on, when we speak of 1'/zl as a totally ordered group we mean that 174
has been ordered in the above fashion.

In the canonical homomorphism of 1' onto 17z1, the isolated
groups of 1' which contain correspond in (1, 1) fashion to the isolated
subgroups of I'/zl. Since every isolated subgroup of 1' either contains
or is contained in zl, it follows that if is the rank of LI and is the rank
of 1/zi, then the rank of l'is +

In § 3, we have defined specialization of places. The
theoretic interpretation of this concept leads to the notion of composite
valuations. Let v be a valuation of K, of rank > 1. There exists then
another valuation v1 of K such that < Let and be the
places of K which are defined respectively by the canonical
phism of onto and of onto Then is a proper
specialization of and we have = where is a place of

Let be the valuation of determined by We
then say that v is a composite valuation, that it is composite with the
tions v1 and iY and we write v = v1 o

Let ¶3 denote the prime ideal of v1. We know 3) that is also a
prime ideal in If, then, 1' is the value group of v, determines an
isolated subgroup LI of 1' (see Theorem 15). We shall now prove the
following theorem:

THEOREM 17. The value group of v1 and the group I'/LI are
)norphic (as ordered groups). Similarly, the value group F of and the
group LI are isomorphic.

PROOF. Let E and E1 denote, respectively, the set of units in and
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respectively. We first observe that E1 is the full inverse image of
under v1. For if x is any element of E1, then x_—y/z, where y and z
are elements. of not in ¶3 (since is the quotient ring of with
respect to Then v(z) is a element of 1' which does
not belong to and hence, by the definition of 4, v(z) must belong
to 4. Similarly for v(y). Since 4 is a group, it follows that v(x) E 4.
Conversely, if x is an element of K' such that v(x) belongs to 4, then
neither v(x) nor v(1/x) belongs to Since is the full inverse image
of under v1, it follows that neither x nor 1/x can belong to
Hence x is a unit in This establishes our assertion that E1 is the
full inverse image of 4 under v1.

We can therefore assert that
(a) the restriction of v to E1 is a homomorphism of the multiplicative

group E1 onto the additive group 4, and the kernel of this
phism is E.

Now, v and v1 are homomorphisms of K' onto 1 and respectively,
with kernels E and E1. Since E, it follows that v-1v1 is a
morphism of 1' onto By (a), the kernel of this homomorphism is
precisely the isolated subgroup 4. Hence and 1/4 are isomorphic
as groups. If a is a element of 1, then the set av1 is
contained in hence also in and therefore the element av1v1 is

Hence the groups and 1/4 are isomorphic also as
ordered groups and this completes the proof of the first part of the
theorem.

Now consider the product 13. This transformation into P is de-
fined for those and only those elements x of K for which 0, cia.
Hence the domain of is E1, and the range of is the value group
P of The transformation is clearly a homomorphism (of the
multiplicative group E1 onto the additive group fl. Its kernel consists
of those elements x for which has value zero in i.e., of those ele-
ments x for which xPi'1P1 0, oo. Since = s", we conclude that the
kernel of is E. Comparing this result with (a), we conclude that I'
and 4 are isomorphic as groups. An element x of E1 is mapped by v
into a element of 4 if and only if x belongs to On the
other hand, an element x of E1is mapped by into a non-negative
element of r if and only if oo, i.e., if and only if oo, hence
again if arid only if x E This shows that P and 4 are isomorphic
also as ordered groups, and this completes the proof of the theorem.

COROLLARY. Rank of rank of + rank of v1.
The only valuations encountered in most applications (and, in parti-
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cular, in algebraic geometry) are valuations of finite rank (see § 3,

Definition 1, Corollary 1), and we shall now derive some properties of
such valuations.

An archimedean totally ordered (additive) group 1' is one satisfying
the following condition: if a and fi are any two elements of 1' and a >0,
then there exists an integer n such that na > fi. Let 1' be archimedean
and let LI be an isolated subgroup of 1'. It follows at once from the
above definition that if contains a positive element a then coincides
with 1', contrary to the fact that an isolated subgroup of 1' is, according
to our definition, a proper subgroup of 1'. Hence (0) is the only iso-
lated subgroup of 1', and 1' is therefore of rank 1. Conversely, suppose
that 1' is a totally ordered group of rank 1, and let a be a positive element
of 1'. The set of all elements ± fi, where fi is a non-negative element of
1' such that na > fi for a suitable n (depending on fi), is a segment
and a subgroup of 1', and this set does not consist only of the
element 0, for a belongs to the set. Since 1' is of rank 1, it follows that
the above set coincides with 1', and hence 1' is archimedean. We have
thus proved that an ordered group is archimedean if and only if it is of
rank 1.

The following well-known argument shows that every archimedean
ordered abelian group us isomorphic to a subgroup of the ordered additive
group of real numbers (and therefore valuations of rank 1 are frequently
referred to as real valuations).

We fix a positive element a of 1'. If /3 is any element of 1' we divide
the set of all rational numbers mm (n >0) into two classes C1 and C2, as
follows: m/n E C1 if ma < nfl, and mm E C2 if ma nfl. The fact that 1'
is archimedean insures that neither C1 nor C2 is empty. It is then seen
immediately that the pair of classes C1, C2 defines a Dedekind cut in the
set of rational numbers. If b is the real number defined by this Dede-
kind cut, we set = b. It is then easily verified that p is an order
preserving isomorphism of 1' into the set of real numbers. Note
that q depends on the choice of the fixed positive element a of and that

We have proved earlier 7, Lemma 2) an approximation theorem
expressing the independence of any finite set of places, provided no
place in the set is a specialization of any other place in the set. For
valuations of rank I we have the following stronger approximation
theorem:

THEOREM 18. Let v1, v2,• . , be rank 1 valuations of a field K,
with value groups respectively. (We may assume that each

consists of real numbers.) Given h arbitrary elements u1, u2, . . , Uh of
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K and h arbitrary elements a2, of 1'2, T'h respectively,
there exists an element u of K such that

v2(u — u2) = i = 1, 2, • , h.

PROOF. It will be sufficient to prove the following: given any
integer m, there exists an element x in K such that

v(x—u1) m, i = 1,2, . . . , h.

For, assume that this has already been proved. We then fix an integer
m such that m > a, i= 1, 2, . . . , h, and for each i we fix an element x2
in K such that v.(x2) = a. By assumption, there exists an element y in
K such that v1(y — x2) m, i= 1, 2,. . . , h. Since y = (y — x2) + x and
v1(y — x2) > v.(x1), we conclude that v1(y) = a, 1=1, 2, .. ., h. Now
let x be an element of K satisfying the inequalities (2) and let u = x 4-y.
We have u — u• = (x — u.) +y and = a v(x — u.). Hence
v2(u—u1)=v1(y)=a2, i= 1, 2, • . . , h, i.e., u satisfies relations (1).

Since the valuations v2 are of rank 1, Lemma 1 of § 7 is applicable.
There exists therefore a set of elements 71b in K such that

= 0 and >0 if for i, j= 1, 2, .. . , h. We replace the
elements by the following elements (compare with the proof of
Lemma 2, § 7):

= . . . = 1,2, . . . , h.

Then it remains true that = 0 and >0 if i but furthermore
we have that the v-residue of is equal to the element 1 of the residue
field Hence — 1) >0, where I now stands for the ele-
ment I of K.

We now fix a positive integer n satisfying the following conditions:

(3) I)+v2(u1) m, i = 1, 2, • ,

(4) + m, i, j = 1, 2, • , h.

(Note. If for some i we have u2 =0, then the corresponding equation
(3) (or (4)) imposes no condition on the integer n, for v1(O) is interpreted
then as + oo.)
Consider the following elements of K:

= I = 1,2, . • • , h.

We have: — nv2(1 whence, by (3):

(5) m.

We also have: = where f is a polynomial with coefficients it
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the prime ring. Hence, if then and therefore, in
view of (4):

If we now set x = u1e1 + u2e2 ... then it follows at once from
(5) and (6) that the element x satisfies the inequalities (2). This com-
pletes the proof of the theorem.

The above approximation theorem holds also for valuations of
arbitrary rank provided the valuations v1, v2, .. . , are independent in
the sense of the following definition: the valuations v1, v2, . . ., are
said to be independent if no two of them are composite with one and the
same valuation. We shall prove therefore the following:

THEOREM 18'. The approximation theorem (Theorem 18) remains
valid if the valuations v1, v2, . . . , are independent (and not necessarily
of rank 1).

PROOF. It will be sufficient to prove the existence of an element w
in K such that the inequalities

(7) — > I = 1, 2, . . . , h,

hold (the a1 and being arbitrary, as in Theorem 18). For assume that
this has already been proved. We then fix an element x1 in K such that

= and an element y in K such that — > i = 1, 2, . . . , h.

We have then = — + = We then determine an ele-
ment x in K such that — u = x ±y. Then

— = v(x — ui).
To prove the existence of an element w satisfying the h inequalities

(7) we proceed as follows:
We set if and 2,..., h).

Let = max If >0 then we denote by the
greatest isolated subgroup of which does not contain exists: it
is the union of all the isolated subgroups of which do not contain fl3.
If 0 we take for the zero of If (0) we denote by the
valuation of K whose value group is the group = and with
which v1 is composite. If = (0), we set = Let be the coset

It is clear, by the definition of that if >0 then the zero of
is the only isolated subgroup of which does not contain fl'1. Now
any positive element y' of determines a smallest isolated subgroup
containing y': it is the subgroup of consisting of all the elements ± 8'
such that 8' � 0 and such that ny' >8' for some integer n. It follows
that for any positive element y' of there exists an integer n (depending
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on y') such that ny' > fi', and this is true for 1= 1, 2, ,h. Going
back to the value groups we can express this property as follows: if y
is any positive element of F7, not in zJ then there exists an integer n such
that ny > fl7. Another fact that has to be taken into account is the fol-
lowing: If then 1 Ks,'.. For, in the contrary case, both and

would be composite with the non-trivial valuation v'1. From this
fact follows, by Lemma 2, § 7, the existence of elements
in K such that — 1) >0 and > 0 if I (i,j= 1, 2, . , h).
Hence, in view of the above mentioned property, we can find an integer
n such that

1) if j 1,] = 1, 2, , h.

From the definition of the elements it follows then that we have for all
i such that

> a1
> if j i.

Hence, if we consider the elements = 1 — (1 — introduced in
the proof of Theorem 18, we find that if u7 0 then v1(u1e1 — u.) >
and v1(u1e1) > and that therefore the element w = u1e1 + u2e2 ± +
Uhek satisfies the inequalities (7). This completes the proof of the
Theorem.

REMARK. Concerning the notion of independent and dependent valua-
tions we point out the following criterion: two valuations v and v' of K are
dependent if and only if some proper prime ideal of coincides with a prime
ideal of Kr'. The "only if" is obvious. On the other hand, if and
have in common a proper prime ideal then v is composite with a non-
trivial valuation v1 such that = Similarly, v' is composite with a
valuation v'1 such that = From = follows
v1=v'1 and hence v and v' are dependent.

We add some final remarks concerning (A) discrete ordered groups of
finite rank and (B) the rational rank of a valuation.

(A) Let F be a totally ordered (abelian) group of finite rank n and let
= (0), F1, - - - , be its isolated subgroups: F0 < F1 < - - -

<F. It is clear that the quotient groups 1=0, 1, - - - , n — 1

= 1'), are groups of rank I - If each of these quotient groups is iso-
morphic to the group of integers, then the ordered group F is said to
be a discrete group. A discrete ordered group of rank 1 is, then, a group
isomorphic to the group of integers. A valuation is called discrete if its
value group is discrete.
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We now observe, quite generally, that given a finite set of ordered
groups G1, G2,..., Ga,, then the direct product G* G1 X G2 x ... x Gm
can be ordered lexicographically, as follows: a* = (ar, a2, ,am)>
0(a2 e G.), if the first a2 which is not zero is positive. If H is an isolated
subgroup of s m), then the elemeníts a* of G* such that a1
a2 = =0, E H, form an isolated subgroup of G*, and in this
fashion all the isolated subgroups of G* can be obtained. It follows at
once that the rank of G* is equal to the sum of the ranks of Gm,
G1 (in this order).

With this observation in mind, we now show that a discrete totally
ordered group 1', of rank n, is isomorphic to the direct product G0 x

x . . . x G0 (n times), where G0 is the group of integers. We sketch
the proof. Let be the isomorphism of onto G0, where
Fo' . . , T',,_1 are the isolated subgroups of 1' and where = 1'.
For each 1=0, 1, 2, . . , n — 1, we fix in a positive element such
that the 1'-coset of is mapped by into the integer 1. Then each
element a of 1' can be expressed in one and only one way as a linear
combination of a1, a2, , with integral coefficients: a = m1a1 +
m2a2 + ... + It is then found that a >0 if and only if the first
of the non-zero coefficients m2 is positive. Hence the mapping q:
a (m1, . . , m,,) is an order preserving isomorphism of 1' onto the
direct product G0 x G0 x . . . x G0 (n times).

It should be noted that the isomorphism which we have just con-
structed depends on the choice of the n elements Suppose that
a'1, , is another set of elements of 1' with the property that

E T'1÷1 and the T'2-coset of is mapped by into 1, and let
denote the isomorphism similar to and relative to this new set of
elements a'1, a'2, . , Since — e T'1 it follows that

= . . . i 0, 1, . . . , n—i'

where the are integers. If we then write a = m'1a'1 + m'2a2,
+ + then the following are the equations of the order pre-
serving automorphism of G0 x G0 x ... x

= m'1; m2 q12m'1+m'2, m3 q13m'1+q23m'2+m'3, etc.

(B) In addition to the rank of a valuation v we also introduce the so-
called rational rank of v. If 1' is the value group of v and a1, . , am
are elements of 1', we say that the a's are rationally dependent if there
exist integers n1, . . , not all zero, such that n1a1 + n2a2 + . . . +
nmam =0. In the contrary case, the a's are said to be rationally inde-
pendent.
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DEFINITION. The maximum number of rationally independent elements
of 1' is called the rational rank of v (the rational rank of v may be infinite).

LEMMA. Let v be a valuation of K/k and let x1, x2, ..., be elements
of K, djfferent from zero. If x1, x2,. . . , are algebraically dependent
over k, then v(x1), v(x2),. . . , are rationally dependent.

PROOF. Let f(X1, X2,. . . , be a polynomial in k[X]
such that f(x1, x2, . . . , ;) =0. As has been pointed out in § 8, the
valuation axioms imply then that there must exist a pair of distinct terms
in the polynomial f(X), say aX111X212. . . and . .

such that v(ax111x212. . . Xis) = v(bx111x212 . . . Xis), where a, b are
zero elements of k. Since v(a) = v(b) =0, it follows that (i1 —j1)v(x1) +
(i2 —j2)v(x2) + ... ± (i. 0, and this establishes the lemma,
since the s integers are not all zero.

COROLLARY. If K/k is a field of algebraic functions of r independent
variables, then the rational rank of any valuation of K/k is not greater
than r.

NOTE. We observe that the rank of a valuation v is never greater than the
rational rank of v whenever the rational rank is finite. To show this we have
only to show the following: if <11 <... <Ph_i is a finite, strictly ascending
chain of isolated subgroups of 1' and if for each i =1, 2, .. . , h we fix an ele-
ment a, which belongs to 1', and not to (Ph 1), then ai, a2, . , are
rationally independent. Assume then that we have a relation m1cz1 +
m2cz2 + ... + m are integers, mg 0 and g h. Then mgczg
E Tg—i' and since pg—i is a segment and it follows that ag E Tg—i' a
contradiction. In particular, a valuation of rational rank 1 is necessarily a
real valuation. Its value group may be assumed to consist of rational num-
bers and for that reason a valuation of rational rank 1 is sometimes called a
rational valuation.

§ 11. Valuations and field extensions. Let K be a field and let
K* be an overfield of K. If v* is a valuation of K*, the restriction v of
v* to K is clearly a valuation of K (v may be trivial even if is non-
trivial). The valuation ring of v is then given by n K, and the valua-
tion v* is said to be an extension of v. If v

is of is then the restriction
of to K is a place of K whose valuation ring is It follows that

the results of 6—7 on extensions of places, when translated into the
language of valuation theory, yield corresponding results on extensions
of valuations. However, in the valuation-theoretic interpretation of
these results it must be observed that isomorphic places are associated
with one and the same valuation, and corresponding formal changes
must be made in the statements of those results. Any reference to
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rnorphic places should be replaced by a reference to one valuation, while
any mention of places" should be replaced by that of
"distinct valuations". In particular, we point out explicitly the fol-
lowing changes:

In § 6, Lemma 1: The relation fl K= is not only a necessary
but also a sufficient condition for to be an extension of v.

In § 7, Theorem 12, Corollary 3: The field K* is now a normal
algebraic extension of K, and the result is to the effect that if v is any
valuation of K, then any two extensions v in K* are con-
jugate over K(v1* and are conjugate valuations of K*, over K, if

= where s is a of K*).
Our principal object in this section is to derive some partial but basic

results on extensions of valuations, in which the value groups of the
valuations come into play. We shall be mainly concerned with finite
algebraic extensions of K.

Let v be a valuation of a field K and let v
of K. Let 1' and 1'* be the value groups of v and

respectively. It is clear that 1' is (or can be canonically identified with)
a subgroup of

LEMMA 1. If K* is an algebraic extension of K, then every element of
the quotient group I'*/l' has finite order (and the two groups 1' and I'* have
therefore the same rational rank).

PROOF. Let be an arbitrary element of 1'*. We have to show that
there exists an integer s 0 such that scz* E 1'. We fix an element z of
K* such that v*(z) cz*. Let + + ... + a
relation of algebraic dependence for z over K. At least two terms in
this relation must have equal value in (see § 8). Let, say,
v*(a1z?t_i), 0, 0 (a0= 1). Then (j_i)v*(z)= v*(a1/a1) e 1',
and this proves the lemma.

LEMMA 2. If K* is an algebraic extension of K, then the valuations v
and (or—equivalently—their value groups 1' and 1'*) have the same
rank.

PROOF. We have to exhibit an order preserving (1, 1) mapping of
the set of all isolated subgroups z1* of 1'* onto the set of all isolated sub-
groups of 1'. We define such a mapping as follows: if ZV* is any iso-
lated subgroup of I'*, let 4 1'. It is obvious that 4 is a segment
and a subgroup of 1', and to show that 4 is an isolated subgroup of 1' we
have only to show that 4 1'. We fix an element in I'* such that

By Lemma 1, we have sa* e 1' for some integer s. On the
other hand, sa* 4* (since z1* is a segment and since z1*). Hence,
a fortiori, sa* zi, showing that 4
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We next show that our mapping is univalent. We observe
that if cz* is any element of z1*, then all integral multiples of cz* belong
to 4*, while, by Lemma 1, some multiple sa*, s 0, belongs to 1' and
hence also to 4. Conversely, if is an element of 1'* such that scz* E
for some integer s 0, then sa* E 4* and therefore a* E 4* (since 4* is a
segment). We have thus shown that 4* is uniquely determined by 4
as the set of all cz* in f* such that scz* E 4 for some integer s 0. Hence,
our mapping 4* 4 is univalent, and it is clearly order preserving.
Finally, if 4 is an arbitrary isolated subgroup of 1', then it is im-
mediately seen that the set 4* of elements cz* in such that scz* E
for some integer is an isolated subgroup of and that 4* n I'==4.
Hence our mapping is onto the set of isolated subgroups of 1', and the
lemma is proved.

COROLLARY. If K* is a finite algebraic extension of K then
v is discrete (we recall that it is implidt in our definition of a dis-

crete valuation that any such valuation is of finite rank).
For, let n be the relative degree [K*: K]. The proof of Lemma 1

shows that if we let N n!, then Ncz* E 1' for all cz* in Let and
be two consecutive subgroups of < and let

and be the corresponding isolated subgroups of 1'. The map-
ping x* Ncz* (cz* E Na* E 1') transforms and into zi and

respectively, and furthermore we know from the proof of Lemma 2
that Ncz* E if and only if cz* E Hence our mapping cz* Na*
induces an order preserving isomorphism of 4i+1*/41* into
Since the latter quotient group is, by assumption, isomorphic to the
group of integers, it follows that also is isomorphic to the
group of integers, and hence the valuation is discrete.

LEMMA 3. Let x2*,. . . , be elements of K* such that m ele-
ments of 1'* belong to distinct cosets of 1'. Then the x7* are
linearly independent over K.

1?l

PROOF. Assume that there is a relation of the form =

where the u7 are elements of K, not all zero. rFhen at least two terms
in this relation must have equal (and least) value in Let, say,

= v*(utxt*), where s t and 0. Then v*(xs*) — v*(xt*)
= — v*(us) E 1', in contradiction with our assumption on the
values of the x*.

COROLLARY. If K* is a finite algebraic extension of K, of degree n,
then the index of the subgroup 1' of is finite and is not greater than n.

On the basis of this corollary we can now give the following definition:
DEFINITION. Let K* be a finite algebraic extension of K and let v and
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be valuations of K and K* respectively, such that v* is an extension of v.
Let 1' and 1'* be the value groups of v and v* respectively. Then the index
e of the subgroup 1' of1'* is called the reduced ramification index of v* with
respect to v, or relative to v (or with respect to K).

If is a finite algebraic extension of K, we can speak of the relative
degree of a valuation v* of K*, meaning by this the relative degree of any
place associated with v* (see § 6). If v is the restriction of to K, then
the residue field of v is (or can be canonically identified with) a
subfield of the residue field of v*, and the relative degree of v*
,is the relative degree : We know that this relative
degree is at most equal to [K*: K] 6, Lemma 2, Corollary 2).

The relative degree of v* shall be denoted by f. If K* is a separable
extension of K we also define the ramification index of v* relative to v as
the product ep5, where ps is the inseparable factor of f.

It is easy to see that the above terminology agrees with terminology
introduced for Dedekind rings in the preceding chapter. For, assume
that we have the following special case: K is the quotient field of a
Dedekind domain R and v is the valuation of K defined by a
proper prime ideal in R. If R' denotes the integral closure of R in K*,
then the valuation ring of v* contains R'. Since R' is a Dedekind
domain (Vol. 1, Ch. V, § 8, Theorem 19), v* is necessarily a
valuation of K*, where is a prime ideal in R' lying over Let e1

be the reduced ramification index of with respect to If u is an
element of not in then 1' consists of all integral multiples of v(u).
On the other hand, since occurs to the exponent e1 in the factorization
of it follows that u E u showing that 1' consists of all
multiples me1a*, a* E 1'*, where m is an arbitrary integer. Hence e1
is the index of 1' in 1'*, and thus the reduced ramification index of
with respect to is also the reduced ramification index of v* with
respect to v. Furthermore, it is clear that the residue fields of v
and are isomorphic respectively with the residue fields and

We shall need a lemma on extensions of composite valuations.
LEMMA 4. Let a valuation v of K, with value group 1', be composite

with valuations v1 and (where v1 is a valuation of K and is a valuation
of the residue field of v1), and let G be the isolated subgroup of 1' which cor-
responds to this decomposition of v into v1 and z3. Let v* be an extension of
v to an overfield K* of K and let be the value group of v*. There exist
isolated subgroupsH* of 1'* such that H* n 1'= G, and if v* v1* is
the decomposition of v* which corresponds to such a subgroup H * then v1*

is an extension of v1 and j7* is an extension of z3. Conversely, if v1* is any
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extension of v1 to K* and j3* is any extension of to the residue field of
then v is

of the value group of v* which corresponds to the decomposition
then H* fl 1'= G.

PROOF. We consider the smallest segment G* in such that
G (G* = set of all elements of 1'* which are of the form ± cz*, where

0 a* a for some a in G). Then it is immediately seen that G* is a
subgroup of 1'* and that it is a proper subgroup of since G is a
proper subgroup of 1'. Hence G* is an isolated subgroup of 1'*, and
it is clear from the definition of G* that we have G* n 1'= G and
that G* is the smallest of all the isolated subgroups H* of 1'* such that
H*nl'=G.

Let now H* be any isolated subgroup of 1'* such that H* n 1= G,
and let v* v1* be the corresponding decomposition of v*, where
v1* is then a valuation of K*, with value group 1'*/H*, and is a
valuation of the residue field of v1*, with value group H* (see § 10,
Theorem 17). We know from the proof of Theorem 17 that is
a homomorphism of onto 1'*/H*, with kernel H*. The elements
of 1'* which are mapped by this homomorphism into
elements are those and only those which belong to the set U H*.
Hence is the full inverse image of U under v*_I. Similarly,

is the full inverse image of 1'+ u G under v—1. Now, since v is the
restriction of v* to K and since (1'+* U H*) n 1'= 1'± U G, we conclude
that n K, showing that v1* is an extension of v1.

Let and denote the canonical homomorphisms —p-

(= and —* respectively. The ring is the full in-
verse image of under and similarly is the full inverse image
of under Since = K n and since we have just proved
that is the restriction to K, it follows at once that n
showing that is an extension of

Conversely, assume that we are given a valuation v1* of K* which is
an extension of v1 and a valuation of the residue field of v1* which is
an extension of If v* = v1* o then we can repeat the reasoning
of the preceding paragraph. This time we are given that = n Di,,
and from this we can conclude that = K n showing that v* is an
extension of v. Furthermore, we have that is a homomorphism
of onto I'*/H*, with kernel H*, and that v'v1 is a homomorphism
of 1' onto 1'/G, with kernel G. Since v'v1 is the restriction of v*_1v1*
to 1', it follows that H* 1= G.

This completes the proof of the lemma.
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COROLLARY 1. Assume that K* is an algebraic extension of K, and let
be an extension of a composite valuation v = v1 o of K. Then there is

only one decomposition of such that
v1 and respectively.

For, it was shown in the course of the proof of Lemma 2 that if K*
is an algebraic extension of K, then for any isolated subgroup G of 1'
there exists one and only one isolated subgroup H* of f* such that
H*nl'=G.

COROLLARY 2. The notations being the same as in the preceding corol-
lary, assume that K* is afinite algebraic extension of K. Then the reduced

index of v* relative to v is the product of the reduced ramifica-
tion indices of v1* and relative to v1 and respectively.

For, the reduced ramification indices of v*, and are equal
respectively to the orders of the following finite abelian groups:
(F*/G*)/(F/G) and G*/G. Since G* n 1= G, the group G*/G can be
canonically identified with a subgroup of Using the well known
isomorphism theorem from group theory, we find that the groups
(F*/fl/(G*/G) and (F*/G*)/(F/G) are isomorphic (they are both iso-
morphic to F G*)). Hence the order of is the product of the
orders of G*/G and (]'*/G*)/(J'/G)

We are now ready to prove two basic results (Theorems 19 and 20
below) on extensions of valuations.

THEOREM 19. Let K* be a finite algebraic extension of K, let v be a
valuation of K of finite rank± and let v1*, v2*,. . . , vg* be the exten-
sions of v to K*. If n [K*: K] and n. and are respectively the
relative degree and the reduced ramification index of with respect to v
then

(1) ... n.

PROOF. (a) We shall first consider the case in which v is of rank 1.
In that case, the g valuations v1* are also of rank 1 (Lemma 2), and the
theorem of independence of valuations 10, Theorem 18) is applicable
to the v.*. The value groups 1', of v, can be assumed to consist
of real numbers. For each i, we fix an element in each of the e1
cosets of 1' in (s =1, 2,. . . , e.). We also fix elements in K*
such that the of the form a basis of the residue field of

over the residue field of v (t =1, 2, . . . , n.). Next, using the inde-
pendence of the valuations we find elements and in K*

1' Later on, at the end of this section, we shall prove Theorem 19 also for
valuations of infinite rank, using an idea which we have found in some unpub-
lished notes of I. S. Cohen.
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(i = 1, 2, • • • , g; s = 1, 2, • •, t = 1, 2,. • , n1) satisfying the following
conditions:

(2) =

(2') > max (a11, a12, , a21, a22, , if f i;
(3) > 0;

(3') > 0,

We assert that the e1n1 + e2n2 + .. + products = 1, 2,. . .,

=1, 2, . . . , are linearly independent over K. The proof of this
assertion will establish our theorem in the case of valuations of rank 1.

Assume that our assertion is false and that we have therefore a relation
of the form:

(4) = 0,
i,sL,tL

where the are elements of K, not all zero. We may assume that
these elements all be'ong to and that at least one of these elements is
a unit in We may then assume, without loss of generality, that
v(a111)=O. We set

flj

(5) = 5 = 1, 2, , e1.

We now observe that the v1* value of any element y1 of K*, of the form

E Ri,, belongs to 1'. For, if bq is one of the coefficients

which has least v-value, we can write:

= bq

where all are in and cq= 1. Now, by (3) (for i= 1), we have that
the v1*_residues of the n1 elements are the same as the v1*_residues
of the and hence these residues are linearly independent over the
residue field of v. On the other hand, the v-residues of the are not

all zero (since cq = 1). It follows that the v1*_residue of is

different from zero. Hence v1*(yi) = v1*(bq) = v(bq) E 1', as asserted.
In view of this observation, we find from (5) that vi*(zs) — vi*(xis) E

i.e., vi*(zs) belongs to the 1'-coset determined by in ffk [see (2)1.
Since the e1 elements of ffk belong to distinct 1'-cosets, it follows
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that the v1*_values of z1, z2,.. , are distinct elements of 11* and
that consequently v1*(z1 + = mm {v1*(z1), v1*(z2),...,
Vi*(Zei)}. Now, since v(a111) =0, the reasoning used in the proof of the

above observation shows that aiityit) = 0 and that conse-

quently v1*(z1) = Therefore v1*(z1 + z2 + � i.e.,

(6) vi*( aisitixisiyiti) a11.
spt'

On the other hand, we have by (2') and (3') (for m = 1) that

(7) > air.
1=2 s1,t1

By (6) and (7) it follows that the value of the left-hand side of (4) is
� a11, in contradiction with (4). This contradiction establishes our
assertion that the e1n1 ± e2n2 + . + products are linearly
independent over K.

(b) We now pass to the general case of a valuation v of finite rank
m> 1 and we shall use induction with respect to m. We assume there-
fore that our theorem is true for any valuation of rank < m. Let
v = v' o be a decomposition of v into valuations of rank <rn. Let
v'1*, v'2*,. . . , be the distinct extensions of v' to K* and let

, (s = 1, 2, . . , h) be the distinct extensions of
to the residue field of We set = By Lemma 4
and Corollary 1 of that lemma, the q1 + q2 ± . . . ± valuations vsts* of
K* are distinct and represent all the extensions of v to K*, i.e., the set
{v11*. v12*,. . . , coincides with the set {v1*, v2*,. . . , We
denote by and the relative degree and the reduced ramification
index of with respect to v. What we have to prove then is the
following inequality:

h

n.
s=1

We observe that the relative degree of with respect to is equal to
since the residue fields of and iJ coincide respectively with the

residue fields of and v. We denote by the reduced ramification
index of z3H* with respect to i5. We also denote by and respec-
tively the relative degree and the reduced ramification index of
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with respect to v'. Since v' and 'i3 are valuations of rank <m, we have
by our induction hypothesis:

(8)

(8')

Hence
h

(8") n,

and this is the desired inequality, since, by Lemma 4, Corollary 2, we
have estc = This completes the proof of the theorem.

We shall see in the next section that (a) if the residue field D of v is of
characteristic zero then the equality sign holds in (1) 12, Theorem 24,
Corollary); and (b) if K* is a normal extension of K and the characteristic
p of D is different from zero, then the quotient n/(e1n1 ± e2n2 + ... + egng)

is a power p8 of p, where 8 is an integer 0 12, Theorem 25, Corollary).
The integer 8 may be referred to as the ramzji cation deficiency of v (this
integer is defined only in the case of normal extensions K*). Here we
shall only show that if we assume that (a) is valid in the case of normal
extensions K* then its general validity is an immediate consequence.
For, let K be the least normal extension of K which contains K* and
let v12, . . be the extensions of to K. Let N— [K:K],
n*= [K:K*]. We denote by and the reduced ramification in-
dices of relative to v and respectively. Similarly, we denote by

and n13* the two corresponding relative degrees of We have
= = = By assump-

tion, we have N= and n*= for i= 1, 2,.. . , g.

Hence N= n* whence = n, as asserted.
We denote by R the valuation ring of v and by the maximal

ideal of Let R.* denote the valuation ring of We set

(9) R*

(10) = fl n R*),

(11) =

The g rings R3* are the only valuation rings in K* which belong to
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places of K* having center in R. Hence by Theorem 8, § 5,
R in K*. We also observe that

(12) =

To prove (12) we have only to show that for the opposite
inclusion is obvious. Let be any element of and let v.*(x*) =
Since E it is obvious that we can find, for eachj, positive ele-
rnents in P which are not greater than czjk. Therefore we can also find
a positive element in 1' which is not greater than any of the Let fi
be such an element: a/k fi, 1=1, 2,. . , g. We fix an element x in
such that v(x) =fl. Then O,j= 1, 2,. . . , g, whence x*/x E R*
and E as asserted.

It is clear that fl R = Hence the ring can be regarded
as a vector space over the field We next prove the following
lemma:

LEMMA 5. The assumptions being the same as in Theorem 19, except
that v may now have infinite rank, the dimension of the vector space
(over the field is not greater than e1n1 . . . +

PROOF. The ring R* has exactly g maximal prime ideals =
n R*, i= 1, 2, . , g, and each valuation ring R2* is the quotient

ring of R* with respect to (Theorem 12, § 7). We know that given
any element a* of the value group of v1* there exists an integer s 0
such that E I' (Lemma 1). Therefore, given any element x* of
we will have some integer s I such that v2*(x*s) E P. Let y be an
element of such that v(y) = v2*(x*S). Then x*S/y E R2* and so
X*s E fl Since, on the other hand, n R*c we have
therefore shown that is the radical of fl R*. It follows that for

the ideals R* n R* are comaximal (see Vol. I,
Ch. III, § 13, Theorem 31). Furthermore, from (11) and (12) it follows
that is the intersection of the g ideals n Hence, by
Theorem 32 of III, § 13, the ring is the direct sum of the g rings

Since the are ideals in R*, we have a direct decomposition
of the vector space into the g subspaces (over the field

and in order to prove the lemma it will be sufficient to prove that
has dimension en1.

Let us consider, for instance, the space The subspaces of
correspond in (1, 1) fashion to the R-submodules of which

contain We first make some straightforward observations about
the two value groups and P. Let L1 denote the set of non-negative
elements a* of such that a* </3 for all positive elements fi of P. If

and a2* are two distinct e'ements of L1, and if say a1* < a2*, then



60 VALUATION THEORY Ch. VI

0< a2 — <a2, and therefore, by definition of L1, a2* —
Thus, distinct elements of L1 belong to distinct T'-cosets, and hence L1 is a
finite set, consisting of at most e1 elements.

If is any element of then v1*(x*) E L1 if and only if
For, if E = then it is clear that v1*(x*) for some y
in and hence v1*(x*) L1, since v1*(y) E Conversely, if
v1*(x*) then for some y in and hence
(x*/y)y E fl

If follows from these remarks that if is any R-submodule of
which contains as a proper subset then contains elements of least
value and that this value is an element of L1. We denote this minimum
by vi*(91*).

If for a given element a* of L1 there exist elements in such
that v1*(x*) a*, then the set of all elements y* of such that
vi*(y*) � is an R-submodule of which contains as a proper
subset and is such that = a*. If 0= a1* < a2* < <a*(s
are those elements of L1 which are v1*_values of elements of then we
obtain in this fashion a strictly descending chain of R-submodules of

*.

> > > > =

where is the set of ally* in such that vi*(y*) � (1= 1, 2,.. , s).

It is clear that for 1=2, 3, • , s+1 the module consists of all the
elements y* in such that v1*(y*) >

To prove the inequality dim it will be sufficient to
show that for i= 2, 3, • , s + 1 we have dim (since

here is regarded as a vector
space over Let then , be any 1 elements of

We have to show that there exist elements u1, u2, • • , in
R, not all in such that We fix an
elementy* in of least value: vi*(y*)=a1_i*=v1*(9111*), and we
set — x3*/y*. Then the are in the valuation ring of and since
the relative degree of is n1 it follows that we can find elements
u1, u2,. • , in R, not all in such that v1*(u1z1* + + •• ±

>0. Then we have v1*(u1x1* + ± ±
> and therefore • E 9j1*• This
completes the proof of the lemma.

Of particular importance is the next theorem:
THEOREM 20. The notations and assumption being the same as in

Theorem 19, (in particular, it is now again being assumed that v has finite
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rank), assume also that the integral closure R* in K* of the valuation ring
R of v is a finite R-module. Then

(13) • • • = n,

and

(14) dim R*/R*9f3 =

PROOF. Let {w1, . , be an R-basis of R* which has the least
number of elements. We assert that the w are linearly independent over K.
For assume that we have a relation of linear dependence: x1w1 +
x2w2 + ± xmwm =0, where the x2 are elements of K, not all zero. An
argument which has been repeatedly used before shows that we may
assume that the x2 belong to R and that one of the x2 is 1. If, say, Xm 1,

then already {w1, . , is an R-basis of R*, a contradiction.
Any element of K* satisfies an algebraic equation with coefficients

in R (since K is the quotient field of R). If a0 is the leading coefficient
of this equation then a0x* is integral over R, whence a0x* E R*. This
shows that {w1, . . , is also a basis of K*/K. Consequently
m=n.

If denotes the of then zZ'2, . . . , span the
vector space R*/R13(over We assert that the n vectors are
linearly independent over We have only to show that if we have a
relation of the form x1w1 + x2w2 + ... ± E X2 E R, then the x
necessarily belong to But this follows at once from the linear inde-
pendence of the w over R, for we have, by assumption: x1w1 +
x2w2 + + =y1w1 ±y2w2 + ... where the y are suitable
elements of and this relation implies x2 i= 1, 2, . . , n.

We have therefore proved that

(14) n = dim

Since we have, by Theorem 19 and Lemma 5:

(15) dim e1n1 + e2n2+ . . . n,

the theorem is proved.
COROLLARY. If v is a non-discrete valuation of rank 1 and if R* is a

finite R-module, then all the extensions of v to K* are unramified.
For the proof, we first show that

(16) = E > 0, 1 1, 2, . . . , g}.

In fact, let x* be any element of K* such that v2*(x*) = >0, 1=1,
2,. . . , g. Since the value groups 1', are now groups of real num-
bers and 1' is non-discrete, there exist positive elements of 1' in an
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arbitrarily small neighborhood of zero. Hence there exists an element
a of P such that 0< a 1 1, 2,. , g. Let x be an element of
such that v(x) a. Then >0, 1 1, 2,. . . , g, whence

E R*xc: This establishes (16). We now make use of the proof
of Lemma 5. From (16) it follows that the set denoted by L1 in the
proof of Lemma 5 consists now of the element zero only, and that conse-
quently the integer s is now equal to 1. It was shown in the proof of
Lemma 5 that dim Hence dim � n1. Simi-
larly dim i 1, 2, ... , g. Hence dim =

dim n1 ± n2 + ... ± Therefore, by Theorem 20,

wemusthavee1=e2= .. .

The following example, due to F. K. Schmidt, shows that the finite-
ness assumption made in Theorem 20 (i.e., the assumption that R* is a
finite R-module) is essential, and that without this assumption the
strict equality (13) may fail to hold already in the case of a valuation v
which is discrete and of rank I (and whose valuation ring is therefore
noetherian):

Let be the prime field of characteristic p 0 and let

be an infinite sequence of algebraically independent elements over k.
We set k . . . , . . .) and K= k(x, y), where x and y are
algebraically independent over k. Consider the formal power series

p(x) = ...
We assert that is not algebraic over the field k(x) (or, in algebro-
geometric terms: the branch y is not algebraic). For assume the
contrary, and let, say,f(X, Y) be a non-zero polynomial in k[X, Y] such
that f(x, ç(x)) 0. We may assume that X does not divide f(X, Y).
Then f(0, Y) 0, while f(O, 0. Hence is algebraic over k0,
where k0 is the field generated over by the coefficients of f. Let Xs
be the highest power of X which divides f(X, Y4- (whence,
necessarily, s > 0) and let f(X, XP Y+ Xtf1(X, Y). We have

f1(x, e1P+e2PxP± ... ...) 0

and therefore f1(0, 0. On the other hand, the coefficients of
f1(X, Y) belong to k0(e0), and since e0 is algebraic over k0, it follows
that also is algebraic over k0. Proceeding in this fashion, we find that
all the are algebraic over k0, and this is impossible since k0 has finite
transcendence degree over
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We now define a valuation v of k(x, y), as follows:
If u =f(x, y) is an element of krx, y], then by the preceding result the

power seriesf(x, p(x)) is not zero. If x which
occurs in this series, we let v(u) = n. If z is an arbitrary element of
k(x, y), we write z in the form u1/u2, where u2 =f1(x, y) E yJ, and we
let v(x) = v(u1) — v(u2). The value group of v is then the group of
integers, and so v is discrete, of rank 1. It is immediately seen that the
residue field of v is the field k.

Now we let K* = K(y*), where = Then K* =k(x, y*), and
it is immediately seen that the extension v to K* is the valuation
which is defined by the "branch"

in a fashion similar to that in which v was defined by the branchy=p(x).
(Note that since K* is a purely inseparable extension of K, v has a
unique extension to K*.) The two valuations v and have the same
value group and the same residue field (namely, the field k). Hence the
relative degree and the reduced ramification index of are both equal
to 1, while the degree rK*:K] is p. Thus (13) fails to hold in the
present case. In view of Theorem 20, we can conclude a priori that the
integral closure of in K* is not a finite Re-module. This can also
be seen directly as follows:

If has a finite Re-basis, then a minimal Re-basis of R* will contain
precisely p elements, say w1, w2, . . , (see the proof of Theorem 20).
Let w1 = + a.1y* + ... + a1 E K. Since the value
group 1' of v is the group of integers, there exists an integer p such that
all the products belong to From this it follows that
R*xpc: + + ... + Now, consider the element z = —

+ + + It is clear that z E (since v*(z) 0).
But = — + + ... + +y*/x + + ... +
a contradiction.

An important case in which the finiteness assumption of Theorem 20
is always satisfied is the following: v is a discrete valuation of rank 1 and
K* is a separable extension of K. This follows from the following well-
known result: if R is any noetherian integrally closed domain having K as
quotient field, and if K* is a finite separable extension of K, then the
integral closure of R in K* is a finite R-module (Vol. I, Ch. V, § 4,
Theorem 7, Corollary 1).

It may also be observed that for discrete valuations v, of rank 1, the
Converse of Theorem 20 is also true, i.e., if relation (13) holds, then R* is
a finite R-module. To see this, we go back to the case (a) of the proof of
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Theorem 19 and we show that if v is discrete, of rank 1, and if (13) holds,
then the n1e1 ± n2e2 ± ••• ± products form an R-basis for R*.
We know that these products are linearly independent over K. If (13)
holds, the number of these products is equal to n (= [K*: K1) and they
therefore form a basis of K*/K. Now let be any element of R* and
let

=
2,sL,tL

We have to show that the belong to Upon factoring out a
coefficient of least value we can write in the form: by*,

b E K and
y* =

2,sLtL

where the are elements of R, not all in ¶3. We now make use of the
considerations developed in the course of the proof of Theorem 19,
case (a) (p. 56). As group 1' we can now take the group of integers,
and as group the additive group of integral multiples of 1/e1. As
representatives of the e2 cosets of 1' in we take the rational numbers

(s — 1)/e1, s 1, 2,. . . , e1. By assumption, at least one of the
coefficients has order zero in v (and all have non-negative order).
If, say v(aiqr) =0 then, as was shown in the course of the proof of
Theorem 19 (see the italicized statement immediately following in-
equality (7), p. 57), we have v1*(y*) � a]q, and hence v1*(y*) < 1. On
the other hand, we have that v(b)( = v1*(b)) is an integer (since b E K).
Since v1*(b) + v1*(y*) v1*(z*) 0, we conclude that v(b) is necessarily
a non-negative integer. Hence b E R, and since it follows
that also the belong to R, as asserted.

Note that this result has also been proved in Vol. I, Ch. V, § 9

(Theorem 21).
NOTE. We shall end this section by extending Theorem 19 to valua-

tions of infinite rank. We first observe that the proof of Theorem 19,
in the case of valuations of rank 1, is based solely on the fact that for
such valuations the approximation theorem of § 10 (Theorem 18) is
valid. However, we have seen that the approximation theorem is valid
more generally for independent valuations of any rank (Theorem 18',
§ 10). Hence we can assert that Theorem 19 is valid whenever the g ex-
tensions Vj*, .. , Vg* of v are independent. Our second observa-
tion is that in the inductive proof of Theorem 19 for valuations of finite
rank > 1 we have actually proved the following: Let v = v'

v' to K* and let i7sq*
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be the extensions of to the residue field LI of (s 1, 2,. . . , h).
Then if Theorem 19 holds for v', K, K* andfor (s 1,2,... , h;
4' = residue field of v'), the theorem holds also for v, K and K*. We shall
now make use of these two observations. We shall use induction with
respect to the number g of extensions of v, i.e., we shall assume that
Theorem 19 holds true in all cases in which we are dealing with a valua-
tion v which has fewer than g extensions. (For g I the proof of
Theorem 19 is valid as given, for in that case the approximation theorem
is not needed; or—more precisely—the approximation theorem is
trivial in the case of single valuations.)

We first introduce some notations and prove an auxiliary lemma. If
v is a valuation of a field K we shall denote by L(v) the set of all valua-
tions v' of K such that < <K. In other words, L(v) is the set of
all non-trivial valuations v' such that v is composite with and is non-
equivalent to v'. We denote by E(v) the set of distinct (i.e., non-
equivalent) extensions of v to K*. We write v' <v if v' E L(v) (note
that this partially orders the valuations according to increasing rank, or—
equivalently—according to decreasing valuation ring). If v' <v and
is any element of E(v), then there exists a unique element v'* in E(v')
such that v'* <v* (Lemma 4, Corollary 1). This defines a mapping

of E(v) into E(v'), and it follows directly from the second part of
Lemma 4 that cp,/ maps E(v) onto E(v'). If v" <v' <v then it is im-
mediate that

V ,,V'rv''rv 'rv

For fixed v and a fixed extension v* of v to K*, the set of valuations
cpV(v), v' e L(v), coincides with the set L(v*). In fact, if

v' E L(v), then v'* < by definition of and hence v'* E L(v*);
conversely, if v'* E L(v*), i.e., if v'* < then the restriction v' of v'* to
K satisfies the relation v' <v, and we have v'* E E(v'), whence v'*
cpV(v). Another way of expressing this fact is to say that for fixed v*
the mapping v' (Pv,v(v*) (where v restriction of v* in K) is a (1, 1)
mapping of L(v) onto L(v*). Each of the two sets L(v) and L(v*)
is totally ordered, and the above mapping of L(v) onto L(v*) is order
Preserving, for it maps each element of L(v*) into its restriction
in K.

For each valuation v of K we denote by y(v) the number of elements
in the set E(v), i.e., the number of distinct extensions of v to K*. If
v' <v then from the existence of the mapping cp it follows that

y(v). Since 1 y(v) IK*: K], the function y can assume only
a finite number of values.
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LEMMA 6. Let v be a valuation of K such that the set L(v) has no last
element, and let m = max {y(v')}. Then y(v) = m.

v'eL(v)
PROOF. We fix a v'0 in L(v) such that y(v'0) — m. For each

v' in L(v) such that the set E(v') has exactly m elements, and
therefore is a (1, 1) mapping of E(v') onto E(v'0). Let v* be an
extension of v to K* and let v'0* be that extension of v'0 with which v* is
composite; in other words, let v'0* If v' is any element of
L(v) such that then the corresponding element v'* of L(v*), i.e.,
the valuation v'* is uniquely determined by v'0*, and by v',
i.e., if v1* is another extension of v to K* which is composite with v'0*
then = for we must have v'0* and is

(1, 1). We now observe that since L(v) and L(v*) are in (1, 1) order
preserving correspondence, also L(v*) has no last element and that
therefore

(17) = fl
v,o*

We have just seen that the set of valuations v'* in L(v*) such that
where v'0* = is uniquely determined by v'0*. Hence

it follows from (17) that there exists only one extension v* of v to K*
which is composite with a given valuation v'0* belonging to the set
E(v'0). Since E(v'0) contains m valuations, v has exactly m extensions.
Q.E.D.

We now proceed to the proof of Theorem 19 for a valuation v of
arbitrary rank. Let y(v) =g. We first observe that the case in which
the g extensions of v are independent valuations is characterized by the
condition that the mapping p be (1,1) for any v' in L(v), i.e., it is
characterized by the condition y(v') =g, for all v' in L(v). We may
therefore assume that there exist valuations v' in L(v) such that
y(v') <g. Let L1(v) be the set of all such valuations v' and let
g' = max {y(v')}. Then g' <g. The intersection of all the valuation

v' eL1(v)

rings v' E L1(v), is again a valuation ring of some valuation v'1 of K.
If L1(v) has a last element, then v'1 is the last element of L1(v) and hence
y(v'1) =g'. In the contrary case it is clear that L1(v) _—L(v'1), whence
L(v'1)has no last element. It follows then from Lemma 6 that y(v'1)
Thus we have y(v'1) =g' <g in both cases (showing, incidentally, that
v'1 necessarily belongs to L1(v) and that consequently the second case
is to be ruled out), and Theorem 19 is valid for v'1.

Since v'1 E L(v), we can write v = v'1 o Since v'1 has exactly g'
extensions to K* and since g' <g, it follows by our induction hypothesis
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that Theorem 19 holds for v'1, K and K*. Let
v'1 be respectively the residue field of v, v'1

amd (whence is a valuation of with residue field and
g1c: We assert that the extensions of to are independent.
This will establish the validity of Theorem 19 for iY, and and
hence, by the preceding remark, Theorem 19 will be established for V,
KandK*.

Let i7 to and assume that
there exists a non-trivial valuation €3'* of with which both valuations

and j7'2* are composite. Set V1* = V'1* o 1, 2, and
= V'1* o €3'*. Then V1*, V2* are extensions of v, i.e., belong to E(v),

while is an extension of a valuation €3 of K such that V > Z> V'1.
Hence both E(V) and E(€3) consists exactly of g elements. On the
other hand, it is obvious that both V1* and V2* are composite with
and hence = (= Thus is not (1, 1), in contra-
diction with the fact that E(V) and have the same number of
elements.

§ Ramification theory of general In Vol. 1,
Ch. V, § 10 we have developed the ramification theory of prime ideals in
Dedekind domains. Xow, if R is a Dedekind domain, with quotient
field K, and K* is an algebraic extension of K, then any proper prime
ideal in R defines a discrete, rank 1 valuation V of K, whose valuation
ring is the quotient ring 2, Example 2), and the prime ideals which
lie over in the integral closure R* of R in K* correspond to the exten—
sions of V in K*. Hence the theory developed in Vol. I, Ch. V, § 10 is
identical with the ramification theory of discrete, rank I valuations. In
this section we shall generalize that theory to arbitrary valuations.

Let K be a field, K* a finite normal and separable extension of K, and
let G be the Galois group of K* over K. We fix a valuation V of K and
we denote by and 1' respectively the residue field and the value group
of V. If V* is an extension of V in K* and s is an element of G, then the
conjugate valuation sV* (= the automorphism s of K*/K, followed by the
mapping V* of the multiplicative group K'* of K* onto the value group
f* of V*) is again an extension of V in K* (with the same value group
1*), and we know 7, Theorem 12, Corollary 3) that all the extensions
of V in K* are in fact, up to equivalence, conjugates 5V* (s E G) of any
one of them.

We fix an extension V* of V. As usual, and will denote respec—
tively the valuation ring and the prime ideal of V. Similar notations

and will be used for V*. We shall find it convenient to denote
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by the valuation (s E G). With this notation, we will have
and

(1) V*s(S(X)) = v*(x), 0 X E K*.

We denote by zt* and 1'* respectively the residue field and the value
group of Here z1* is a finite algebraic extension of and 1' is a
subgroup of 1'*, of finite index. We set, in agreement with previous
notations:

(2) e = (p*:F), f = [z1*:4]

The integers e andf are the same for all the extensions of v. We de—
note by g the number of distinct (i.e., non-equivalent) extensions of v.

We now introduce two subgroups G called respectively
the decomposition group and the inertia group of v*: is the set of all s
in G such that v*s is equivalent to (i.e., has the same valuation ring
as v*), while GT is the set of all s in G such that s(x) — x E for all x in

It is obvious that is a subgroup of G. It is easy to see that GT
is a subgroup of For if s E GT, then it follows from the definition of
GT that we have s(x) E for any x in i.e., the valuation ring of v*s
is contained in the valuation ring of Therefore the valuation rings
of and v*s coincide (since all extensions of v have the same relative
dimension zero with respect to K; see italicized statement on p. 30
immediately following the proof of Lemma 1, § 7), s E showing that
GTc: Furthermore, if s E GT and x E then also y=s1(x) is in

(since s E Ga), and s-1(x) — x —y — s(y) E whence E GT; and
if s, t GT then for any x in we have (st)(x) —x = t(s(x) — x) --
(t(x) — x) E since both s(x) — x and t(x) — x are in and since

This proves that GT is a group.
Moreover it is not difficult to see that GT is an invariant subgroup of

For if s E GT, t E and x E and if we set t(x) =y (whence
y E and s(y) —y = z (whence z E then (tst—')(x) — x = (st—1)(y) —

x = t—1(y + z) — x = t1(z) E (since = and hence tst 1 E GT.
Let s be any element of Then the valuation v*s defined by (1),

is, by definition of equivalent to However, it is not difficult to
see—and that will be important for the sequel— that V*s coincides with

that we have therefore

(3) v*(s(x)) = v*(x), (s E 0 x E K*).

For, since and v*s are equivalent valuations, with the same value
group (see (1)), is an order preserving automorphism of the
value group 1'*. Since s has finite period, also has finite period, and
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it is immediate that such an order preserving automorphism of an
ordered abelian group is necessarily the identity. Thus, = 1 and

THEOREM 21. The field is a normal extension of LI. The group of
automorphisms of LI* over LI is canonically isomorphic to the factor group
GZIGT.

PROOF. We first show that every automorphism s in defines an
automorphism § of LI* over LI. Given any element in LI*, there exists
an element x in whose is If 5 E then also s(x) E
If x' is another element of with then x' — x E and
hence also s(x') — s(x) E since s E It follows that the
residue of s(x), for given 5 in depends only on We denote this
residue by It is immediate that the mapping —p- is an
morphism § of LI*, and that § is an automorphism over LI, for if LI

then we can choose x in and have then s(x) = x. It is also clear that
the mapping 5 § is a homomorphism of into the group G(LI*/LI) of
automorphisms of LI* over LI and that the kernel of this homomorphism
is the inertia group GT of v*. We have now to show that LI* is a normal
extension of LI and that the mapping s —* § sends onto G(LI*/LI).

Let again be any element of LI*, different from zero. Since the
places defined by the g distinct extensions of v are such that none is a
specialization of another, it follows from Lemma 2, § 7, that we can find
an element x in having and such that v1*(x) > 0 for each
of the g — I extensions v1* of v which are different from v*. Let
x1( = x), . , be the roots of the minimal polynomial F(X) =

+ + ... ± of x over K. Since K* is normal over K, all
the x1 belong to K*. For any x1 we have x = s(x1), for a suitable s in
G(K*/K), and hence, by (1): v*s(x)= v*(x1). Since 0 for any
s in G(K*/K) (by our choice of x), it follows that all the roots x1 and all

the coefficients of F(X) belong to We have F(X) = II (X— x1),

and taking on both sides we find that the roots of the poly-
nomial F(X) + . . . ± a0 of are the

of x1, . , and therefore belong to LI*. Since is
among these residues and since the coefficients of P(X) belong to
LI, we have shown that all the conjugates of over LI belong to LI*.
Hence LI* is a normal extension of LI.

If is any conjugate of over LI, and if say = of x1, let
s be an of K*/K such that x1 = s'(x). Then v*s(x) =
v*(x1) =0 (since 0), and hence v*s = v* (since v1*(x) > 0 for each
extension v1* of v which is different from v*) and s E Furthermore
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= e2. If we take now for a primitive element, over of the
maximal separable extension of in then our result that every con-
jugate of over is of the form §(e), s E implies that the homomor-
phism s —* maps onto the group G(z1*/z1). This completes the
proof of the theorem.

In the sequel we shall denote by and KT respectively the fixed
fields of and GT; is the decomposition field of and KT is the
inertia field of (relative to K). We shall denote by and VT respec-
tively the restriction of in and KT, by and dT the residue fields
of the valuations and VT, and by and TT their respective value
groups. Clearly is a subfield of zlT, and is a subgroup of
Furthermore, KT is a normal extension of with Galois group Gz/GT,
since GT is a normal subgroup of

These definitions have a relative character, and it is easy to see how
the decomposition field or inertia field of is affected if we replace K
by another field L between K and K*. Namely, if we denote by
and LT respectively the decomposition field and the inertia field of V*,
relative to L, then L (least subfield of K*
which contains both and L) and similarly LT is the compositum of KT
and L:
(4) = (Ks, L),
(4') LT = (KT, L).

The proof is straightforward and consists simply in observing that the
decomposition group and inertia group of relative to L are obviously
equal respectively to n G(K*/L) and GT n G(K*/L).

THEOREM 22. (a) The valuation is the only extension of to K*,
and the decomposition field is the smallest of all L between K and
K* with the property that is the only extension, to K*, of the restriction
of to L. (b) The field is purely inseparable over is separable
and normal over and coincides with zl.

PROOF. Since all the extensions of v in K* are conjugates of it
follows that v only if
and only if an arbitrary field between K and L, then
K* is also a normal separable extension of L, and therefore it follows,
by the same token, that is the only extension to K* of the restriction
v' of to L if and only if L, i.e., by (4), if and only if L
This proves part (a) of the theorem.

We have G(K*/KT) = GT, and therefore both the decomposition
group and the inertia group of relative to KT are equal to
GT( = n GT = G7 n GT). If we now replace in Theorem 21 the field
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K by the field KT it follows that G(d*/dT)= GT/GT = (1), showing that
is purely inseparable over LIT. On the other hand, we have already

observed that GT is an invariant subgroup of and that consequently
KT is a normal separable extension of with Galois group Gz/GT.
Hence, if we replace in Theorem 21 the fields K and K* by the fields

and KT respectively, we find that G(ziT/ziZ) is canonically isomorphic
with Gz/GT. Since [L!T : 4g] [KT : = order of Gz/GT, it follows
that : order of G(LIT/LIz), and hence : = order of
G(4T/LIz), showing that LIT is a normal separable extension of LIE.

We point out that in the course of this proof we have shown
tally that

(5) [LIT: = [KT : Ks].

It remains to prove that zi. Let be any element of LIE. By the
cited Lemma 2 of § 7 we can find an element x in having vz-residue

and such that v'(x) >0 for every extension v' of v to different from
If x (over K), different from x, then x =

s s since x. By (1), we
have = V*s(X), and, furthermore, we have V*s(X) > 0 since V*s
(s being outside of and since therefore V*s induces in a valuation
different from (v* being the only extension of to K*). We have
found therefore that >0 for every conjugate x1 of x which is
ferent from x. Consequently the trace x + 2x1 s an element y of K
whose vz-residue is ( vzresidue of x). Therefore, E LI and

= LI. This completes the proof of the theorem.
THEOREM 23. The value groups 1', and TT coincide.
PROOF. If we app'y the inequality n 11, Theorem 19 and

Note on page 64) to the two fields KT and to the valuation vz of
we deduce at once from (5) that vz has only one extension to KT (a

fact that we know already) and also that (PT: "i) =1. This proves that

We shall first prove the equality under the assumption that
the g extensions of v to K* are independent. It will be sufficient to
show that every positive element of is in P. Let a be a positive
element of By the approximation theorem for independent valua-
tions 10, Theorem 18') there exists an element x in such that
vz(x) = a and v'(x) =0 for every extension v' of v to different from

(since from our assumption that the extensions of v to K* are inde-
pendent follows a fortiori that also the extensions of v to are inde-
pendent). The argument developed toward the end of the proof of the
preceding theorem shows that if x2 is any conjugate of x over K,
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different from x, then =0. Hence the norm x Hx1 is an element
y of K such that v(y) = vz(x) + 0 = a. Therefore a E 1' and 1'.
This completes the proof of the theorem in the case in which the exten-
sions of v to K* are independent valuations.

In the general case we shall use induction with respect to the number
g of distinct extensions of v to K*, for if g= 1 then K= (by Theorem
22, part (a)) and the equality 1'= is then trivial.

If v has rank 1 then the g extensions of v to K* are also of rank I and
are therefore independent. We shall therefore assume that v is of
rank > 1 and we may also assume that the g extensions of v to K* are
not independent. We shall make use of the results proved at the end
of the preceding section 11, Note). From our assumption that the
g extensions of v to K* are dependent valuations follows that y(v') is not
constantly equal to g as v' varies in the set L(v). It was shown in § 11

that in that case there exists a decomposition v = v' o z3 of v satisfying
the following condition: y(v') = h <g, and if

v' to K* then for each s = 1, 2,.. . , h the extensions of
to the residue field of

v a decomposition
= o the v'

is of the of
and the of

It is not difficult to see that we have the following inclusions:

(5')

The inclusion follows from the fact that
v' is composite with and that, therefore, ifs E

then we must have = since v*( = V*s) is composite with both
valuations and The inclusion GTD GT' follows from the in-
clusions Namely, ifs E GT' and x is any element
of then x E (since s(x) — XE (since s E GT'), and
5(X) — X E (since showing that GT' GT.

We denote by and respectively the decomposition field and
inertia field of v'. We have therefore, by (5'):

(6) K = = K7 = KT KT'.

We denote by VT, the restrictions of in 1(7, KT'
respectively, and by V'z, V'T, the corresponding restrictions of
V'*. The associated value groups will be denoted by and

1"z' respectively.
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Since h <g, it follows from our induction hypothesis that Theorem 23
is valid for v' and i.e., we have

(7) F' = F's, =

where F' is the value group of v'. In view of (6), this also implies that

(8) = =

The decomposition yields a corresponding decomposition
of

(9) = °

where is the restriction of IYk to the residue field of By
Theorem 22, part (b), we have that zi coincides with the residue field
zl' of v'. Since is an extension of the valuation of zi', it follows
that = This, in conjunction with (9) and equality (7), shows that
1= It is therefore only necessary to show that = Thus
we may replace the field K by the field We may therefore assume
that K is the decomposition field of and that therefore

v' to K*. The valuation 'i3 has then exactly g extensions
to zi'*, and by our choice of v' theseg extensions are independent valuations.

Let H be the isolated subgroup of F which corresponds to the decom-
position v = v' o iY (H= value group of F' = F/H= value group of v').
Let similarly be the isolated subgroup of which corresponds to
the decomposition vz= v'zo (here is the restriction of to the
residue fields of v'z). We have therefore H = n F (see § 11,

Lemma 4). We know that F' = F's, i.e., F/H= FZ/HZ. To prove
the equality F= it will therefore be sufficient to show that

(10) = H,

i.e., that the value group H of coincides with the value group of
its extension to the residue field of v'z. Since the extensions of i5
to the residue field of v'* are independent it follows a fortiori that also
the extensions of to the residue field of v'z are independent. Hence,
given a positive element a of we can find an element of the residue
field of v'z such that = a and = 0 for all other extensions of

of 13 to the residue field of v'z. If, now, x is an element of
whose v'z—residue is then we will have vz(x) = a and v1(x) 0 for all
other extensions of v to By an argument given earlier it follows
that if y = then v(y) = a. This establishes the equality (10)
and completes the proof of the theorem.
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It is dear that the index of G is equal to the number g of exten-
sions of v to K*. Hence

(11) = g = (G:Gz).

We denote by the separable factor of the re'ative degree :

and we set

(12) ffOlTs,
where ir is the characteristic of if the characteristic is different from
zero and is 1 otherwise. Theorems 21 and 22 show that

(13) Jo = [L!T:LIZ] [KT:KZ] order of Gz/GT.

For any s in GT and for any element a of K*, a 0, we denote by (a, s)
the of s(a)/a. (By (3), this residue is different from and
0 if s E and hence, a fortiori, also if s is in GT.) We have the fol-
lowing relations

(14) (a, s) = 1 if a e a s GT;
(14') (ab, s) = (a, s)(b, s),

b K*. GE S,tE T(14") (a, st) = (a, s)(a, t). j

Relation (14) is evident, since s(a) — a = rn E s(a)/a = 1 + rn/a, and the
v-residue of rn/a is zero if a Also relation (14') is evident since

s(ab) = s(a)s(b). As to (14"), we write (stXa) = t(s(a))
and we note

t(s(a)) /s(a)\ . . s(a)that = and since the of — is neither oo nor 0
t(a) a

(whence Re,, it follows, by (14), that has the same

as since t GT. Relations (14') and (14") show that

the function (a, s) establishes a "pairing" between the group GT and
the multiplicative group of K*. For fixed s in GT the mapping
a —* (a, s) is a homomorphism of the multiplicative group of K* into
the multiplicative group of z1*. We denote by K*' and 4*' these
multiplicative groups and we use the customary notation Hom (K*', z1*')
for the set of all homomorphisms of K*' into z1*'. This set
Hom (K*', is a group in an obvious way (ff and g are two homo-
morphisms of K*' into we define fg by (fg)(a) =f(a)g(a), a E K*').
Hence, for fixed s in GT the mapping a —p- (a, s) is an element of
Horn (K*', If we denote this element by ço(s):

(15) p(s): a —* (a, s), a E K*',
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then (14") shows that the mapping

(15')

is a homomorphism. Similarly, for fixed a in K*', the mapping
s —- (a, s) is an element of Horn (GT, L1*'). If we denote this element
by
(16) i/i(a): s —- (a, s), s E GT,

then (14') shows that the mapping
(16')

is a homomorphism. We shall investigate the kernels of and in
order to determine to what extent the pairing (a, s) is "faithful."

The elements of the kernel of are those elements 5 of GT for which
it is true that maps every element of K*' into the element I of

i.e., those elements 5 for which (a, s) = 1 for any a in K*'. Now,

(a, s) =1 is equivalent to — i) >0. Hence the kernel of con-

sists of those elements s of GT which satisfy the condition

(17) v*(s(x) — x) > v*(x), for all x in K*'.

These elements form therefore an invariant subgroup of GT. This
subgroup is denoted by and is called the large cation group of

In the case of Dedekind rings treated in Chapter V, § 10, the large
ramification group is the inverse image in GT of the subgroup G'1
of GT/GV2 mentioned in V, § 10, Theorem 25. It is also the set,
denoted in V, § 10 (p. 295) by H1, of all s in GT such that s(u) — u E

where u is a generator of
We now study the kernel of If a E KT then s(a) = a and therefore

(a, s) = 1 for all s in GT. Hence the kernel of contains the inertia
field KT. The kernel of also contains all the units of the valuation
ring by (14). It follows now that the kernel of contains all the
elements a of K* such that v*(a) E 1', for if a is such an element and if b
is an element of K such that v*(a) = v*(b), then a = bc, with c a unit in

and since both b and c are in the kernel of also a is in the kernel.
The above consideration shows that (a, s) depends only on the pair

(a, where a is the of v*(a) and is the of s. Since
is a homomorphism of K*' onto it follows that the pairing (a, s)

defines in a natural way a pairing between the (multiplicative) group
GT/Gv and the (additive) group I'*/I'. The homomorphism p, given by
(15) and (15'), gives rise to an isomorphism

(18)
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of GT/Gv into the group of homomorphisms of 1*/i' into z1*', while the
homomorphism defined by (16) and (16'), gives rise to a homomor-
phism

(19) Horn (GT/Gv,

of 1*/i' into the group of homomorphisms of GT/Gv into z1*'.
We point out the special case in which 1'*/l' is a cyclic group of order

e [see (2)] (we have this case, for instance, if v is a discrete valuation of
rank 1). If we choose a generator a of 1*/i' (for instance, a = the
1'-coset of the smallest positive element of f*, if v is discrete of rank 1),
then any homomorphism h of 1*/i' into is uniquely determined by
the value h(a). Hence, if we set, for any a in GT/Gv, i(a) =
then i is an isomorphism of GT/Gv into the multiplicative group z1*' (see
Vol. I, Ch. V, § 10, Theorem 25).

We denote by ir the "characteristic exponent" of the residue field
of v, i.e., ir is equal to the characteristic p of if p 0 and is equal to 1 if
p = 0. The finite abelian group 1*/i' is the direct sum of a ir-group

= the set of elements a such that the order of a is a power of ir) and
a group whose order is prime to ir (P0 = set of elements a such that
order of is prime to ir). If we set

(20) e = e0irt, e0 prime to ir,

then is the order of and e0 is the order of Since 1 is the only
element of z1*' such that the order of is a power of ir, it follows that
every homomorphism of 1'*/I' into z1*' is trivial on

We thus have a pairing between the multiplicative group GT/Gv and
the additive group defining an isomorphism of GT/Gv into
Horn (fe,
(21) Horn (F0,

and a homomorphism of P0 into Horn (GT/Gv,
(22)

We shall prove later on that and are actually isomorphisms onto. At
present we only note the following: since every element of P0 has order
prime to ir, also every homomorphism of has order prime to ir; hence
the order of the (finite) group Horn z1*')+ is prime to ir, and conse-
quently

(23) The order e'0 of GT/Gv is prime to

1- Any homomorphism of the group (which is of order e0) into the group
maps r0 into the set of e0th roots of unity; since the latter set is finite, the

set Hom (f0, is also finite.
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We note that in the case of characteristic zero coincides with 1*/p.
We now study the large ramification group
THEOREM 24. is a IT-group, i.e., a group whose order is a power of

(In particular, (1) if has characteristic zero.)
PROOF. We have only to show that ifs E and s has prime order q,

then q ir. Assume the contrary: q ir. Let L be the fixed field of s.
Then K* is a cyclic extension of L, of degree q. Let x be a primitive
element of K*/L and let + + + a1 E L be the mini-
mal polynomial of x over L. We may assume that aq_i =0 since q
and since therefore we can replace x by x + aq_i/q. Hence we may
assume that the trace of x is zero. On the other hand, if we set = si,

1=0, 1, , q— 1, then the of xsi/x is 1, since E and
q— I

hence the of xsi/x is equal to q 0, a contradiction since
i= 0

the trace xsi is zero. This completes the proof of the theorem.
At this stage we can already obtain, as a corollary of Theorem 24, the

definitive result in the case ir= 1 (i.e., in the case in which has char-
acteristic zero):

COROLLARY. If the residue field of v has characteristic zero then the
groups GT and 1*/P are isomorphic. The ramification deficiency of v,
relative to K*, is zero, i.e., we have efg=n (n=[K*:K]).

In fact, if has characteristic zero, then = (1) and hence de-
fined by (18), is an isomorphism of GT into the group Hom (1*/I, z1*').
This latter group is a subgroup of the group of characterst of the
abelian group 1*/P. Since 1*/P has order e and since 1*/P and its
group of characters are isomorphic groups, it follows that GT is
isomorphic with a subgroup of 1*/P and hence has order � e.
Since n =gf order GT, it follows that n efg, and therefore, by § 11,

Theorem 19, we must have n = efg, which proves all the assertions of the
corollary.

We now continue with the general case.
LEMMA. The homomorphism defined in (22) is an isomorphism (into).
PROOF. We have only to show that if an element x of K*' is such

that — I E for s in GT, then there exists a power of

such that ITuv*(x) E P. Denote by ITU the order of (Theorem 24)
and by the fixed field of We set y = NK*,KV(x). It is clear
that v*(y) Iruv*(x). On the other hand, by applying the operation

t For properties of the group of characters of finite abelian groups see, for
instance, B. L. van der Waerden, Moderne Algebra, vol. 2 (p. 189), or E. Hecke,
Vorlesungen über die Theorie der algebraischen Zahlen, p. 33.
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NK*,KV to the relation — 1 E we easily get — 1 E for

every s in GT. It follows that the conjugates y2 of y over KT may be
written in the form y2 =y(l ± b.)(b1 E Since [Ky: KTI = e'0 (see
(23)), there are e'0 conjugates y2, and, by summation, we get

TKV/KT(y) = v(e'0-Lb)

with b b. E Since e'0 is prime to ir, it is a unit in Hence
v*(y) =v*(T(y)) E TT' and therefore v*(y) E 1' by Theorem 23. Q.E.D.

It follows from the lemma that the pairing

h: GT/Gv x to

defined by (21) and (22) is faithful in the sense that 1 is the only element
a of GT/Gv such that h(a, &) = 1 for every & in P0, and that 0 is the only
element & of the additive group P0 such that h(a, a) = I for every a in
GT/Gv. On the other hand, h takes its values in the group U of e'0-th
roots of unity contained in z1*; this group U is a cyclic group of order
prime to

Now the theory of characters+ for finite abelian groups shows that,
given a finite abelian group H, the only subgroup H'1 of its character
group H' which "separates" the elements of H (i.e., such that = 1

for all x in H'1 implies h = 1) is the character group H' itself. Thus, if
we regard GT/GV as a group of characters of it is the entire character
group of Similarly is the entire character group of GT/Gv. In
particular-f-

THEOREM 25. The groups and GT/Gv are isomorphic (whence
GT/Gv is abelian). Their orders e0 and e'0 are equal.

COROLLARY. The product efg divides the degree n = : K], and
n/efg is a power of ir.

In fact, n = (G: GT)(GT: 1) =gf0e0iru = (the
notations are those of formulae (11), (12), and (20)). Since efg < n 11,
Theorem 19), it follows that u — s — t is � 0.

Finally, two series of subgroups of G, generalizng the higher rami-
fication groups, may be defined. For every ideal a in we define
(24) Ga as the set of alls in G such that s(x)—x E afor every x in
(25) Ha as the set of all s in G such that s(x) — x E ax for every x in K*.

The following facts are easily verified (many proofs are as in Chapter
V, § 10):

(a) HacGa.
(b) = = GT, HR* = GR* =
t See op. cit. in the footnote of the preceding page.
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(c) If a b, then Ga Gb and Ha Hb.
(d) Ga and Ha are invariant subgroups of
(e) The commutator of an element of Ha and of an element of Hb is

in Flab.
(f) Let the value group be isomorphic to a dense subgroup of the

group of real numbers, and be identified with such a subgroup.
If a is a positive real number, and if a is the ideal in defined
by v*(x) � a, then Ga = Ha. In fact take any x 0 in any
real number e >0, and write x = x1. . . where 0 < (x1) � e
(this is possible for n large enough, since is a dense subgroup
of the real line). The formula

s(x) — x = s(x1). . . s(x1 — . .

shows that, if s is in we have

v*(s(x) — x) � mm3 (v*(x) — v*(x3) + — x31).

Taking s in Ga, this gives v*(s(x) — x) � v*(x) + a — e. As this is
true for every e >0, we have v*(s(x) — x) � v*(x) + a, i.e.,
s(x) — x E ax, whence s E Ha. Our conclusion follows then
from (a).

REMARK. In the case of a discrete valuation of rank 1,
the decomposition of x into a product of elements of order 1
shows, in a similar (and simpler) way that

(g) Let a be a principal ideal a = contained in For s in

Ga and x in we denote by B(x, s) the of
s(x)— x.

For fixed s, the mapping x B(x, s) is a derivation of (see
Chapter II, § 17) with values in the additive group of z1*:

(26) B(x ±y, s) = B(x, s) + B(y, s)

(27) B(xy, s) . B(y, s) + 9B(x, s)

9 denoting the of x, y). The proofs are straight-
forward. On the other hand, for fixed x in the mapping
s B(x, s) is a homomorphism of Ga into the additive group of

(28) B(x, ts) = B(x, s) + B(x, t)

PROOF. We s6t s(x) = x + a = a'a" with a', a" in (this is
possible since a E Then ayts = s(t(x)) — x = s(x+ ayt) — X =

+ s(a)s(yt) = + + s(a)[s(yt) —ye] + [s(a) — a]yt. Since v*(s(a)) =
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v*(a) (s E Ga), and since E the term s(a). Yt]
is in Similarly, since s(a) — a = s(a')s(a") — a'a" = s(a')[s(a") — a"] +
a"[s(a') — a'], the term (s(a) — a)yt belongs to Hence

± (mod and therefore +Yt (mod
In other words, we have a pairing B between and the additive

group of with values in the additive group of z1*. The kernel of
the homomorphism çz of G11 into Hom z1*) defined by =

B(x, s) is the set of all s in such that
s(x) X

e for every x in

in other words, this kernel is The image in Hom
is therefore a subgroup of Hom z1*), which is isomorphic to

and therefore finite. If the characteristic of z1* is zero, no
subgroup of Hom L1*) is finite, except the subgroup (0), since such
a subgroup contains, with any element 0, all its multiples (9+ (9,
(9+ (9+ (9,. . . ; we therefore have = in this case; more parti-
cularly, if is a discrete valuation of rank 1, then we get

= ... = = . . . , and this implies at once that = {1} for
all n> I (since from s(x) — x E all n and all x follows that s(x) — x= 0

for all x, whence s= 1). If the characteristic p of z1* is 0, then every
element 0 of Hom z1*) is of order p; therefore is an
abelian group of type (p,.. . , p) (i.e., a direct sum of cyclic groups with
p elements).

On the other hand, the homomorphism of into Hom (Ge, Z1*)
defined by = B(x, s), takes the value 0 on by formula (27),
and also on fl denoting the fixed field of Ge), whence a
fortiori on fl KT. We suppose that there is no inseparability in the
residue field extension, i.e., that z1* is separable over ; then z1* = liT by
Theorem 22 (b), and this means that every element of is congruent
mod to some element of n KT. [In the case in which is
dense (i.e., has no smallest strictly positive element), we have

whence takes everywhere the value 0. From what has been
seen above, it follows that = for every principal ideal a; we may
notice that, if h is a non-principal ideal in then b = (still under
the assumption that J'* is dense).]

In the case in which f* admits a smallest positive element, say
v*(u) (u E then the assumption that shows that every x
in may be written in the form x =z' + zu + x', with z, z' E KT
and x' in Denoting as usual by the of z, formula
(27) shows that = = . Therefore the image in
Hom (Ge, 4*) is the subspace of Hom (Ge, z1*) generated by
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çb(u); in particular we have = 0 if and only if Ga = Ga931*. Further-
more (still under the assumptions that is separable over and that
f'* admits a smallest element > 0), the mapping s = B(u, s)
defines an isomorphism of onto an additive subgroup of z1*.

(h) Let still a be a principal ideal with a in For t in Ha and

x 0 in K*, we denote by C(x, t) the of
t(x) x.

The mapping C satisfies the following relations:

(29) C(xy, t) = C(x, t) + C(y, t),

(30) C(x, ts) = C(x, s) + C(x, t).

PROOF. If we set s(x) = x(1 + a;), then C(x, s) is the of
From s(xy) = xy(1 + a; + ± a2 E we deduce
formula (29). From

s(t(x)) = s(x)[1 + = x(1 + + a(1 + +

x(1 + a; +

we deduce formula (30).
We have again a pairing, this time between Ha and the multiplicative

group K*' of K*, with values in the additive group of Since
Ha (1) in characteristic 0 (Theorem 24), and we may

restrict ourselves to the case in which the characteristic p of L1* is Q

It is easily seen that the kernel of the homomorphism p: Ha Hom
(K'*, defined by p(s)(x) = C(x, s) is Thus we see as above
that is an abelian group of type (p, p,• • , p).

(i) Since G is afinite group, the mappings a Ga, a Ha take only
a finite number of values. Let, for example, G' be one of the
values taken by Ga. If tli denotes any set of ideals in and we
set

b =fla

we immediately verify that

Gb = fl Ga.

Taking for the set of all ideals a for which Ga = G', we deduce
that this set has a smallest element a(G'). We obtain in this way
a finite decreasing sequence

>aq>(O)
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such that the Ga. form a decreasing sequence of distinct sub-
groups of G. It follows from the construction that

Ga=Ga for

a

a

for aq>a.
The ideals , are called the ramification ideals of (and
generalize the ramification numbers defined in Chapter V, § 10).
An analogous sequence 1> 2> > > (0), with analogous
properties, is defined by using the mapping a Ha instead of

a —* Ga.

§ 13. Classical ideal theory and valuations. Let R be a UFD,
and K its quotient field. With every irreducible element z in R, there
is associated the z-adic valuation of 9, Example 1, p. 38). We have
noticed already 9, Example 2, p. 38) that the ring R and the family
(F) of all z-adic valuations of K enjoy the following properties:

(E1) Every valuation v in (F) has rank I and is discrete.
(E2) The ring R is the intersection of the valuation rings (v E (F)).
(E3) For every x 0 in R, we have v(x) 0 for all v in (F) except a finite

number of them (we shall say "for almost all v in (F)").

(E4) For every v in (F), the valuation ring is equal to the quotient ring
Rp(V), where is the center of v on R.

When we have a domain R and a family (F) of valuations of its

quotient field K which satisfy (E1), (E2), (E3), (E4), we say that R is a
Krull domain (or a finite discrete principal order), and that the family (F)
is a family of essential valuations of R. Property (E2) shows that a

KruIl domain R is integrally closed. The fact that every element of K is
a quotient of two elements of R shows that condition (E3) is equivalent

with the seemingly stronger condition:
(E'3) For every x 0 in K, we have v(x) =0 for almost all v in (F).

Further examples of KrulI domains may be given:
(a) Dedekind domains. A family of essential va'uations in these

domains is given by the set of all valuations 9, Example 3,

p. 38). A more general example is the following:
(b) Integrally closed noetherian domains. If R is an integrally closed

noetherian domain, then a family (F) of essential valuations of R is



§ 13 CLASSICAL IDEAL THEORY AND VALUATIONS 83

given by the valuations, where is any minimal prime ideal in
R (Theorem 16, Corollary 3, § 10).

REMARK. A Krull domain need not be noetherian; for example,
polynomial rings in an infinite number of indeterminates, over a
field, are non-noetherian UFD's.

The family (F) of essential valuations of a Krull domain R is uniquely
determined by R. More precisely:

THEOREM 26. Let R be a Krull domain, and (F) a family of essential
valuations of R. Then the valuation rings (v E (F)) are identical with
the quotients rings where runs over the family of all minimal prime
ideals in R.

PROOF. Let v E (F), and let denote its center on R. Since the
quotient ring is the valuation ring (E4) of a discrete, rank I valua-.
tion (E1), is its unique proper prime ideal. Thus, taking
into account the relations between prime ideals in R and in Rp(V)
(Vol. I, Ch. IV, § 11, Theorem 19), is a minimal prime ideal in R.

Conversely we have to show that every minimal prime ideal in R
is the center of some valuation v in (F). More generally we shall prove
that every proper prime ideal in R contains the center of some
valuation v in (F). Suppose this is not so. Take an element x 0 in

Since R, x is not a unit in R. Hence

v in (F)(E2). Denote by v in (F)
such that v(x) >0 (E3). As was just pointed out, we must have n 1.

Since no center is contained in there exists an element y2 e
such that y2 Since the valuations v2 have rank 1 and since

>0, there exists an integer s(i) such that � Denot-
ing by y the product II we have v.(y) � v1(x) for all i, whence

v(y) � v(x) for all v in (F) since v(x) 0 for every v in (F) distinct from
In other words, we have v(y/x) � 0 for all v in (F), whence

y/x E R by (E2). But, since is a prime ideal, and since y2 we have
y in contradiction with the fact that y e Rxc Our theorem is
thereby proved.

We now characterize UFD's and Dedekind domains among, KruIl
domains. (From now on, all valuations have the additive group of
integers as value group.)

THEOREM 27. Let R be a Krull domain, (F) its family of essential
valuations. In order for R to be a UFD, it is necessary and sufficient that,
for every v in (F), there exists an element in R such that =1 and

for every in (F).
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PROOF. For the necessity we observe that if v is the a-adic valuation
of a UFD R (a being an irreducible element in R), we have v(a) 1,

and w(a) 0 for every other b-adic valuation w of R such that w v.
Conversely, suppose the existence of the elements in R. These ele-
ments are irreducible, since, from xy with x and y in R, we deduce
v(x) + v(y) I and w(x) w(y) 0 for every w v in (F), whence
w(x) w(y) =0 and either v(x) 0 and v(y) = I or v(x) = I and v(y) =0;
therefore either x ory is a unit in R since it has values 0 for all valuations
in (F) (use (E2)). Secondly, for every element x in R we can write
x u. fl from this we deduce that v(u) 0 for all v in (F), i.e.,

that u is a unit in R (since u and 1/u belong to R by (E2)). Lastly such a
representation x fJ aJz(v) (u: unit in R; the n(v) almost all zero) is

necessarily unique, since v(x) = v(u) + + and since
w V

therefore v(x) is equal to n(v) by the hypothesis made on the elements
a UFD.

THEOREM 28. Let R be a Krull domain, (F) its family of essential
valuations. In order for R to be a Dedekind domain it is necessary and
sufficient that the following equivalent conditions hold:

(a) Every proper prime ideal in R is maximal.
(b) Every proper prime ideal in R is minimal.
(c) Every non-trivial valuation of the quotient field of R which is finite on

R is essential.
PROOF. The equivalence of (a) and (b) is trivial. If (b) holds, then

any non-trivial valuation v of the quotient field K of R which is finite on
R has a minimal prime ideal as center, and its valuation ring contains
the quotient ring As is the valuation ring of a rank I valuation
(Theorem 26), it is a maximal proper subring of K 3, p. 10), thus
proving that is the valuation ring of v, and that (c) holds. Con-
versely, if (c) holds, every proper prime ideal in R is minimal by
Theorem 26, since it is the center on R of some non-trivial valuation

4, Theorem 5).
We have already seen that condition (a) is necessary (Vol. I, Ch. V, § 6,

Theorem 10). For proving the sufficiency of the equivalent conditions
(a), (b), (c) we are going to prove first that every proper prime (therefore
maximal) ideal in R is invertible. We take an element x 0 in For
any prime ideal a in R, we denote by the (essential) valuation having
a as center. Then x1 IT (this product makes sense, by condition

(E3)) is a fractionary ideal such that mm va(y) =0 for all a. Therefore
yeb
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b is an integral ideal, necessarily equal to R, for b is not contained in any
maximal ideal a. Consequently we have Rx= fJ ava(x), so each a is
invertible provided va(x)> 0 (Vol. I, Ch. V, § 6, lemma 4). In particular

is invertible.
We now prove that every integral ideal a in R is invertible, and this

will show that R is a Dedekind domain by Theorem 12 of Vol. I, Ch. V,
§ 6. In fact, let us denote by vp(a) the smallest value taken by Vp on a,
and consider the ideal a' = fT It is clear that we have

a product of invertible ideals), we can consider
the ideal b = aa'—1; this is an integral ideal since a', and we have
a=a'b. Since we have for every b is necessarily equal to R,
as it is not contained in any maximal ideal a. Therefore a = a', and a
is invertible. Q.E.D.

We now study the behavior of normal domains under two simple
types of extensions.

Given a field K and a valuation v of K, we consider the polynomial
ring K[X] in one indeterminate over K. If P(X) = a0 + a1X+ . . . +

a E K, we set v'(P(X)) = min0< (v(a1)). It is clear that we have
v'(P(X)+Q(X)) � mm {v'(P(X)), v'(Q(X))}, and v'(P(X).Q(X))�
v'(P(X)) + v'(Q(X)). To prove the equality v'(P(X). Q(X))
v'(P(X)) + v'(Q(X)), we consider, in P(X) = a0 + a1X+ ... + and
in Q(X) b0 + b1X+ . . + the smallest indices i, j for which
v(a1) and v(b3) reach their minima. Then the coefficient of in
P(X)Q(X) is the sum of ab3 and of terms whose order for v is
strictly greater than v(a1) + v(b1); the order of that coefficient is thus
v(a1) + v(b1) = v'(R) + v'(Q), showing that v'(PQ) � v'(P) + v'(Q). It
follows from Theorem 14 9) that v' has a unique extension to a valua-
tion of the rational function field K(X). We shall also denote by v'
this valuation of K(X), and we shall call it the canonical extension of v to
K(X). We notice that v and v' have the same value group, hence also
the same rank.

THEOREM 29. Let R be an integrally closed domain and K its quotient
field. Let (F) be a family of valuations of K, the valuation rings of which
have R as intersection. Denote by (F') the family of the canonical exten-
sions v' of elements v E (F) to the rational function field K(X). Denote
by (G) the family of all a(X)-adic valuations of K(X) (a(X): irreducible
polynomial in K[X]). Then

(a) The polynomial ring R[X] is the intersection of all valuation rings
where v E (F') u (G), and is therefore integrally closed.
(b) If R is a Krull domain, and if (F) is its family of essential valuation;
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then is a Krull domain, and (F') (G) is its family of essential
valuations.
(c) IfRisaUFD,thenRrX]isalsoauFD.

PROOF. (a) The intersection fl is the polynomial ring KIX1, by
w e(G)

definition of the a(X)-adic valuations. Now, if a polynomial P(X) = a0 +
a1X± ... + (a1 E K) satisfies the inequality v'(P) � 0 for every v'
in (F'), then we have mm (v(a1)) � 0 for all v in (F), i.e., v(a1) � 0 for
every v and every i, and this is equivalent to saying that a E R for every i.
This proves (a).

(b) Suppose that (F) is the family of essential valuations of the Krull
domain R. We have to show that the set (F') U (G) satisfies conditions
(E1), (E2), (E3), (E4) with respect to the ring R[X]. Condition (E1) is
trivial. Condition (E2) has been proved in (a). As for (E3), given a
polynomial P(X) = a0 ± a1X + ... + there is only a finite number
of a(X)-adic valuations w in (G) for which w(P) >0, since P has only a
finite number of irreducible factors (in K[X]); on the other hand, if a
is a non-zero coefficient of P(X), the valuations v' in (F') for which
v'(P) >0 are among those for which v(a1) >0, by definition of v', and
these latter valuations are finite in number according to (E3) as applied
to R. It remains to show that (E4) holds.

Consider, first, an a(X)-adic valuation w E (G). Its center in
R[X] is the set of all polynomials in R[X] whkh are multiples of a(X)
(in KIX]). Since this prime ideal does not contain any constant
polynomial 0, the quotient ring contains By the
transitivity of quotient ring formations (Vol. 1, Ch. IV, § 11, p. 231), this
quotient ring is equal to where is the (prime) ideal generated
by in K[X]. But, since this ideal is the ideal generated by a(X),
the quotient ring we are dealing with is equal to (KIXI)(a(X)), and this
latter ring is the valuation ring of w, by the structure of the a(X)-adic
valuation.

Consider now a valuation v' in (F'), extending canonically the vakia-
tion v (E(F)) of K. Its center on R[X1 is the set of all poly-
nomials a0 a1X+ ... -'- a,,X" for which v(a7) >0 for every i. Since
the valuation ring of v a quotient ring of R, the quotient ring
(R[X])p(V') contains and therefore contains also RVrXI. If we denote
by a an element of such that v(a) = 1, and if we write every element
of K(X) under the form where P and Q are polynomials
over such that v'(P) = v'(Q) =0, the elements of the valuation ring of

are those for whkh q � 0. In other words, this valuation ring
where p is the prime ideal in RV[X1 generated by a. Now,



§ 13 CLASSICAL IDEAL THEORY AND VALUATIONS 87

this prime ideal is obviously the extension to RV[X] of the center
of v' in R{X]. Thus, the valuation ring we are investigating, is, by the
transitivity of quotient ring formations (Vol. I, Ch. IV, § 11, p. 231) equal
to the quotient ring The proof of (b) is now complete.

(c) We use the characterization of UFD's by Theorem 27. For v'
in (F'), we take an element in R such that = I and

u v in (F). If we consider a constant polynomial in R[X],
we have v' 0 for
every in a

w for a constant the
in we

for w in and 0 for every in
(F') since the coefficients of are relatively prime and cannot have
strictly positive orders for v. Thus also (c) is proved.

REMARK. Observe that (c) has already been proved (Vol. I, Ch. I,
§ 17, Theorem 10) by elementary methods.

THEOREM 30. Let R be an integrally closed domain, K its quotient
field and (F) a family of valuations of K, the valuation rings of which
have R as intersection. Let K' be a finite algebraic extension of K, R' the
integral closure of R in K', and (F') the family of all extensions to K' of all
valuations belonging to (F). Then:

(a) R' is the intersection of the valuation rings of the valuations belonging
to (F').
(b) If R is a Krull domain, and if (F) is its family of essential valuations,
then R' is a Krull domain and (F') is its family of essential valuations.
(c) If R is a Dedekind domain, so is R'.

PROOF. (a) It is clear that R' is contained in the intersection I of
the valuation rings of the valuations belonging to (F'). Conversely
consider an element x of K' such that v'(x) � 0 for all v' in (F'). Let K"
denote the smallest normal extension of K containing K', and let (F")
be the family of all extensions to K" of valuations belonging to (F).
We obviously have v"(x) � 0 for all v" in (F"). Since (F") contains,
together with v", all the conjugates of v" over K, we have

v" for every conjugate of x over K. Now the
coefficients a3 of the minimal polynomial of x over K are sums of pro-
ducts of conjugates of x. Thus the valuation axioms show that we have
v"(a1) � 0 for all v" in (F"), i.e., v in (F). This means
that the coefficients a3 belong to R. Therefore the minimal polynomial
of x over K yields an equation of integral dependence of x over R, and
assertion (a) is proved.
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(b) If v e (F) is a discrete, rank I valuation, any extension v' of v to K'
is also discrete, of rank I 11, Lemma 2, and Corollary); thus (F')
satisfies condition (E1). That (F') verifies (E2) follows from assertion
(a). Concerning (E3), consider an element x 0 in R' and an equation
of integral dependence ± • • ± a0 = 0 of x over R. We
may suppose a0 0; otherwise we would divide by x. If we have
v'(x) >0 for v' in (F'), we must have v'(a0) >0. But the valuations v'
in (F') for which v'(a0) >0 are the extensions of the valuations v in (F)
for which v(a0) >0 (a0 E R). Since the latter are finite in number, by
(E3) as applied to (F), and since a valuation v of K has only a finite
number of extensions to K' 7, Corollary 4 to Theorem 12), the
number of valuations v' in (F') for which v'(a0) >0, is finite, whence
also the number of valuations v' in (F') for which v'(x) >0 is finite.
Thus (F') satisfies (E3).

We now check (E4). Let v' E (F') be an extension of v E (F), and
denote by and the corresponding centers in R' and R respec-
tively. The valuation ring of v is the quotient ring Rp(V) RM,
where M denotes the complement of in R. The integral closure
(Re)' of = RM in K' is the quotient ring R'M (Vol. I, Ch. V, § 3,

Example 2, p. 261). Since n R = this integral closure is a
subring of R'p(V'). Now, the valuation ring of v' is the quotient ring of
(Re)' = R'M with respect to the maximal ideal in' which is the center of
v' in (Re) 7, Theorem 12). By the transitivity of quotient ring
formations (Vol. I, Ch. IV, § 10, p. 226), this valuation ring is therefore
equal to R'p(V'), and this completes the proof of (b).
(c) We use the characterization of Dedekind domains given in Theorem
28. If R' contains two proper prime ideals q' such that < q', then

R and n' n R are proper prime ideals in R such that n R < q' n R
(Vol. I, Ch. V, § 2, Complement I to Theorem 2, p. 259). This contra-
dicts the fact that R is a Dedekind domain.

REMARK. Another proof of (c) has been given in a previous chapter
(Vol. 1, Ch. V, § 8, Theorem 19).

§ 14. Prime divisors in fields of algebraic functions. We recall
(Vol. 1, Ch. II, § 13) that a field K, containing a ground field k, is said to
be a field of algebraic functions over k, or, briefly, a function field over
k, if it is finitely generated over k. In this section we shall study prime
divisors of a function field K/k, i.e., the places or the valuations of K/k,
which have dimension r — 1 over k, where r is the transcendence degree
of K/k. For our immediate purpose it will be more convenient to
treat prime divisors as valuations rather than as places.
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We have already proven the existence of prime divisors; their existence
is a case of a more general theorem proven in §6 (Theorem 11 and
its Corollary). Of considerable importance is the following theorem:

THEOREM 31. Any prime divisor v of a function field K/k is a discrete
valuation of rank 1, and the residue field of v is itself a function field
(of transcendence degree r — 1 over k). Furthermore, the valuation ring

of v is the quotient ring of a finite integral domain R (having K as
quotient field) with respect to a minimal prime ideal of R.

PROOF. It is obvious that v must have rank I since v has maximum
dimension r— 1 and cannot therefore be composite with any other
valuation of higher dimension (see § 3, Definition 1, Corollary 1, p. 10).

We fix r— I elements x1, x2, • , in K whose v-residues in
are algebraically independent over k. Then it is clear that these ele-
ments x1 are also algebraically independent over k 6, Lemma 2; see
also proof of Corollary I of that lemma). We extend {x1, x2, ,

to a transcendence basis {x1, . . . , xj of K/k and we denote by v' the
restriction of v to the field k(x) (=k(x1, x2, . , xv)). Since K s an
algebraic extension of k(x), it follows that v and v' have the same dimen-
sion 6, Lemma 2, Corollary 1). Hence v' is a prime divisor of k(x)/k.
We first show that our theorem is true for v' and for the purely trans-
cendental extension field k(x) (= k(x1, x2, . , xv)) of k. For this pur-
pose we first observe that it is permissible to assume that 0, since
we can replace by 1/;. Under this assumption, v' is non-negative
on the polynomial ring R' k{x1, x2, , ;]. If is the center of v'
in R', then the integral domain has transcendence degree r — 1 over
k (since the v-residues of x1, x2, , are algebraically independent
over k). If is a prime ideal in R' such that > then, by Theorem 29
of Vol. I, Ch. II, § 12, we have tr.d. R'/t" <tr.d. i.e., r— I <tr.d.

r, where all the transcendence degrees are relative to k. Hence
tr.d. r tr.d. R', whence—again by the just cited theorem, = (0).
Hence is a minimal prime ideal in R'. Since R' is noetherian and
integrally closed, it follows that is a discrete valuation ring of rank I

10, Theorem 16, Corollary 2). Since is contained in the valua-
tion ring of v' and since is a maximal subring of k(x), it follows that

is the valuation ring of v'. Thus v' is discrete of rank 1, its residue
field is the quotient field of the finite integral domain k[x1, x2,• ,

and its valuation ring is the quotient ring of the polynomial ring
k[x1, x2, , with respect to the minimal prime ideal so the
theorem holds for v'. (Observe that is a principal ideal (f) in the
UFD k[x1, x2, . . . , and that therefore v' is merely the f-adic valua-
tion of k[x].)
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The theorem can now easily be proved for v and K as follows:
(1) since K is a finite algebraic extension of k(x) and v is an extension
of v', also v must be discrete 11, Lemma 2, Corollary) and of rank I

II, Lemma 2). (2) The residue field of v is a finite algebraic exten-
sion of the residue field of v' 6, Lemma 2, Corollary 2) and is therefore
also a finitely generated extension of k. (3) If R denotes the integral
closure of k[x1, x2, , in K, then clearly v is non-negative on R, the
center of v in R is a prime ideal of dimension r — I and is therefore a
mimimal prime ideal in R; thus, since R is a finite integral domain, hence
noetherian, it follows, again by Theorem 16, Corollary 2 10) that

This completes the proof.
We note the following consequence of our theorem:
COROLLARY. If a valuation v of a field K/k of algebraic functions of r

independent variables has dimension s and rank r — s, then v is discrete, and
its residue field is afield of algebraic functions of s independent variables.
In particular, every valuation of K/k of maximum rank r is discrete.

For, let v v' o i7, where v' has rank r —s—I and is a rank 1 valua-
tion of the residue field of v'. The dimension of v' is r— rank v',
i.e., dim v' � s + 1, and since is non-trivial it follows that dim v' 5 -L 1,

while dim s. Using induction from s + I to s, we may assume that
v' is discrete and that is a field of algebraic functions of s + I inde-
pendent variables. Then is a prime divisor of hence also
and v are discrete. If v has rank r, then its dimension cannot exceed
zero, and so v must be discrete.

The converse of the last part of the theorem is also true, but before
stating and proving it we must first prove a lemma which will be used
several times in this section and which will form the cornerstone of the
dimension theory developed in the next chapter (VII, § 7).

Let R = k[x1, x2,.. , be a finite integral domain, of transcendence
degree r, and let be a prime ideal in R, different from R. Then the
canonical homomorphism R is an isomorphism on k, and we
may therefore regard k as a subfield of R/p. We define the dimension
of the prime ideal in symbols: dim as being the transcendence
degree of over k.

By definition, we have always dim 0 if R. It is sometimes
convenient to attach the dimension — I to the unit ideal R. It is clear
that a prime ideal of dimension 0 is maximal. The converse will be
proved in the next chapter (VII, § 3, Lemma, p. 165).

If and are two prime ideals in R, both different from R, and if
< then the canonical homomorphism of onto is proper

and therefore the transcendence degree of is greater than the trans-
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cendence degree of R/t' (Vol. 1, Ch. II, § 12, Theorems 28 and 29).
We have therefore proved that

< >

In particular, since the prime ideal (0) has dimension r, it follows that
every proper prime ideal has dimension less than r and that every prime
ideal of dimension r — 1 is minimal. The lemma which we wish to
prove and which is fundamental in the dimension theory of finite
integral domains is the converse of the second part of the last assertion:

LEMMA. If is a minimal prime ideal in a finite integral domain
R = k[x1, x2,. . , xv], of transcendence degree r, then has dimension r — 1.

PROOF. Assume first that x1, x2, . . , are algebraically inde-
pendent over k, whence r = n and R is a polynomial ring in n variables.
Since R is a unique factorization domain, is a principal ideal, say

= Rf, wheref is an irreducible element of R (Vol. 1, Ch. IV, § 14, state-
ment following immediately the definition of minimal prime ideals,
p. 238). The polynomial f—f(x1, . , x,,) must have positive
degree since t (1). Hence at least one of the elements x2 actually
occurs in the formal polynomial expression of f. Let, say, occur in
f. Then contains no polynomial which is independent of x,,, since

= Rf. It follows that the p-residues of x1, x2, . . . , are algebraic-
ally independent over k. This shows that dim n — 1, whence
dim = n —1 since t, (0).

If r < n, we consider first the case in which the ground field k is
infinite. We use then the normalization theorem (Vol. 1, Ch. V, § 4,
Theorem 8) and we thus choose r elements z1, z2, . , Zr in R such
that R is integrally dependent on R' = k[Z1, Z2, . . , Zr]. We set

n R'. Then R' is a polynomial ring in r variables. Since R' is
integrally closed and is minimal in R, is necessarily minimal in R'
(Vol. 1, Ch. V, § 3, Theorem 6) and hence, by the above proof, we
have dim t' = r —1. Consequently, by Vol. I, Ch. V, § 2, Lemma 1,
dim 1.

If k is a finite field we consider an algebraic closure K of the field
k(x1, x2, . . . , and we set F? = k[x1, . , where k is the algebraic
Closure of k in K. Since R is integrally dependent over R =
k[x1, x2, . . . , xv], there exists at least one prime ideal in .1? which lies
over (Vol. 1, Ch. V, § 2, Theorem 3). Let be such a prime ideal.
Then also is minimal in .1? (Vol. 1, Ch. V, § 2, Complement 1 to
Theorem 3, p. 259). Now, it is clear that the transcendence degree of
R over k is the same as the transcendence degree of R over k (using a
transcendence basis {Z1, Z2, . . , Zr} of R/k, e R, and the transitivity
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of algebraic dependence, we see at once that z1, z2,.. , Zr are
algebraically independent over k and form a transcendence basis of R/k).
Since k is an infinite field, we have, by the preceding case, that dim
r— 1. Consequently, again by Lemma I of Vol. I, Ch. V, § 2,
dim = r — 1, and the proof of the lemma is complete.

COROLLARY. If R is a finite integral domain (over a ground field k)
and if a prime ideal in R is such that the quotient ring is a valuation
ring, then the associated valuation v of the quotient field K of R is a prime
divisor of K/k and is a minimal prime ideal in R.

For, since is noetherian, the valuation v is discrete, of rank 1
10, Theorem 16) and is a maximal subring of K; therefore

is (not only a maximal but also) a minimal prime ideal of showing
that is a minimal prime ideal in R. By the preceding lemma, we have
therefore dim == r — 1, if r is the transcendence degree of R/k, and
hence v is a prime divisor of K/k.

Let V be an affine variety in an affine n-space, such that V is defined
and is irreducible over k and K is k-isomorphic with the function field
k( V) of V/k. We shall identify K with k( V). If is a prime divisort
of K/k which is finite on the coordinate ring k[V] of V, then has a
center on V, and this center is a subvariety W of V, defined and irredu-
cible over k. The dimension of W is at most equal to r — 1.

THEOREM 32. If W is an (r — 1)-dimensional irreducible subvariety of
V/k, then the set of prime divisors of K/k k( V)/k) which have center W
on V is finite and non-empty. If is any prime divisor of K/k having
center W, then the residue field of is a finite algebraic extension of the
function field k(W) of W/k.

PROOF. There exist prime divisors of center W, since there exist
non-trivial valuations of K/k having center W and since any such valua-
tion must have dimension r — I and must therefore be a prime divisor.
We shall now show that there is only a finite number of prime divisors
with center W.

Let K— k(x1, x2, . . , xj, where the x are the non-homogeneous
coordinates of the general pont of V/k. Let ci be the prime ideal of W
in Since dim W= r— 1, we may assume that the q-residues of
x1, x2,.. . , are algebraically independent over k. Then x1,
x2, .. . , are also algebraically independent over k, and we may
furthermore assume that x1, x2, • . , are algebraically independent
over k. From our assumptions it follows that in the polynomial ring
k[x1, x2, . . , the prime ideal q0— q n krx1, x2, . . . , is (r— 1)-

t Without fear of confusion we are using here the same symbol P1 for prime
divisors as was used for places in the beginning of the chapter.
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dimensional, hence minimal. Let denote the q0-adic valuation
of the field k(x1, x2,• • , Xi.); then is the only valuation of
k(x1, x2,• • , which has center q0 in k[x1, x2,• • , Xi]. Any
prime divisor of K/k which has center W on V has center q in
k[x1, x2,• • , xv], hence has center in kfx1, x2,• • , in other
words: any prime divisor of K/k with center W on V must be an
extension of Since K is a finite algebraic extension of
k(x1, x2,• • , Xi), has only a finite number of extensions to K, and
this proves the finiteness of the set of prime divisors of K/k having
center W. If is any prime divisor of that set, then the ring k[x]/q
can be canonically identified with a subring of the residue field zl of
Hence, the quotient field of that ring, i.e., the field k(W), is a subfield
of zi. Since /k is a function field, of transcendence degree r — 1,

and since also k( W)/k has transcendence degree r — 1, the theorem is
proved.

There is an important case in which there is only one prime divisor
of K/k whose center is the given irreducible (r — 1)-dimensional sub-
variety W of V/k. If W is an irreducible subvariety of V/k and is the
prime ideal of W in the coordinate ring R k[x1, x2, . . . , of V/k,
then we mean by the local ring of W (on 17) the quotient ring We
denote this ring by o(W; V). We say that V/k is normal at W if the
local ring o(W; V) is integrally closed (in this definition W may be an
irreducible subvariety of any dimension r— 1). If Q is any point of
V and W is the irreducible subvariety of V which has Q as general
point, we say that V is normal at Q if it is normal at W. That means
then that the local ring o(Q; V) is integrally closed. If denotes the
conductor of the coordinate ring R = k[x] in the integral closure of R
(Vol. I, Ch. V, § 5) and if F is the (proper) subvariety of V which is
defined by the ideal then the irreducible subvarieties W of V/k such
that V/k is not normal at W are precisely the subvarieties of F (Vol. 1,
Ch. V, § 5, Corollary of Lemma). In particular, since dim F r — 1,

there is at most afinite number of irreducible (r — 1)-dimensional subvarieties
W of V/k such that V/k is not normal at W.

THEOREM 33. If W is an irreducible (r — 1)-dimensional subvariety of
V/k such that V/k is normal at W, then there is only one prime divisor of
K/k which has center W on V. The valuation ring of that prime divisor
coincides with the local ring o( W; V), and its residue field coincides with
the function field k( W) of W/k.

The proof is irhmediate: the ring o(W; V) is an integrally closed,
local domain which has only one proper prime ideal (since W has
dimension r — 1, whence o( W; V) where is a minimal prime
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ideal in R), and thus the theorem is a direct consequence of Theorem 16,
Corollary 1 10).

Note that the first part of Theorem 33 is a special case of Theorem 16,
Corollary 2 10), concerning minimal prime ideals in noetherian
domains.

A variety V/k is said to be normal, or locally normal, if it is normal at
each of its points. It is clear that if the coordinate ring k[x] of V is
integrally closed, then V is normal. We shall prove now the converse:

THEOREM 34. If an affine variety V is normal then the coordinate ring
R of V is integrally closed.

This theorem is included in the following, more general and stronger
result:

THEOREM 34'. If R is an integral domain and M denotes the set of
maximal prime ideals of R then

R—
m eM

For, the assumption that V is normal signifies that is integrally
closed for any prime ideal in the coOrdinate ring R of V, and hence
Theorem 34 is indeed a consequence of Theorem 34'. To prove
Theorem 34' we first prove a lemma:

LEMMA. Let R be an integral domain, an ideal in R and x an ele-
ment of R. If for every maximal ideal m in R it is true that x belongs to
the extended ideal Rm9), then x E

PROOF. Let m be any maximal ideal in R. The assumption
X E Rm9) signifies that there exists an element (depending on m), not
in m, such that E In other words: : Rx in. The assumption
that x E for all maximal ideals m signifies therefore that the idea'
91: Rx is contained in no maximal ideal of R. Hence 9i: Rx = (1),
whence x E 91, as asserted.

REMARK. The lemma remains valid if R is any ring with identity
(and not an integral domain), provided the condition x E all m, is
replaced by the condition E where is the canonical
homomorphism of R into Rm (see Vol. I, Ch. IV, § 9). The proof is
similar to the one given above, and may be left to the reader.

Using the above lemma we can easily prove Theorem 34', as follows.
We have only to prove the inclusion fl R, for the opposite inclu-

in eM
sion is obvious. Let z E fl and write z in the form z = x/y, with

eM
x, y E R. We have the assumption: x E •y, for all m in M. Hence,
by the lemma (as applied to the ideal = Ry) we conclude that x E Ry,
whence z=x/y E R. Q.E.D.
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A prime divisor of K/k which is finitet on the coordinate ring k[V]
of V/k is said to be of the first kind or of the second kind with respect to V
according as the dimension of the center of on V is equal to r —1 or is
less than r —1. This distinction between prime divisors of the first
and of the second kind is classical. If r> 1, then the prime divisors of
K/k which are of the first kind with respect to V fall very short of ex-
hausting the totality of prime divisors of K/k which are finite on k[V].
We have in fact the following theorem:

THEOREM 35. If W is any proper subvariety of V, defined and irreduc-
ible over k, then there exist prime divisors of K/k having center W on V.
If we denote by the set of all these prime divisors then

(1) fl Kai = integral closure of o(W; V).
MW

PROOF. If dim W= r —1, then everything has already been proved:
is non-empty, by Theorem 32, and (1) follows from Theorem 8,

§ 5, since every valuation of K/k with center W is necessarily a prime
divisor. If dim W< r — 1, all the elements of are prime divisors of
the second kind with respect to V, and our theorem asserts not only that

is non-empty but also that the set is sufficiently ample as to
insure that the intersection of the valuation rings Kai, is the
same as the intersection of all the valuation rings of valuations v having
center W (this latter intersection being equal to the integral closure of
the local ring o( W, V), by Theorem 8, § 5).

Let be the prime ideal of W in the ring R = k[ V], and let {w1,
w,j be a basis of We consider the following h rings

R'. = . . . , = 1, 2,. . . , h.i

We note that w2,. . . ,

We assert that for at least one value of 1, 1 h, it is true that
R = To see this we fix a valuation v of k(V)/k which has

center p in R, and we fix an index i such that = mm {v(w1),
v(w2), .. . , Then the valuation ring contains Let
be the center of v in R'1. We have since >0, and
clearly n R= Since R'1w1 n it follows that n R=
as asserted.

t Strictly speaking we should say "non-negative", since in our terminology
a prime divisor valuation. However, in the present geometric context the
term "finite" is more suggestive, since if the affine variety V is thought of as
part of a projective variety V' then to say that is non-negative on k[V] is
the same as saying that the center of is not a subvariety at infinity (of V')
(see end of this section).
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We give another (indirect) proof of the above assertion, which does
not make use of the existence theorem for valuations. Assume that
our assertion is false and that consequently there exists for each I = 1,

2,.. . , h an element in R such that and E R'1w1. Let
Then also and E R'1w1, 1= 1, 2,. , h. We

can therefore write in the form = w2, , where
is a form in w1, W2, . , Wh, of degree v1, with coefficients in R.

Letting v = max {v1}, we have

= W2, . , Wh), I = 1, 2, . , h,

where is a form of degree v, with coefficients in R. It follows that
the product of with every monomial W1alW2a2. . of degree
a1 ± a2 ± + = (v — 2)h 1= N is equal to a form of degree N+ 1
in W1, . , with coefficients in R. This implies that
Since this relation implies the relation mN = mN+1, where m is
the maximal ideal in the quotient ring in contradiction with Vol. I,
Ch. IV, § 7, Theorem 12, Corollary 1, since R is a noetherian integral
domain and since is a proper prime ideal in R.

For simplicity of notations, assume that we have R' 1W1 R =
This relation implies at any rate that W1is a non-unit in and that at
least one isolated prime ideal of R' 1W1 must contract to in R. By
the principal ideal theorem (Vol. I, Ch. IV, § 14, Theorem 29), is a
minimal prime ideal in R'1, and since R'1 is a finite integral domain it
follows that has dimension r — 1 (see Lemma). Consider now any
valuation v of k(V)/k which is finite on R'1 and has center Then v is
necessarily a prime divisor since dim 1. A fortiori, v is also
finite on R. Its center in R is clearly the prime ideal n R, i.e.,
Thus v is a prime divisor of k(V)/k which has center W on V, and this
proves the first part of our theorem.

[The device used in the preceding proof, namely the transition from
the ring R to any of the rings R'1, is frequently used in algebraic geo-
metry; that device, interpreted geometrically, consists in applying to
the variety V a special birational transformation: a monoidal trans-
formation of center W (see Oscar Zariski, "Foundations of a general
theory of birational correspondences," Transactions of the American
Mathematical Society, vol. 53, p. 532).]

We now proceed to the proof of the second part of the theorem. Let
z be any element of k( V) which is not contained in the integral closure
of the quotient ring Rp(=o(W; V)). We sety= liz, R' Since
z does not belong to the integral closure of there exists a valuation v
of k( V)/k which has center in R and such that v(z) <0 5, Theorem
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8). Then v(y) >0, v is finite on R', and if denotes the center of v in
R' then y E and R = By the first part of the theorem, as
applied to R' and instead of to R and there exists a prime divisor

of k( V)/k which is finite on R' and has center Then is also
finite on R, has center in R (since fl R and furthermore v*(z) <0
since y E and thus v*(y) >0. Thus, we have found a prime divisor
of center W such that the valuation ring of that prime divisor does not
contain z. This establishes (1) and completes the proof of the theorem.

We now go back to the prime divisors of K/k which are of the first
kind with respect to V. We denote by S the set of these prime divisors.
Let R be the integral closure of the coordinate ring R k[V] of V/k.
Every prime divisor v in S is also finite on R, the center of v in R is a
minimal prime in E, and the quotient ring is the valuation ring of
v. Conversely, if is any minimal prime ideal in R,'then is a dis-
crete valuation ring of rank 1 (Theorem 16, Corollary 2, § 10) since
is noetherian, and if is the associated valuation, then the center R
of vp in R is a minimal prime ideal; in other words, the center of on
V is of dimension r— 1, and is a prime divisor of the first kind with
respect to V. Thus the set S is given by the set of all where
ranges over the set of all minimal prime ideals of R. From Theorem 16,
Corollary 3 10) we can now derive a number of consequences. In
the first place, we have

(2)
yeS

If w is any element of the function field K of V/k, w 0, then, for any
v in 5, v(w) is an integer, and there is only a finite number of prime
divisors v in S such that v(w) 0. We refer to v(w) as the order of w at
the prime divisor v, and we say that v is a prime null divisor or a prime
polar divisor of w according as v(w) > 0 or v(w) <0. Any function w in
K, w 0, has at most a finite number of prime null divisors and polar
divisors in the set S, and the functions w having no polar prime divisors
of the first kind with respect to V are those and only those functions
which belong to the integral closure of the coordinate ring R of V/k.

The situation is particularly simple if V/k is a normal variety. In
this case, every element v of S can be denoted without ambiguity by the
symbol VW, when W is the center of v on V, since W, which is of dimen-
sion r— 1, uniquely determines the prime divisor vw. We then intro-
duce the free group G generated by the irreducible (r— 1)-dimensional
subvarieties of V/k and we call the elements of this group, divisors. A
divisor I' on V is therefore a formal finite sum 1= 2m1 where the W1
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are irreducible (r — 1)-dimensional subvarieties of V/k and the rn are
integers. We write F>-O if all the rn2 are non-negative, and we say
then that F is a non-negative divisor. We write F> 0 (F— a positive
divisor) if F>-O and 0. If now w is any function in K, w 0, then
we can associate with w a well-defined divisor on V, namely the divisor

(w) = 2JVW(W).

where the sum is extended to all the irreducible (r — 1)-dimensional sub-
varieties of V/k (the above sum is, of course, finite since the number of
W's for which vw(w) 0 is finite). The divisor (w) defined in (3) is
called the divisor of the function w. Then (w)>-0 if and only if w e I?
and (w) = 0 if and only if w is a unit in R.

The above definitions refer to the affine variety V. That a function
w may have no polar prime divisors on V without being a "constant"
(i.e., without belonging to the ground field k or to the algebraic closure
of k in K) is due precisely to the fact that our definitions refer to an
afline variety V/k. In this frame of reference one loses track of the
prime divisors "at infinity." The "correct" definitions are obtained
if one deals with projective varieties. We shall do that in the next
chapter (VII, § 4). However, even without introducing explicitly pro-
jective spaces and varieties in the projective space, we can arrive already
here at the desired "correct" definition of the divisor of a function in
the following fashion:

If n is the dimension of the afline ambient space of our variety V, let
, be the coordinates of the general point of V/k. We set

• x1 . x2 . x.1
X12 —, X22 . . . =

• 1 . x1+i . xn
X2 —, ,.. . =

and we denote by V1 the affine variety whose general point is
(x11, x21, . , We set

R0 = R = k{x1, x2, . . . , R. = k[x11, x21, . . , = k[V1].

The n +1 rings R2 have K as common quotient field (whence the n + 1
varieties V1 are birationally equivalent). We denote by Si the set of
prime divisors of K/k which are of the first kind with respect to (we
set V0 = V) and by the union of the n ± I sets Si. We note the
lowing: the only prirne divisors v in the set i 0, which do not belong to
S0 are those at which x21 has positive order (or equivalently: v(x1) < 0)•
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In fact, if v is not finite on R0 and therefore v On
the other hand, if v E Si and 0, then also � O,j = 1, 2,. . . , n,
for = x/ if j i; whence v is finite on R0. Furthermore, we must
now have =0 (since is non-negative), and hence the v-
residue of is different from zero. The relations . x/ (j i) show
therefore that the field generated over k by v-residues of the
x/(j= 1, 2,. . . , n) coincides with the field generated over k by the
residues of x1, x2, , This shows that the center of v in R also
has dimension r —1, whence v E We have therefore shown that
there is only a finite number of prime divisors in 5* which do not
belong to S0. These are the prime divisors "at infinity" with respect
toV.

We now can proceed as we did in the case of an affine variety, except
that the set now replaces the set 5). If now a function w in K,
w 0, has no polar divisors, i.e., if we have v(w) Ofor all v in 5*, then w
must be a constant, i.e., w is algebraic over k. For, w must then belong
to the integral closure of each of the n + I rings R2. On the other hand,
given any valuation v of K/k, the valuation ring must contain
at least one of the n + 1 rings R2: namely, if all are 0 then

R0; otherwise if, say, = mm {v(x1), . . . , then R2.
It follows that w belongs to all the valuation rings such that
K,p k, and hence w must belong to the integral closure of k in K, as
asserted.

It would now be easy to develop the concept of a divisor and of the
divisor of a function, with reference to the set of n ± 1 affine varieties
especially if each is a normal variety. However, we shall postpone
this to the next chapter (see VII, § 4bis).

§ 15. Examples of valuations. All the examples of valuations en-
countered in the preceding sections were discrete, of rank I (e.g.,
valuations of Dedekind domains, prime divisors of function fields, etc.).
We shall give in this section a number of examples of valuations of
various types, in particular examples of non-discrete valuations of
rank 1. The algebraic function fields of transcendence degree r> 1,
over a given ground field k, represent the best source of such illustrative
material, and we shall in fact work exclusively with function fields in
this section. As a matter of fact, we shall deal largely with pure trans-
cendental extensions of a ground field k, for we know that if we extend a
valuation v of a field K to a valuation of a finite algebraic extension of K,
then the structure of the value group of v (rank, rational rank, etc.)
remains unaltered.
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EXAMPLE 1. Valuations of maximum rational rank. Let K=
k(x1, x2, ..., Xr), where x1, , are algebraically independent over
k, and let a1, a2, ,arbe arbitrary, rationally independent real numbers.
If t is a parameter and we carry out the formal substitution x2 —p- then
every monomial in X1, X2,.. . ,X,. yields a power of t, and distinct mono-
mials yield distinct powers of t (since the a2 are rationally independent).
If f(x1, x2,. ,Xr) is any polynomial in k[x1, x2,. . then
f( t ., is a sum of powers of t, say, terms of degree >f3,
where c 0, = n1a1 + n2a2 + ... + nrar, and the n are non-negative
integers. If we set v(f) = then v is a mapping of k[x1, x2,.. ,

(the zero excluded) onto a group 1' of real numbers, where 1= Ja1 +
Ja2 + ... + Jar (J= the additive group of integers). Note that 1' is the
direct sum of the r free cyclic groups Ja1. We have v(fg) = v(f) + v(g),

v v
of the field K 9, Theorem 14). The above group 1' is the value group
of v, and thus v is non-discrete, of rank I and rational rank r. It is im-
mediately seen that the residue field of v is the ground field k, whence v
is zero-dimensional. If the a are all positive, then v is non-negative
on the polynomial ring k[x1, x2,. . , and its center is the origin
X1 X2 ... Xr 0 in the affine r-space.

We know that the rational rank of a rank I valuation of a field K/k, of
transcendence degree r, is at most equal to r. In the above example
this maximum r of the rational rank is realized, and the value group
turns out to be a direct sum of r free cyclic groups. This is not
accidental, for we have quite generally the following:

THEOREM 36. If a valuation v of a field K/k of algebraic functions of
r independent variables has rational rank r then the value group 1' of v is
the direct sum of r cyclic groups:

1'=JT1+JT2+...+JTr,
where J denotes the additive group of integers and r2, , are
rationally independent elements of 1'.

PROOF. We fix in 1' a set {a1, a2,• , aj of rationally independent
elements and then we fix in K a set of elements x1, . , ; such that
v(x1) = a. As in the preceding example one shows that the value group
1" of the restriction of v to the field k(x1, x2,. , is then the group
1" = Ja1 + Ja2 + + Jar, a direct sum of r cyclic groups. If n denotes
the relative degree 1K: k(x1, x2, . , Xr)] then we know that

1" 11, proof of Lemma 1). Now, the group i" is a
direct sum of r cyclic groups and admits the basis elements a1/n!,
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I
a2/n!, , czjn!. Since 1' is a subgroup, of finite index, of 1', also

1' must possess a basis of r elements -ri, , -ri, as asserted (Vol. 1,
Ch. IV, § 15, Lemma 2).

EXAMPLE 2. Generalized power series expansions. Consider formal
power series z(t) = + + ... + + . .., where the coeffi-
cients are in k and the exponents are real numbers such that
Yo <Yi< ..., and oo. These power series with the usual
formal rules for addition and multiplication form a field k{t}. This
field admits a natural valuation V, of rank 1, defined by setting
V(z(t)) =Yo' if a0 0. Any isomorphism of k(x1, . ,;) into k{t}
will therefore yield a rank 1 valuation of k(x1, x2, . . . , ;). Any such
isomorphism is obtained by choosing for each variable x a power series
z.(t) in k{t} such that the r power series z1(t), z2(t), . . . , are algebraic-
ally independent. The valuations thus obtained are all zero-dimensional
and have k as residue field. In particular, if the z1(t), z2(t), . . .

are power series with integral exponents, so that the "one-dimensional
arc" x = z.(t) (i = 1, 2, . . . , r) is analytic and does not lie on any proper
algebraic subvariety of the affine r-space, then we get a discrete zero-
dimensional valuation of k(x1, x2, . . , xi), of rank 1. The condition
that the "arc" x =z.(t) does not lie on any proper algebraic subvariety
of the amne r-space is equivalent to our condition that the r power
series z.(t) be algebraically independent (over k). If this condition is
not satisfied, then the r power series z1(t) can be used to define valuations
of rank > 1, as follows:

The polynomials f(x1, x2, • , which give
rise to true algebraic relations f(z1(t), z2(t), • , ;(t)) = 0 between the
given power series z.(t) form a prime ideal in k[x1, x2, • , xi]. Let
v' be any valuation of k(x1, •, ;) which is non-negative on the
polynomial ring k[x1, x2, • . ,;] and which has center in that ring.
If denotes the u-residue of x then it is clear that the mapping

—* z1(t), i= 1, 2,. . , r, defines a k-isomorphism of
into k{t} and therefore also defines a rank I valuation i5 of the field

, This latter field is a subfield of the residue field
of v', and the valuation can be extended to a valuation of which
has the same value group as ii. Denoting this extended valuation by the
same letter ii, we have now a composite valuation v =v' o of k(x1,
x2,. , xi), whose rank is one greater than the rank of v'. Note that
this valuation is, in general, not uniquely determined by the "arc"
x1 = z1(t); it depends on the choice of v'. The only case in which v',
and hence also v, is uniquely determined is the case in which the prime
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ideal is minimal, in which case v' is necessarily the prime divisor of
center

EXAMPLE 3. Real valuations with preassigned value group. Let

z1(t) = • • •

where we assume that the power series z1(t) are algebraically inde-
pendent. MacLane and Schilling have proved (see their joint paper
"Zero-dimensional branches of rank I on algebraic varieties," Annals
of Mathematics, v. 40 (1939), pp. 507—520) that if all the are 0, if
k is of characteristic zero and if the exponents are rational linear com-
binations of s + 1 given real numbers 1, -r1, -r2, , -ri, then the field
k(t, tn, . . . , z1(t), z2(t), . . . , ;(t)) has in the natural valuation
V a value group generated by 1, , and all the exponents
of the given r series z.(t). From this result one can easily obtain the
existence of a rank 1 valuation of k(x1, x2, . . ,;) with any preassigned
value group 1' of rational rank s + 1 less than r. For, let 1, , be
s + 1 rationally independent elements of 1' (we may assume, as we did,
that one of these real numbers is 1). Since every element of 1' is
rationally dependent on 1, ., 1' is a denumerable set. We
can therefore find r — s — I power series z1(t) in k{t} such that the ex-
ponents of these power series generate the group 1', and it is also possible
to arrange the choice of these series in such a fashion that the r series
t, z1(t), z2(t),. . , be algebraically independent
over k. By means of these r series, and in view of the theorem of
MacLane-Schilling cited above, we get a rank 1 valuation of k(x1,
x2,... ,;) with the preassigned value group 1'.

In particular, it follows that if r 2 then any additive subgroup of the
field of rational numbers is the value group of a suitable valuation of the
field k(x1, x2, . . , ;) of rationalfunctions of r independent variables. We
shall illustrate this result by an example using a procedure which does
not make use of the generalized formal power series. For simplicity,
we shall restrict ourselves to the case r =2 and to the field k(x1, x2).
Let {m1, . .} be an arbitrary infinite sequence of positive integers
such that m1m2. . m1 —÷ + oo, and let {c1, c2, .. .} be a sequence of
elements of k, where each c1 is 0. We define an infinite sequence of
elements u1 in k(x1, x2), by induction, as follows: u1 = x1, 112 = x2, =
(u1 — i= 1, 2, .. . We denote by R the ring k{u1, u2,•• .,

and by q the ideal generated in R by the infinitely many ele-
ments u. Since every element of R is congruent mod to an element
of k, q is either the unit ideal or is a maximal ideal in R. We prove
that q R. Assuming the contrary, there will exist an integer Ii such
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that the ideal qh generated by u1, u2,. • , in Rh = k[u1, u2,. • ,

is the unit ideal. Now, we have e k[u;+i, for all 1, and further-
more u, belongs to the ideal generated by u,÷1, u,÷2 in k[u;+i, u,÷2]. It
follows that Rh = krUh_l, and that cih = Rh(uh_l, Uh). Since Uh_1, Uh
are algebraically independent over k, the relation 1 E

q is a proper (maximal) ideal, there exists a valuation v of
k(x1, x2) such that v is non-negative on R and has center in R. Let v be
such a valuation. Since >0, it follows that >
whence v(u,) = m,v(u,+i). In particular,

(1) v(u1) = . .

Since . . —p- oo, it follows that v is non-discrete, therefore of
rank 1, and necessarily of rational rank 1, for (1) shows that v cannot be
isomorphic with a direct product of two free cyclic groups. If we
normalize the value group 1' of v by setting v(u1) =1, then (1) shows
that 1' contains all the rational numbers having denominator . .

s = 1, 2,.... We shall now show that 1' is actually the set of all rational

numbers of the form
n

, s=1, 2,..., and that
m1m2

(2)
= hYl

To prove (2) we shall use the corollary of Theorem 10, § 5 (p. 21).
We have Rh Rh÷l and 1 fl Rh = this last relation follows from the
relations

—R ( — "a (\ I h+1 — h h—i) h+1

and from the fact that is a maximal ideal in Rh. Hence, by the cited
corollary of Theorem 10, (2) will be proved if we show that there exists
no valuation of K which, for every h, has center and is of the second
kind with respect to Rh. Assume the contrary, and let v' be such a
valuation. Then v' must have dimension 1 (since K/k has trans-
cendence degree 2), i.e., v' must be a prime divisor, and the value group
of v' is therefore the additive group of integers. We must have
v'(uh) >0, for all h, since is the center of v' in Rh. On the other hand,
we have also by (2'), v'(uhi) = mhlv'(uh), and in particular, v'(u1) =
m1m2. for all h. This is in contradiction with the fact
that all the numbers v'(uh) are positive integers, whereas . . mh —p-

+

By (1), we have v(uh÷l)
= m1m2 mh

Therefore, to prove our
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assertion concerning the value group I' we have only to show the fol-
lowing: if f(u1, u2) is any polynomial in k[u1, u2], then for h sufficiently
large we will have f(u1, u2) uh+1), fh(O, 0) 0. To show this,
we fix a positive integer m, sufficiently large, so as to satisfy the in-
equality V(U1m) v(f(u1, u2)), and we set = u1"/f(u1, u2). Then E

and hence, by (2), for large h, i.e., we have

(3) u2) = A(uh, uh+l)IB(uh, uh+1), B(O, 0) 0.

Now, u1, as a polynomial in Uh, Uh+1, has the form uh+1),
where 0) 0. It follows then from (3) that

f(u1, u2)A(uh, Uh+1) = UhPmB(Uh, Uh+1)]"'

= uh+1), C(0, 0) 0,

and therefore, if f(u1, u2) is expressed as a polynomial in Uh, Uh+1, its
only irreducible factor which vanishes at Uh = Uh+1 = 0 (if f(u1, u2) has
such a factor) must be Uh. In other words, f must be of the form

uh÷1), fh(°' 0) 0, as asserted.
We thus see that we can take as I' any subgroup of the additive group

of rational numbers. In particular, if mh = h, then I' is the set of all
rational numbers.

EXAMPLE 4. Valuations of infinite relative degree. If the algebraic
closure k of the ground field k has infinite relative degree over k, it is
possible to construct zero-dimensional valuations of k(x1, x2,. . , xi),
r> 1, having as residue field an infinite algebraic extension of k. We
shall show this in the case r =2. We assume for simplicity that the
maximal separable extension of k in k has already infinite relative degree
over k. We fix in k an infinite sequence of elements a1, a2, . . . ,

which are separable over k and such that the field k(a1, a2, . . . , . .

has infinite relative degree over k, and we consider in the (x1, x2)-plane
the branch x2= a1x1 + a2x12+ ... +

a discrete zero-dimensional valuation v of k(x1, x2) which has
center at the origin (0, 0) and has rank 2 or 1 according as the branch
is or is not algebraic (see second part of Example 2; we shall see in a
moment that the above branch is in fact necessarily non-algebraic). It
will be sufficient to show that the residue field of v coincides with the field
k(a1, a2, . . . , . .

It is clear that the residue field of v is contained in k(a1,
at,...). It is also clear that a1 belongs to the residue field of v, since
a1 is the v-residue of x2/x1. We assume that it has already been proved
that a1, a2,•• . , a,,_1 belong to the residue field of v. We set w = a1x1

a2x12+ ... + and we denote by w1( = w), w2, ..., wg the con-
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jugates of w over k(x1): • • Let

f(t) = II (t — =f(x2)= F(x1, x2) E krx1, x2]. Then F(x1, z(x1))

(1 ± terms of degree > 1). II {(a1 — + ••• + —

± ± • • • }, which shows that the leading term of
the power series F(x1, z(x1)) is of the form h n, where b is an
element of the field k(a1, • , Since is the residue of

it follows that belongs to the residue field of v.
{It now follows a posteriori that our branch is non-algebraic, since the

residue field of a zero-dimensional, rank 2, valuation of k(x1, x2) is
always finitely generated over k, by Theorem 31, Corollary, § 14.]

In the following example, k may be algebraically closed, and we are
dealing with a function field k(x1, x2, x3) of three independent
In this case we can construct a 1-dimensional valuation whose residue
field is not a finitely generated extension of k (contrary to what happens
in the case of prime divisors; see § 14, Theorem 31). We simply set,
for instance: x3 x2 + V'x1x22 + . . . + + . . . = z(x2), i.e., we
use the substitution x3 z(x2) and we treat k(x1) as ground field. Then
we get a discrete, rank 1 valuation of k(x1, x2, x3), whose residue field is

EXAMPLE 5. Prime divisors of the 2nd kind. Consider the poly-.
nomial ring k[x1, x2, . . . , xj in r independent variables, and for any
polynomial f in k[x1, x2, . . ,;] set v(f) m if f has terms of degree m
but no terms of degree less than m. It is immediately seen that v(fg)
v(f) + v(g) and that v(f+g) mm {v(f), v(g)}. Hence if we extend v
to the field k(x1, x2,. . . , ;) by setting v(f/g) = v(f) — v(g), we obtain a
valuation v, discrete, of rank 1, which is non-negative on x2,...,
and whose center in this polynomial ring is the prime ideal (x1, x2,... , xi).
In other words, we are dealing with a valuation whose center, in this
affine r-space, is the origin. On the other hand, it is easily seen that v
is a prime divisor. For, any non-zero polynomial in the ratios x2/x1,

x3/x1, . . , ;/x1, with coefficients in k, is of the form
f(x1, x2, ... ,

where f is a form of degree m. Hence =0, since v(f) = m and
v(x1) = 1, i.e., we have shown that the v-residues of the r — 1 elements
x2/x1,..., are algebraically independent over k. Note that v
is also non-negative on the ring k[x'1, x'2, .. . , where x'1= x1,

= i= 2, 3, . . . r, and that the center of v in that ring is the
principal ideal (x'1). The valuation v thus defined is, in some sense,
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the simplest prime divisor of k(x1, x2, ,;) whose center is the
maximal ideal m = (x1, x2,..• ,;) and is sometimes referred to as the
iit-adic prime divisor. Our construction of m-adic prime divisors of
the 2nd kind is merely a special case of a more general procedure
which was used in § 14 in the construction of prime divisors of the
second kind, having a preassigned center.

§ 16. An existence theorem for composite centered valuations.
In the preceding section we have dealt exclusively with valuations of
rank 1. By repeated applications of the procedures outlined in the
case of rank 1 valuations, one obtains corresponding examples of valua-
tions of higher rank. The arbitrary elements which one may wish to
be able to preassign are the following: (1) the value groups; (2) the
dimensions of the successive valuations with which the given valuation
is to be composite; (3) the centers of these valuations. We shall devote
this section to an existence theorem, for function fields, which bears on
items (2) and (3) and which is a refinement of the theorem of existence
of places with preassigned center (Theorem 5, § 4). Let V/k be an
irreducible variety, of dimension r, let K—k(V) be the function field
of V/k and let be a non-trivial place of K/k, of rank m, which has a
center on V (i.e., is a place which is finite on the coordinate ring k[V]
of V/k). We have then a specialization chain for ii??':

(1)

where is a place of K/k, of rank j. Necessarily each has a
center on V. Let Q be the center of Q3 the center of on V, j = 1,
2,. . . , m — 1. Then also the points Q3 form a specialization chain
over k:

k k k k
(2) Qrn-1 Qrn-2 -÷ Q.

If s = dim Si = dim p3/k, then

(3)

and

(4)
Si

� dim Q./k.

The existence theorem which we wish to prove in this section is the
following:

THEOREM 37. Let m be an integer Such that 1
m integers satisfying the inequalitieS (3). Let furthermore Q,

• •, be m points on V Such that (2) and (4) hold. Then there
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exists a specialization chain (1) of m places of K/k such
that the rank and the dimension of are respectively rn—f and Si, and
that the center of on V is the point Q1([Y'0 = = 5, Qo = Q).

PROOF. We first consider the case rn =1. Let h = dim Q/k, whence
r — 1 s h, and let a = S — h. We shall first achieve a reduction to the
case h =0, as follows:

Let x1, x2,. . , be the non-homogeneous coordinates of the
general point of V/k and let z1, z2, . . . , be the coordinates of Q.
We may assume that z1, z2, . , are algebraically independent over
k, so that . . , are algebraically dependent over k(z1,

Then also x1, x2, . . . , are algebraically independent
over k, since the point Q= (z1, . , zj is a specialization of the
point (x1, x2,'. . , xj over k. It is clear that in the proof of our
theorem it is permissible to replace Q by any k-isomorphic point.
Since the k-isomorphism of k(z1, . , onto k(x1, . , de-
fined by z, —i- x,, i= 1, 2,. . . , h, can be extended to an isomorphism of
k(z1, . . , zj into the universal domain, we may assume that x, =
1=1, 2, .. . , h. If we now extend our ground field k tc the field

= k(x1, . , our problem is to find a place of k'(x) over
of rank I and dimension a, such that xfl = z,, i= h +1, h , n.
This is the reduction to the case h =0, since the are algebraic over k'.

The case rn = I can now be divided into two sub-cases according as
a =0 or a >0, i.e., according as s = h or s > h. We consider first the case
a =0. In this case we may assume that we have originally s =h =0.
We can carry out a second reduction to the case in which the ground
field k is algebraically closed. This reduction is straightforward, for
if k is the algebraic closure of k in the universal domain, then it is
sufficient to construct a of k(x1, x2, , of rank 1 and
dimension zero, such that = z and to take for the restriction of

to k(x1, x2, . , xj. We may therefore assume that k is algebraically
closed. In that case, upon replacing each by x1— z (z1 e k), we
may also assume that Q is the origin and that consequently the ideal

in k[x1, x2,. . , x,j which is generated by x1, x2,.. , is not the
unit ideal. By the normalization theorem (Vol. I, Ch. V, § 4, Theorem
8), we may also assume that x1, x2,.. , are algebraically independent
over k and that the ring k[x1, x2, . . , x,j is integrally dependent on

, xv]. Now, in § 15, Example 2, we have given general
procedures for cQnstructing places of k(x1, x2,. .. , x,), of rank I and
dimension zero, which are finite on k[x1, x2,. . , and have in that
ring center q, where q is the ideal generated by x1, ,;. Now,
the ideal generated by x1, x2, . . . , in the ring k[x1, x2, . ,
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lies over ci. Hence by Theorem 13, § 7, any place such as above,
has at least one extension to k(x1, x2, , whose center in k[x1,
x2,• , is the prime ideal Since and have the same
dimension and the same rank, our theorem is proved in the special
case under consideration (case m — 1, s — h).

Let now m I and s > h. By the first reduction achieved above we
may assume that h —0, whence s >0. Let a be the prime ideal of Q
in the ring R=k[x1, x2,• • , =k[V]. Since Q is an algebraic point
over k, q is a maximal ideal in R. We pass to one of the rings R'1 intro-
duced in the course of the proof of Theorem 35 14, p. 95) (the ideal
q now plays the role of the prime ideal which in that proof was denoted
by Using the same notations, we may assume that R'1w1 q R q.
Let q'1 be an isolated prime ideal of R'1w1 such that q'1 n R= q. Since
s r — 1, the ring R'1 contains prime ideals of dimension s which contain
q'1. We fix such a prime ideal q' in R'1. By the preceding part of the
proof, there exists a place of k( V) of rank I and dimension s, such that

is finite on R'1 and has center Since q is maximal in R, it follows
from q'1 n R i and q' that q' fl R and hence q is the center of

in R. This completes the proof in the case m 1.

For m> 1, we shall use induction with respect to m. We therefore
assume that there exists a specialization chain

1 2

of m — I places of K/k such that is of dimension s1, of rank rn—f, and
has center Q1 on V(j= 1, 2, . . . , m — 1). Let be the residue field of

and let K1=k(Q1). We set

(5) d max {dim Q1/k+s—s1, dim Q/k}.

Then d is a non-negative integer, and we have

(6) d � dim Q1/k

since s < s1 and dim Q/k dim Q1/k, and

(7) d�s
since dim Q1/k � s1 and dim Q/k� s.

Now let V1/k be the irreducible variety having Q1 as general point.
Since Q is a specialization of over k, Q is a point of V1. From (5)
and (6) it follows that dim Q/k dim Q1/k. If d< dim Q1/k, then,
by the case rn = I of our theorem, there exists a place of k(Q1)/k, of
rank I and dimension d, such that the center of on V1 is the point Q.
If d=dim Q1/k, then it follows from (5) that necessarily d=dim Q/k,
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for dim Q1/k -'-- s — s1 < dim Q1/k. Hence in this case, Q and Q1 have
the same dimension over k and are therefore k-isomorphic points. We
then take for the k-isomorphism of the field k(Q1) which takes the
point Q1 into the point Q trivial place of k(Q1)/k, with center Q).
In this case, still has dimension d, but the rank is zero.

By (5) and (7), we have

(8) 0 s—d s1—dim Q1/k.

Since dim Q1/k is precisely the transcendence degree
it follows by Theorem 11, § 6 that there exists an extension of in

which has relative dimension s — d. Note that in the case d= dim Q1/k,
(in which case is a trivial place of k(Q1)/k), we have s — d< s1 —

dim Q1/k, and hence is not a trivial place of We set
Then is a place of K/k, composite with and it is clear that Q is the
center of on V. We have dim = s, since the residue field of

has transcendence degree s — d over the residue field of while the
residue field of has transcendence degree d over k. Now, if the ex-
tension of the place has exactly rank 1, then the rank of is
one greater than the rank of i.e., the rank of is m, and everything
is proved. The rank of is certainly equal to 1 in the following case:

= dim Q1/k. For, in that case we have dim Q/k s< = dim Q1/k,
whence is definitely a non-trivial place and hence has rank 1; and on
the other hand, is now an algebraic extension of k(Q1), and therefore
rank rank The proof of the theorem is now therefore com-
plete in the case dim Q1/k. It follows that in order to complete the
proof it will be sufficient to show the following: there exists a subring
R' of k(x1, x2,. . , x,,) containing the ring R = k[x1, x2, . , x,,] and
having the following properties: (1) is finite on R', and the center of

in R' is a prime ideal q'1 which has dimension (in other words: gi'1
is of the first kind with respect to R'); (2) R' contains a prime ideal tl',
of dimension s, such that q' fl R = q = prime ideal of Q in R. For, if
such a ring R' exists, then by the preceding proof there will exist a
place of K/k, composite with and having rank m, such that has
center q' in R' and has dimension s over k. Then the center of in
R will be necessarily q.

To show the existence of a ring R' with the above properties, we fix
a place = of K/k which is composite with has dimension s
over k, and has center q in R (the existence of such a place has just been
shown above, independently of the condition = dim Q1/k). If h
dim Q1/k, we fix h elements • , Wh in the residue field of
which are algebraically independent over k(Q1). We can also assume
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that these elements v231 belong to the valuation ring of We then
fix elements w1, w2,• in k(x1, x2,.. , such that =
and we set R' = R1w1, w2, • , w,j. It is immediately seen that this
ring R' satisfies our requirement (as prime ideal we take the center of

in R').

§ 17. The abstract Riemann surface of a field. Let K be a field
and k a subring of K (not necessarily a subfield). We denote by S the
set of all non-trivial valuations v of K which are non-negative on k, i.e.,
such that the valuation ring contains k. There is only one case in
which S is empty; it is the case in which k is a field and K is an algebraic
extension of k (Theorem 4, Corollary 1 and Theorem 5, Corollary 1,
§ 4). We shall exclude this case.

EXAMPLES: (1) k is a field. In this case S is the set of all non-trivial
valuations of K which are trivial on k. This is the case which occurs
most frequently in algebraic geometry.

(2) k is a Dedekind domain. In this case S consists of valuations of
two types: (a) valuations of K which are trivial on the quotient field of
k and (b) valuations of K which are extensions of the (discrete, rank 1)

valuations of the quotient field of k, where is any proper prime
ideal of k. The valuations of type (a) are missing if and only if K is an
algebraic extension of the quotient field of k; when they are present
they have a residue field of the same characteristic as that of K. The
characteristic of the residue field of a valuation of type (b) may be dif-
ferent from the characteristic of K: this case of unequal characteristics
arises if and only if K is of characteristic zero while the intersection of
the prime ideal with the ring of (natural) integers is a prime ideal (p)
different from zero.

We shall' now introduce a topology in the set S.
If o is a subring of K, containing k, we denote by E(o) the set of all v

in S such that v is non-negative on o. We now let o range over the
family of all subrings of K which contain k and are finitely generated over
k, and we take the family E of corresponding sets E(o) as a basis of the
open sets in S. We note that E([o, o'l) = E(o) fl E(o'), where [o, o']
denotes the ring generated by two given subrings o, o' of K, and that
E(k) S. Therefore any finite intersection of basic open sets is itself
a basic open set, and hence our choice of the basis E defines indeed a
topology in S. Note also that o o' implies E(o) E(o').

The topological space S is called the Riemann surface of the field K
relative to k, or the Riemann surface of K/k.

We note that if k' is the integral closure of k in K then the Riemann
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surface of K/k' coincides with the Riemann surface S of K/k both as set
and as topological space. The proof is straightforward.

We begin a study of the separation properties of S.
THEOREM 38. The closure of an element v of S (i.e., the closure of the

set {v} conthting of the single element v) is the set of all valuations v' E S
which are composite with v.

PROOF. Suppose that v' is composite with v, so that we have for the
corresponding valuation rings the inclusion If E(o) is any
basic open set such that v belongs to the basic closed set 5— E(o), then

1 o, whence a fortiori 1 o, and thus v' E 5— E(o). Thus every
basic closed set which contains v necessarily contains v', showing that
v' belongs to the closure of the set {v}. On the other hand, assume that
v' is not composite with v. We can then find an element x of K such
that v'(x) is non-negative while v(x) <0. Then if we set o = k[x] we
will have v E S — E(o), v' 5— E(o), and consequently v' is not in the
closure of the set {v}. This completes the proof.

We recall from topology that a topological space is said to be a T1-
space if every point of the space is a closed set. The following theorem
will show that the Riemann surfaces which are T1-spaces are, from an
algebraic point of view, of a very special type.

THEOREM 39. Let k be an integrally closed subring of a field K. The
Riemann surface S of K/k is a T1-space if and only if one of the following
two conditions is satisfied:

(1) k is a field and K/k has transcendence degree 1; or
(2) k is a proper ring, K is an algebraic extension of the quotient field

of k, and for every proper prime ideal of k it is true that the quotient ring
is the valuation ring of a valuation of rank 1.
PROOF. If condition (1) is satisfied then any valuation v E S has

rank I (Corollary 1 of Definition 1, § 3). Hence, in this case S is a
T1-space, by the preceding theorem.

Assume that condition (2) is satisfied, and let v be any element of S.
Since v is non-trivial on K and since K is an algebraic extension of the
quotient field of k, the center of v in k is not the zero ideal, hence is
a proper prime ideal. If v' is the restriction of v to the quotient field
of k then hence = since is a maximal subring of the
quotient field of k (p. 10). Thus v', and hence also v, is of rank 1,
whence again S is a T1-space.

Assume now-that S is a T1-space. By the preceding theorem, every
element v of S must be a valuation of rank 1. If k is a field then the
transcendence degree of K/k cannot be greater than 1, for in the con-
trary case we can construct a valuation v0 of K/k whose residue field has
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positive transcendence degree over k, and compounding v0 with a non-
trivial valuation of the residue field of v0 we would find a valuation of
K/k which has rank greater than 1. Suppose now that k is a proper
ring. Let be any proper prime ideal of k. If the quotient ring
is not a valuation ring then there exists a valuation v' of the quotient
field of k which has center in k and which is of the second kind with
respect to k (Theorem 10, § 5). The residue field of v' is then of
positive transcendence degree over the quotient field k* of k/p. Com-
pounding v' with a non-trivial valuation of LJ/k* and extending the
resulting composite valuation to a valuation of K we find a valuation v
in S which has rank > 1, in contradiction with the preceding theorem.
Hence is a valuation ring, and the corresponding valuation of the
quotient field of k must be of rank 1. Finally, K must be an algebraic
extension of the quotient field of k, for in the contrary case S would con-
tain valuations of rank > 1, extensions of non-trivial valuations of the
quotient field of k. This completes the proof.

Even in the special case in which S is a T1-space it need not be a Haus-
dorff space. Without attempting to give a complete classification of
Hausdorif Riemann surfaces we shall make here only the following
three observations:

(A) In the case (1) of Theorem 39 the Riemann surface S is never a
Hausdorff space. For, let o—k[x1, x2,.• , and o' ,

be two finitely generated subrings of K and let x'] [o, o'],
whence E(o*) is the intersection of E(o) and E(o'). If 0* is a proper ring
then E(o*) is non-empty. Assume that 0* is a field. From a result
closely related to the Hubert Nullstellensatz and proved in the next
chapter it will follow that the generators x'1 of 0* over k are then
necessarily algebraic over k (see VII, § 3, Lemma, p. 165). Hence K
has positive transcendence degree over and again E(o*) is non-empty.
We have thus shown that the intersection of any two non-empty basic
open sets in S is never empty. Hence S is not a Hausdorif space.

Taking into account Theorem 39, it follows that if k is a field then S
is never a Hausdorff space.

(B) Consider now the case (2) of Theorem 39. We may assume that
k is integrally closed in K (by a remark made earlier in this section).
Then K is the quotient field of k. If S is a Hausdorif space then there
must at least exist a pair of non-empty open sets in 5, whence also a
pair of non-empty basic open sets, having an empty intersection. In
view of the relation E(o) fl E(o') = E([o, o']), it follows that a necessary
condition that S be a Hausdorff space is that the field K be a finitely
generated ring extension of k. It is obvious that in that case we have
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K= k[1/x], where x is a suitable element of k, characterized by the
property that it belongs to all the prime ideals of k, different from the
zero ideal. However, the above condition may not be sufficient.

(C) If k is a proper ring of the type described in case (2) of Theorem 39
and if K is any (finite or infinite) algebraic extension of the quotient field
L of k, then a sufficient condition for the Riemann surface of K/k to be a
Hausdorff space is that k have only a finite number of prime ideals. The
statement is obvious if K is a finite extension of L, for in that case the
T1-space S has only a finite number of elements. In the infinite case,
given two distinct elements v'1 and v'2 of S, there exists a field F between
L and K, finite over L, such that the restrictions v1 and v2 of v'1 and v'2
to F are distinct elements of the Riemann surface S* of F/k. By the
finite case, the elements v1 and v2 can be separated in S* by two dis-.
joint basic open sets. Taking the inverse images of these two open
sets, under the restriction map v'—*v restriction of v' in F(v' ES, vES*),
we find in S two basic open sets which are disjoint and separate v'1
and V'2.

Our next object is to prove the following theorem:
THEOREM 40. The Riemann surface S of K/k is quasi-compact (i.e.,

every open covering of S contains a finite subcovering).
PROOF. Any valuation v of K is completely determined if one knows,

for any element x in K, whether V(x) is positive, zero or negative. In
other words, the elements V in S can be identified with certain mappings
of K into the set Z consisting of the elements —, 0, +. Using the cus-
tomary notation for the set of all mappings of a set K into a set Z,
we can therefore regard S as a subset of

Z Z Z
the the corresponding usual topology in
the product space From the definition of the product topology it
follows that in the induced topology on S the basic open subsets are
sets E defined as follows: if {x1, x2, . . , is any finite set of elements
of K then the set of all V in S such that V(x1)E{0, + } is a set E. This
agrees with our preceding definition of the topology of the Riemann
surface 5, and thus the latter is indeed a subspace of To complete
the proof we shall make temporarily two modifications in our definition
of the space 5:

(1) We shall include in S also the trivial Valuation of K. If we denote
by 5* this enlarged set and define the topology of 5* in the same way
as the topology of S was defined, i.e., by means of subrings of K which
are finitely generated over k, we see at once that every basic open set in

contains the trivial valuation. Since S is a subspace of 5*, it
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follows at once that S is quasi compact if and only if S* is quasi com-
pact. We shall therefore prove the quasi compactness of S*. In the
rest of the proof we shall drop the asterisk, so that temporarily (until the end
of the proof of the theorem) it should be understood that S contains the
trivial valuation of K.

(2) We shall also introduce in Z a stronger topology which will be Haus-
dorif, and we shall show that in the corresponding stronger topology of

the subset S becomes a closed set. It will then follow, by
Tychonoff's theorem, that in the induced stronger topology S is com-
pact (i.e., quasi compact and Hausdorif), whence a fortiori the Riemann
surface S is quasi compact (in its original weaker topology).

The stronger topology which we introduce in Z shall be the discrete
topology (every subset of Z is open). For any f in the relation
"f E 5" holds if and only if the following conditions are satisfied.

(a) The set of all x in K such thatf(x) E {O, + } is closed under addi-
tion and multiplication.

(b) The above set contains k.
(c) If f(x) {O, ± } (whence x 0, by (b)) then f(1 /x) E { ± }.
These conditions can be re-formulated as follows:
(a') For any elements x, y in K we have either f(x) — or f(y) —

or both f(x+y) andf(xy) are in {O, ±}.
(b') If x E k then f(x) E {O, + }.
(c') For any x in K eitherf(x) E{O, or andf(1/x)=
For any x in K denote by the mapping of into Z.

This is a continuous mapping. For any x and y in K denote by
the intersection of the following two subsets of ZK.

— } U — } U ± },

u u +}.

The six sets which occur in the definition of are closed sets (since
we have assigned to Z the discrete topology). Hence is a closed
set. Condition (a') can now be written as follows:

(a") f belongs to the intersection of the sets (x and y arbitrary
elements of K).

SimilaHy, conditions (b') and (c') be written as follows:
(b") f belongs to the intersection of the sets ± }, x E k.
(c") f belongs to the intersection of the sets

+} U 0 xEK.
Thus S is an intersection of closed sets and is therefore a closed set.
This completes the proof of the theorem.
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We shall now undertake a study of the Riemann surface S from a
different point of view. The objective of this study will be to show
that S can be regarded as the projective limit of an inverse system of
certain topological spaces associated with finite subsets of K. The man-
ner in which these spaces will be defined will be quite similar to that in
which projective varieties are defined in algebraic geometry.

We mean by a quasi-local ring a commutative ring (noetherian or non-
noetherian) with identity, in which the non-units form an ideal. Thus,
every valuation ring is a quasi-local ring, and a quasi-local ring is a local
ring (Vol. I, p. 228) if and only if it is noetherian. We consider the set
L of all quasi-local rings (noetherian or non-noetherian) between k and
K. For P in L, we denote by m(P) the (unique) maximal ideal of P.
For P, P' E L, we say that P dominates P' if P' P and m(P') P' n m(P).
A subset M of L is said to be irredundant (resp., complete) if, for any
valuation v of K/k (trivial or non-trivial), the valuation ring dominates
at most one (resp., at least one) element of M. We say that a subset M'
of L dominates a subset M of L and we write M M' if every element of
M' dominates at least one element of M. This relation M � M' is
obviously transitive. If we, furthermore, suppose that M is irredun-
dant, then, by the extension theorem (Theorem 5, § 4), the element P
of M which is dominated by a given element P' of M' is unique; thus
the transformation P' —÷ P is a mapping, called the domination mapping
and denoted by 4' In the set of irredundant subsets of L, the rela-
tion M' defines a partial ordering; furthermore if M, M', M" are
irredundant subsets of L such that M' M", then dMM =

Notice, finally, that, if M' dominates M and if M' is
complete, then M'dM'M is complete.

We introduce in L the following topology, which generalizes the
topology we have defined on the Riemann-surface S of K/k. If o is
any ring between k and K, we denote by L(o) the subset of L composed
of all quasi-local rings P containing o. We let o range over the family
of all subrings of K which are finitely generated over k, and we take the
family of corresponding sets L(o) as a basis for open sets in L. Since
any finite intersection of sets L(o) (o finitely generated) is a set of the
same type, these sets constitute indeed a basis for open sets for a
topology on L. When, in the sequel, a subset M of L is considered as
a topological space, it is tacitly understood that its topology is induced by
the topology of L.

The Riemann surface S may be identified with a subset of L, and the
topology on S defined at the beginning of this section is obviously
induced by the topology of L. Theorem 38 generalizes in the following
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way: the closure of an element P of L is the set of all quasi-local rings P'
between k and P; the proof is similar to that of theorem 38.

For any ring o between k and K, we denote by P(o) the set of all
prime ideals of o which are 0, and we assign to P(o) the following topo-
logy: a closed set is the set of all ideals E P(o) which contain a given
ideal a; it is indeed clear that any intersection and any finite union of
sets of this type is a set of the same type. We denote by V(o) the subset
of L composed of all quotient rings E P(o)).

LEMMA 1. The mapping f of L(o) into P(o) defined by f(P) = nt(P) n o

is continuous. The restriction off to V(o) is a topological homeomorphism
of V(o) onto P(o).

PROOF. Any closed set in P(o) is an intersection of closed sets
E o, x 0) of the following type: is the set of all prime ideals

containing x. In order to prove that f is continuous, it is sufficient to
prove that is closed in L(o), i.e., that f—'(P(o) — is open.
Now, for P E L(o), the relations "P Ef—1(P(O) —Fr)", "x m(P)" and

1/x E P" are equivalent, since x E o P; we thus have f 1(P(o) — =
L(o) n L(k[1/x]), which proves that the set is open.

Similarly, any basic open set in V(o) is a finite intersection of sets
of the following type: x is an element 0 of the quotient field of o, and
U, is the set of all P E V(o) containing x. Sincef is a (1, 1) continuous
mapping of V(o) onto P(o), to prove that f is a homeomorphism it is
therefore sufficient to prove thatf( V(o) — is closed. Now this follows
from the fact that the relations Ef( V(o) — "x and con-
tains the ideal of all elements d E o such that dx E 0" are equivalent.
Q.E.D.

For any ring o between k and K, the subset V(o) of L is obviously
irredundant. When o is finitely generated over k, we say that V(o) is an
affine model over k; the ring o, which is uniquely determined by V(o)
since it is the intersection of all P E V(o), is called the defining ring of
the affine model V(o). A model M over k shall be by definition, any

irredundant subset of L which is a finite union M— V(o1) of affine

models over

LEMMA 2. For any model V(o1) we have M n L(o1) V(o1),

whence V(o1) is open in M. For a subset H of M to be open (resp. closed)
in M, it is necessary and sufficient that H fl V(o1) be open (resp. closed) in
V(o1) for every i.

t It may be easily proved that all the rings have then the same quotient
field.
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PROOF. The inclusion V(o1)c: M n L(o1) is obvious. Conversely, if
P E M fl L(o,), P contains o, and hence dominates the element P' =
of V(o1), where tn(P) fl o,. Since M is irredundant, this implies
P= P', and proves the first assertion. The second assertion is now pure
topology. The necessity of the condition is obvious. In the proof of
the sufficiency it is enough to consider the case of open sets (replace H
by M— H). In this case, since V(o1) is open in M and since H p
is open in V(o1), H fl V(o,) is open in M, whence also H is open in M,
for H is the union of the sets H n V(o1). Q.E.D.

LEMMA 3. Let M be a model and M' a subset of L which dominates M.
Then the domination mapping f — dM'M is continuous.

PROOF. Let M— Li V(o1), where the V(o,)'s are affine models, and

let U be an open set in M. We show that f1(U) is open. Since U is
the union of the open sets U fl V(o1) (Lemma 2), we may assume that U
is contained in some V(o1), say V(o1). Now, by Lemma 1, the mapping
g of L(o1) onto V(o1) defined by g(P) = 01(mP) n is continuous. Since
we obviously have fl M', and since L(o1) is open in L,
f'(U) is open in M'. Q.E.D.

LEMMA 4. Let M be a complete model and let f= dsM be the domina-
tion mapping of the Riemann surface S into M. Then f is continuous and
closed.

PROOF. The fact thatf is continuous is a particular case of Lemma 3.
We thus have to prove that, for any closed set F of 5, f(F) is closed in
M. For any finite subset 1= . . , x,,} of K, we denote by F(I) the
set of all valuations v in S such that does not contain k[I]; the sets
F(I) are the basic closed sets of 5, whence F is an intersection of such
sets, say F = fl F(Ia).

aeA
We first prove that, for any finite intersection F' of basic closed sets

of 5, f(F') is closed in M. We write F' = F(I1), where

= . . . , xffl(J)}. Setting F(xfk) = F({xJ,k}), we have =
U . .. U F(xJ,fl(J)), whence

F' U U .•.

Using the distributivity of union with respect to intersection, we see
that F' is the union of the closed sets = fl fl . . .

where s ranges over the set R of all integral valued mappings
of {1, 2,. . ., q} such that 1 � s(j) � n(j) forj= 1,.. . , q. Sincef(F') =
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f( U = U and since R is a finite set, it is sufficient to prove
seR seR

that each f(G5) is closed in M. To simplify notations we prove that,
if G = F(x1) F(x2) fl fl F(Xq)(Xj E K, 0), then f(G) is closed.
Notice that G is the set of all valuations v such that v(x5) <0 for everyj,
i.e., such that the valuation ideal contains all the elements y3 = 1/x3.

For proving that f(G) is closed in M, we use Lemma 2 and write
M= U V(o1) where the are affine models; it is sufficient to prove

that f(G) fl is closed in V(o1) for any i. Let o be any one of the

rings o n . • , Ye]) of o.

P Ef(G) n V(o), the prime ideal = o n m(P) is the center in o of a
valuation v (EG) such that contains Yi' then contains
the ideal a, whence contains a. Conversely, if is a prime ideal in o
which contains a, it is easily seen that the ideal b' of o' =
generated by , contracts to in o. Thus the ideal b' .
is not the unit ideal of the quotient ring O'(o_p) and is therefore contained
in some maximal ideal of O'(o_p) (Vol. I, Ch. III, p. 151, Note I). By
the extension theorem, is the center in of some valuation v.
'The valuation ideal contains whence v E G; on the
other hand is the center of v in o. Therefore the quasi local ring
belongs to f(G) fl V(o). By Lemma 1, this proves that f(G) V(o) s
closed in V(o), as asserted.

To complete the proof, we have to pass to the case of an infinite inter-
section F of basic closed sets, say F— fl F(Ia) (where each 'a is a

aeA
finite subset of K). For every finite subset B of the indexing set A, we
denote by F'B the intersection of the sets F(Ib), where b ranges over B.
We have F= fl F'B. The first part of the proof shows that f(F'B) is

B

closed for every finite subset B of A. It is therefore sufficient to prove
thatf(F) = fl It is clear that the left-hand side of this relation

B

is contained in the right-hand side. Conversely, let P be an element of
M which belongs to f(F'B) for every B; this means that the subset
f-l(P) n of S is non-empty for every B. Since any finite intersec-
tion of sets F'B is itself a set of the same type, it follows that the family
of sets f-1(P) n F'B has the finite intersection property. Were the point
P of M a closed set (equivalently: were P a ring of quotients relative to a
maximal ideal of one of the rings o by which M is defined) then all the
sets of the above family would be closed in (since f is continuous),
and from the quasi-compactness of S it would then follow that the sets
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of the collection have a non-empty intersection, i.e., f—'(P) F is non-
empty. Thus P would belong to f(F), and the proof would be com-
plete. Bearing in mind this observation, we shall use the following
device:

Let us denote by k* the quasi-local ring P and let S* be the Riemann
surface of K/k*. Then S (since k). If o = ktz]
is any finitely generated subring of K and if we set 0* = k*[z], then
E*(o*) = E(o) n S*, where E*(o*) denotes the basic open set on
which is defined by It follows that the topology of S* is at least as
strong as the topology induced on S* by that of S.

We now set 0* = M*
=

(J V*(o1*), where the symbol V* has

the same meaning relative to the ring k* as V had relative to K. It is
clear that M is irredundant, also M* is
irredundant. Since each is finitely generated over k*, each V*(o1*)
is an affine model over k*. Therefore M* is a model over k*. If o is one
of the rings o such that then = P= k*, the ideal m(P) is a maxi-
mal ideal of o* and therefore the point P is a closed subset of M*. Now,
it is obvious that if f* is the domination mapping of onto M*, then
f*_l(p) =f—'(P). It follows that f—'(P) is a closed subset of S* and
consequently also the sets f'(P) fl are closed subset of S*. Since
f—'(P) fl =f—'(P) fl the sets f—'(P) n coincide with the sets
f—'(B) n F'B, and since the collection of the former h.as the finite inter-
section property, it follows, by the quasi-compactness of M*, that
f—'(P) n F is non-empty. This completes the proof.

LEMMA 5. If M and M' are two complete models such that M'
dominates M, then the domination mapping dM'M is both continuous and
closed.

PROOF. In fact, the continuity of dM'M follows from Lemma 3. On
the other hand, if F' is a closed subset of M', we have dM'M (F')=
ds,M(dsM''(F')), whence dM' is closed since ds,M' is continuous
(Lemma 3) and since ds,M is closed (Lemma 4).

Among the complete models of K, we are going to single out a parti-
cularly interesting class of models, the projective models. Given a non-
empty finite set {x0, x1, . . , composed of non-zero elements of K,

we set k[x0/x1, . . . , xjx1] (1=0, 1, .. . , n) and M= V(o1).

We prove that M is a complete model.
(a) M is irredundant. If fact, if P and P' are two elements of M

which are dominated by the same valuation ring P and P' cannot
belong to the same affine model V(o1); so we have, for example, P E V(o0)
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and P' E V(o1). We set o = k[o0, or]. The local rings P and P' are
dominated by the quotient ring Op of o, where t, = o n Since o con-
tains x1/x0 and x0/x1, these elements are units in o, hence also in
Since P contains x1/x0 and is dominated by 0p, it follows that x1/x0 is a
unit in P; therefore, since x1/x0 E P, we have x1/x1 = (x1/x0)/(x1/x0) E P
for everyj, whence P contains and consequently o. From the inclu-
sions o P 0p and from the fact that o, dominates P we conclude that
xn(P) n o = whence the elements of o — are units in P. Therefore P
contains whence P= In a similar way, we see that P' =
Consequently P= P' and M is irredundant.

(b) M is complete. In fact, given any valuation v of K/k, we choose
an indexj for which v(x5) takes its least value. We then have � 0
for every i, whence c Therefore the element P= of M
is dominated by and M is complete.

From (a) and (b) it follows that M is a complete model; we say that M
is the projective model over k determined by {x0, . . . ,

We denote by C (resp. C') the set of all complete (resp. projective)
models over k; it is clear that C' is a subset of C. Both are ordered sets
for the order relation M� M'.

LEMMA 6. Let M= (J and M'
=

(J be two models over k.

We set = Then M" = is a model which dominates

M and M' and is such that every subset N of L which dominates both M
and M' dominates M". If M and M' are affine (resp. complete, projec-
tive), so is M".

PROOF. We first show that M" dominates both M and M'. Given
P" E M", P" belongs to some whence contains some then P"
dominates the element 01) of M; similarly for M'.

Now let N be a subset of L which dominates both M and M'. Given
Q in N, Q dominates some P E M and some P' E M'; let i and j be
indices such that P E and P' E V(o'3). Then Q contains both
and o'3, whence also Consequently Q dominates the element
(0ij)(nt(Q) of 1W".

In order to show that M" is a model we have to show that it is irredun-
dant. Let P1" and P2" be two elements of M" which are dominated by
the same valuation ring and let, for s = 1, 2, dominate E M
and E M'. Since P1 and P2 are dominated by and since M is
a model, we have P1 = P2; similarly P'1 = P2'. If i andj are indices such
that P"1 belongs to V(o13), then we have seen that P1 is a quotient ring
of and P'1 a quotient ring of o'j. From the inclusion k[P1, P'1J
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P"1, and the fact that P"1 is a quotient ring of we deduce that P"1
a quotient ring of k[P1, P'1], necessarily with respect to a prime ideal

we obviously have = P's] fl m(P"1), whence =
k[P1, P'1] n Similarly P"2 is also a quotient ring k[P1,
and we also have ci2 k[P1, P'1] fl Consequently = q2, whence
P"1 = P"2. This proves that M" is irredundant.

We have thus proved that M" is the least upper bound of M and M'
in the ordered set of all models. This proves the uniqueness of M"; in
particular M" is independent of the representations of M and M' as
finite unions of affine models.

Now, if M and M' are affine models, say M= V(o) and M' =
we have M" = V(k[o, o']), whence M" is an affine model.

Let us now suppose that M and M' are projective models, respectively
determined by {x0, . . . , and {x'0, . . , X'q}. Setting =

... , xjxj and = k[x'0/x'1, . . , the ring =
is obviously equal to k[x0x'0/x1x'1, . . . , . . ,

Therefore M" is the projective model determined by the set consisting
of the (n ± 1)(q ± 1) elements

Suppose finally that M and M' are complete. This means that the
Riemann surface S dominates both M and M'. From what has been
seen above, it follows that S dominates M", whence that M" is complete.
Q.E.D.

The model M" defined in Lemma 6 is called the join of M and M'
and is denoted by J(M, M'). The join of a finite number of models is
defined inductively and enjoys the same properties as the join of two
models. It is immediate that if M' dominates M then J(M, M') = M'.
In particular, J(M, M) = M.

LEMMA 7 ("Chow's lemma"). For any complete model M there exists
a projective model M' which dominates M.

q

PROOF. In fact, let us write M= U V(oj, where = k[x11, . .

We may assume that the elements are 0. Let M1 be
the projective model determined by {1, x11, • . , Then V(o1)
is a subset of M1. We take for M' the join of all the projective models
M1 (whence M' is a projective model, by Lemma 6). If P' is any
element of M', then by Lemma 6, P' dominates an element P. of M, for
every 1. Now let be a valuation ring which dominates P'. Since
M is complete, dominates some element P of M; let i be an index
such that P E V(o1). Since P and P1 are two elements of a model M1
which are dominated by the same valuation ring they are equal.
Therefore P' dominates the element P of M. Q.E.D.
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It may be shown by examples that there exist complete models which
are not projective (see M. Nagata, "Existence theorems for non-projec-
tive complete algebraic varieties," Illinois J. of Mathematics, Dec. 1958).

Lemma 6 shows that the ordered sets C and C' of all complete models
and of all projective models respectively, are directed sets. Lemma 7
shows that C' is a cofinal subset of C.

In view of these properties, the partially ordered set C and the con-
tinuous mappings dM'M (M, M' E C, M') give rise to an inverse
system of topological spaces. The limit space of this inverse system, or
the projective limit of the spaces M E C with respect to the mappings
dM',M is then defined as the set S(C) of all those points P° = {PM; PME M}
of the product fJ M which satisfy the relations =

MeC
whenever M� M'; the topology in S(C) is defined as the one induced
in S(C) by the usual product topology in the product space. We shall
denote by fM the projection P of S(C) into M. By definition of
S(C) we havefM=fM'dM'M whenever M�M'.

We define in an entirely similar way the projective limit S(C') of the
projective models M E C', and denote by f'M the natural mapping of
S(C') into M. Since C' is a cofinal subset of C, the elementary theory
of projective limits shows the existence of a natural homeomorphism
of S(C) onto S(C'). But we shall not need this elementary fact, as we
are going to prove that both S(C) and S(C') are naturally homeomorphic
to the Riemann surface S of K.

In fact, given any element v of S, the system of quasi-local rings
(M E C) is a point of S(C) since we have ds,M =

whenever M� M'. We have thus a mapping g of S into S(C), defined
by g(v) = {dsM(RV)}. Similarly, we obtain a mappingg' of S into S(C').

THEOREM 41. The mappings g and g' are topological homeomorphisms
of S onto S(C) and S(C') respectively.

PROOF. We give the proof for S(C'), the proof for S(C) being en-
tirely analogous. Let P° = {PM}(M E C') be a point of S(C'). Using
the fact that C' is a directed set we find that the union of the quasi local
rings is a ring o, and that the union m of their maximal ideals
is the ideal of non-units of o. Hence, there exists a valuation v of K
such that dominates o. Therefore dominates each other
words, we have g'(v) =P0. This shows that g' maps S onto S(C').

Let v and v' be two distinct elements of S. We have either
or thus there exists an element x of K which is contained in
one and only one of the rings and Then it is immediately seen
that v and v' dominate distinct elements of the projective model M
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determined by {1, x}. Consequently, g'(v) Hence g' is one-
to-one.

Since all the mappings dsM are continuous (Lemma 4), their "product
mapping" g' : v —* {ds,M(RV)} is a continuous mapping of S into fl M,

Me C'
whence also a continuous mapping of S onto the subspace S(C').

It remains to be proved that g' is closed. Let F be a closed subset of

S. We obviously have g'(F)= S(C') fl ( ff dsM(F)). By Lemma 4
Me C'

each set dsM(F) is closed, whence also the product of these sets is
closed. Therefore g'(F) is a closed subset of S(C'). Q.E.D.

NOTE: For further details concerning Riemann surfaces, and for applica-
tions of the compactness theorem 40 in Algebraic. geometry (specifically, in
the problem of local uniformization), see 0. Zariski, "The compactness of the
Riemann manifold of an abstract field of algebraic functions" (Bull. Amer.
Math. Soc., 1944) and "Local uniformization on algebraic varieties" (Annals
of Mathematics, 1940).

§ 18. Derived normal models. Let V/k be an affine variety (de-
fined over a ground field k) in the affine n-space (K—a universal
domain; see § 5bis). Let o = k[x1, x2, . . . be the coordinate ring
of V/k; here (x1, x2,. .. is a general point of V/k and the x7 may
be assumed to belong to K (since K is a universal domain). Using the
notations of § 5bis and of the preceding section, we have a natural
mapping of V onto the affine model V(o): to each point Q of V we let
correspond its local ring o(Q; V) on V/k. Two points of V are then
mapped into one and the same element of V(o) if and only if they are
k-isomorphic points 5bis). Thus, the affine model V(o) is obtained
from the afline variety V/k by identification of k-isomorphic points.

At the end of § 14 we have introduced implicitly (and we shall do
that in more detail in VII, 4 and 4bis) the notion of a projective
variety V*/k, in the projective n-space over K, as the union of
n + 1 affine varieties (1=0, 1,... , n) immersed in We start,
namely, from a set of n quantities x1, x2,. . . , in K and we define

as the set of all points (z0, z1, . . . , z_1, 1, . . . , in
(the coordinates being homogeneous) such that the n-tuple (z0,

• . , is a specialization, over k, of the n-tuple

fxo x1
. . ., —!,

\X1 X

where x0 = I (note for i =0 this means the n-tuple (x1, x2,. . . ,

Thus V. lies in the affine space — H., where H1 is the hyperplane
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V7 =0, and if we take as non-homogeneous coordinates in that afline
space the quotients .

then (x0/x1, • , • • , is a general point of
V1/k. It is then easily seen that there is a natural mapping of V* onto
the projective model M determined by the set x1, • , and that,
again, two points of are mapped into one and the same point of M
if and only if they are k-isomorphic.

By analogy with our definition of normal varieties, given in § 14, we
can define normality for the general models, over k, introduced in the
preceding section (k is now a ring, not necessarily a field). A model
M is normal if each element of M is an integrally closed quasi-local
domain. It is immediately seen that Theorem 34 of § 14 continues to
be valid for these, more general models; we have, namely, that an
affine model 17(o) is normal if and only if o is an integrally closed ring.

The concept of a derived normal model is of importance in algebraic
geometry. We shall introduce this concept here with reference to the
more general type of models considered in the preceding section. We
shall find it convenient to denote the "ground ring" not by k but by
some other letter, and denote by k the field of quotients of the ground
ring. This will facilitate references to some theorems proved in
volume I. We shall therefore denote the ground ring by R. Follow-
ing Nagata ("A general theory of Algebraic Geometry over Dedekind
domains," I, American Journal of Mathematics, vol. 58 (1956), p. 79
and p. 86), we will impose on R the following conditions: (1) R is
noetherian; (2) if F is any finite algebraic extension of the quotient field of
R then the integral closure of R in F is a finite R-module. We shall
refer to an integral domain R satisfying these two conditions as a
restricted domain.

We note first of all that the "normalization lemma" proved in Vol-
ume I (Ch. V, § 4, Theorem 8) continues to be valid if the infinite field k
of that lemma is replaced by an infinite ground ring R, and the proof
remains substantially the same. For the convenience of the reader we
shall now restate the "normalization lemma" in the more general form
in which it is now needed.

Let A = R[x1, . . ,x,j be an integral domain, finitely generated
over an infinite domain R, and let d be the transcendence degree of the field
of quotients of A over the field of quotients k of R. There exist d linear
combinations Yi' . 'Yd of the x2 with coefficients in R, such that A
is integral over R[y1, y2, . . . 'ye]. If the field k(x1, x2, . . . is
separably generated over k, the y5 may be chosen in such a way that
k(x1, x2,• • is a separable extension of k(y1, y2, . . .
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[Only the following modifications must be made in the proof of the
normalization theorem as given in volume I: (a) It is permissible to
assume that the polynomial P(U, X1, X2, • , has coefficients in
R. (b) The elements a1 (i , n) must now be suitably chosen
in R; this is possible, by Theorem 14 of Vol. 1, Ch. I, § 18, since R has
infinitely many elements.]

With the aid of this generalized normalization theorem we can now
also extend Theorem 9 of Vol. 1, Ch. V, § 4 in the following form:

Let R be a restricted domain, A = R[x1, x2, . . , an integral
domain which is finitely generated over R, and let F be a finite algebraic
extension of the quotient field k(x1, x2, . . , of A, where k is the
quotient field of R. Then the integral closure A' of A in F is a finite

(and is therefore finitely generated over R).
Again, the proof is substantially the same as that of the cited Theorem

9 of Vol. 1, Ch. V, § 4. We shall give here only those extra steps or
modifications in the proof that are needed for the complete proof of
the above generalized statement.

(a) In the reduction to the case which F is the quotient field of A
we must take a basis {yi' y2, . . . , yq} of F over k(x1, x2, . ,

posed of elements which are integral over A (and not merely over
k[x1, . , xv]). It obvious that such a basis can be obtained by
first finding a basis consisting of elements which are integral over
k[x1, x2,. , and by multiplying each element of that basis by a
suitable element of R.

(b) Assuming that we have already F= quotient field of A, we may
furthermore replace R by the integral closure R of R and A by R[x1,
x2,. , xv]. For, the algebraic closure, in F, of the quotient field k
of R, is a finite algebraic extension of k, and therefore is a finite
R-module (R being a restricted domain). It is clear that R is also a
restricted domain, and since the integral closure of A in F is the same
as the integral closure of x2, . , F, it is sufficient to prove
that the integral closure in question is a finite module over
x2, . . . xv]. We may therefore assume that R is an integrally closed
domain.

(c) In the next part of the proof the additional hypothesis is made to
the effect that R is an infinite domain and that F (= k(x1, x2,. . , xv))
is separably generated over k (= quotient field of R). Using the
generalized theorem, stated above, we find elements
Z1, z2, Zd in A such that A is integral over the ring B R1z1,

and such that {z1, z2, . . . , is a separating transcendence
basis of F/k(z1, z2, . ,
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Then Corollary 1 of Theorem 7 (Vol. I, Ch. V, § 4) is applicable
provided it is proved that B is an integrally closed domain. We ob-
serve that z1, z2,.. are algebraically independent over R and that R
is integrally closed. To prove that this implies that R[z1, z2, . . , is
also integrally closed it is sufficient to consider the case d = I. Let then
B = R[z], where z is a transcendental over R, and let be an element of
the integral closure of R[z] (in the quotient field of R[z]). Then
necessarily E k[z]. Let then —f(z) = + + ... + where
the a are in k. The ring is a finite B-module. Since B[ejc:k[z],
the finiteness of the B-module implies the existence of an element
d of R, 0, such that

B for 1= 1, 2,.... Since z is transcendental
over R it follows from this that da01 E R, for i= 1, 2, . . . . This implies
that a0 is integral over R, since R is noetherian. Therefore a0 E R,

+ -'- a similar fashion it follows
that a1, . , E R, which proves our assertion.f

Having settled these algebraic preliminaries, we now consider an
affine model V(v), where v is a ring between the ground ring R and K,
finitely generated over R. Let F be a subfield of K which is a finite
algebraic extension of the quotient field of v, and let be the integral
closure of v in F. Since we have just proved that is a finite v-module
(and hence is finitely generated over R), ö is the defining ring of an affine
model V(s). This affine model is, of course, normal and is called the
derived normal model of V(v) in F.

Let now M— V(v2) be an arbitrary model over R. It has been

pointed out in § 17 that the rings have necessarily the same quotient
field. This field will be denoted by R(M). Let F be a subfield of K
which is a finite algebraic extension of R(M), and let be the integral

closure of v• in F. We consider the finite union M' = JJ of

affine models It is clear that M' dominates M, for if P' is any
element of M' and if, say, P' = where is a prime ideal of then
P' dominates the element of M, where = n v.. We now show
that M' is an irredundant set, and is therefore a model over R. Let v
be any valuation of K/R such that the valuation ring dominates some
element P' of M'. Then dominates one and only one element P
of M (since M' M and since M is an irredundant subset of L). Let,

t We note that the assertion that R[z] is integrally closed has already been
proved earlier 13, Theorem 29, part (a)) by valuation-theoretic methods,
without the assumption that R is noetherian.
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say, P' E V(ö1). Then P' = where is a prime ideal in and
p= where = ii It is clear that P contains as subring the
integral closure P of P in F. Let = m(P') n P. The prime ideal

in P is the center of v in P and is thus uniquely determined by v.
It is a maximal ideal in P since n P= m(P). We have nt(P') n P=
whence P' dominates the local ring On the other hand, we have
that is a subring of P and that n = (since and are the
centers of v, in P and respectively). Therefore dominates P'.
It follows that P' = showing that P' is uniquely determined and
that M' is therefore an irredundant subset of L.

The given model M may possibly admit more than one representation
as a finite union of afline models. However, the model M' which we
have just constructed, starting from a given representation of M=

V(o1), depends only on M and the field F. For, the above proof of

the irredundant character of M' shows clearly that M' is the set of all
local rings where P ranges over the set of integral closures, in F,
of the elements P of M, and where, for a given P, ranges over the
set of all maximal ideals of P.

The model M', constructed above, is called the derived normal model
of M, in F, and will be denoted by N(M, F). We repeat that F must
be assumed to be a finite algebraic extension of R(M).

If M and M' are models over R and M' dominates M, we say that
M' is complete over M if every valuation ring (v—a valuation of K/R)
which dominates an element of M dominates also an element of M'.
It is clear that N(M, F) is complete over M. For, let v be any valuation
of K/R such that dominates an element P of M. Then v has a
center in the integral closure P of P in F (where is necessarily
a maximal ideal in P, since n P = rn(P)), and thus dominates the
element of N(M, F).

In particular, it follows that if M is a complete model then also
N(M, F) is a complete model.

THEoREM 41. Let M and M' be two models over R such that M' is
normal and such that the field R(M') is a finite algebraic extension F of
the field R(M). Then M' is the derived normal model N(M, F) of M in
F if and only if the following condition is satisfied: if a normal model M"
dominates M and is such that F, then M" also dominates M'.

PROOF. Let M' = N(M, F), let P" be any element of M" and let P
be the element of M which is dominated by P". Since and
P" is integrally closed in its quotient field R(M"), P" contains the integral
closure P of P in F. We have m(P") n P n P= in(P") n P= m(P),
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showing that m(P") n P is a maximal ideal of P. Hence P" dominates
the element of M', showing that M" dominates M'.

Conversely, assume that M' satisfies the stated condition and denote
by M* the derived normal model N(M, F). By our assumption, as
applied to M" = M*, we have that M* dominates M'. On the other
hand, since M' dominates M and R(M') = F, it follows, from what we
have just proved, that M' dominates M*. Using the fact that both M'
and M* are irredundant subsets of L we conclude that M' = M*.

THEOREM 42. If M is a projective model, also N(M, F) is a projective
model.

PROOF. Let M be a projective model, over R, determined by

{x0, x1, , so that M= tJ V(o1), where = x1/x1, .

xjx,]. Let be the integral closure of in F. Then N(M, F)

U V(ö1). Let . ,} be a finite module basis of ö, over o,.

If i and j are any two indices in the set (0, 1, . .. , n) and if w, is any
element of then upon writing the relation of integral dependence of

over we see at once that for all sufficiently high integers q the
elements belong to We can therefore choose a large
integer q such that E for i=0, 1, . . . , n and for all in
the set {w11, w12, . . .}. We denote by z0, z1, . . , the various
monomials X0aaX1ai. . . of degree q, where we assume that

i= 0, 1, ... , n. We denote by Zm+i, Zm+2, , ZN the various
products (i= 0, 1, . . . , n; — 1, 2,...) and we consider the
projective model M' determined by the set {Z0, Z1, . . . , Let

o = R .. . , i=0, 1, .. . , n. We have ;/Z. E o. for s =
Z, '

0, 1, 2, . . . , m (since Z1 for i =0, 1, . . , n, and is a monomial
in x0, x1, . •. , of degree q, for s =0, 1, 2, .. . , m). We also have

E for s > m, since is an element of the form for
some 0, 1, . . . , n. Furthermore, the set of elements 5 > 171,

includes the basis . . . , of ö, over o,. Hence = ö,. Thus
M' V(o',) V(ö1), i= 0, 1,. .. , n, and consequently M' N(M, F).
Since M' is irredundant and N(M, F) is complete, it follows that
M' = N(M, F). This completes the proof.

Another proof of Theorem 42 will be given at the end of VII,
§4b;s



VII. POLYNOMIAL AND POWER
SERIES RINGS

Among commutative rings, the polynomial rings in a finite number of
indeterminates enjoy important special properties and are frequently
used in applications. As they are also of paramount importance in
Algebraic Geometry, polynomial rings have been intensively studied.
On the other hand, rings of formal power series have been extensively
used in "algebroid geometry" and have many properties which are
parallel to those of polynomial rings. In the first section of this chapter
we shall define formal power series rings and we shall show that the
main properties of polynomial rings which have been derived in previous
chapters (see, in particular, Vol. I, Ch. 1, 16—18) hold also for formal
power series rings. In the later sections of this chapter we shall give
deeper properties of polynomial rings and, whenever possible, the
parallel properties of power series rings.

§ 1. Formal power series. Let A be a (commutative) ring with
element I and let R = A[X1, X2,.. . , X,,] be the polynomial ring in n
indeterminates over A. By a formal power series in n indeterminates
over A we mean an infinite sequence f _— (f0, , fe,. ..) of homo-
geneous polynomials fq in R, each polynomial fq being either 0 or of
degree q. We define addition and multiplication of two power series

,fq, andg=(g0,g1, 'ge, .) as follows:

(1) f+g = (f0+g0,f1+g1,. . . ,fq+gq, . .

(2) fg = (h0, h1, . . , hq, .), where hq

It is easily seen that with these definitions of addition and multiplication
the set S of all formal power series in n indeterminates over A becomes
a commutative ring. This ring 5, called the ring of formal power series

in n indeterminates over A, shall be denoted by X2,. . . ,

The zero of S is the sequence (0, 0, .
.

.), and (1, 0, 0, . . .,) is the
multiplicative identity of S.

129
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Polynomials in X1, X2,. • , with coefficients in A, can be
identified with formal power series, as follows: iffE A[X1, X2, • •,
and f=f0 ± • where each f7 is a form which is either zero
or of degree i, then we identify f with the power series (fe, fi, 'fm,
0, 0, .. ). By this identification the polynomial ring R = A[X1,
X2, • , becomes a subring of the power series ring S=
X2, • • ,

REMARK. If the ring A is the field of real or complex numbers, then
the power series f which are convergent in a suitable neighborhood of
the origin X1 X2 = ... = =0 become an object of study. It can
be shown that the convergent power series form a subring S' of S (this
subring obviously contains all the polynomials). Most of the results
proved in this section (in particular, the Wéierstrass preparation
theorem and its consequences) hold also for 5'.

Let f= (fe, fi' • , •) be a non-zero power series. The smallest
index q for which fq is different from zero will be called the order off
and will be denoted by o(f). if 1= o(f), then the form is called the
initial form of f. We agree to attach the order + oo to the element
0 of S.

THEOREM 1. If f and g are power series in X2,.. . ,

then

(3) o(f+g) min{o(f), o(g)),

(4) o(fg) o(f) ± o(g).

Furthermore, z7 A is an integral domain then also S is an integral domain
and we have

(4') o(fg) = o(f) +

PROOF. The proofs of (3) and (4) are straightforward and are similar
to the proofs given for polynomial rings in Vol. I, Ch. I (see, for
instance, I, § 18, proof of Theorem 11; the only difference in the proof
is that now we have to use the initial forms rather than the homo-
geneous components of highest degree). As to (4'), we observe that if

and g 0 then the product f and g is
different from zero (since the polynomial ring A[X1, X2,. . . , is an
integral domain if A is an integral domain) and is the initial form of fg.

The power series of positive order form an ideal in S. This ideal is
generated by X1, X2,.. . , and shall be denoted by For any
integer q 1, the ideal consists of those power series which have

order q. It follows that 111 = (0).
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THEOREM 2. 111= f1, , • .) is a power series, then f is a
unit in S if and only if the element f0 of A is a unit in A.

PROOF. If fg_—1, with .), then f0g0=1, and
hence f0 is a unit in A. Conversely, if f0 is a unit in A, then we can
find successively forms g0, g1, . .. , ., where gq is either zero or a
form of degree q, such that g0f0 1, g1f0 ±g0f1 =0, . Ii

±gofq = 0,.... In fact, we have g0=f0-1. Assuming that
g0, , have already been determined and that each g1 is
either zero or a form of degree i (0 q — 1), we setgq = +

and it is clear that gq is then either zero or a form of degree q.
If we now set g= (g0, . , .. .) then we find, by (2), that fg= 1.

This completes the proof.
COROLLARY 1. If k is a field, then the units of the power series ring

X2,'. . , Xv]] are the power series of order 0. The ring k[1X1,
X2, .. . , Xv]] is a local ring, and the ideal generated by X1, X2,...

is its maximal ideal.
Everything follows directly from Theorem 2 except the assertion

(implicit in the statement that X2, . . . , Xv]] is a local ring)
that X2, . . . , Xv]] is noetherian. This will be proved later on
in this section (see Theorem 4).

COROLLARY 2. If k is a field and S= is the power series ring in
one indeterminate, then is the principal ideal SX, and every ideal in S
is a power of In other words, S is a discrete valuation ring, of rank 1,
and its non-trivial ideals are the ideals

Everything follows directly from Theorem 2 and from properties of
p-adic valuations in unique factorization domains (p—an irreducible
element; see VI, § 9, Examples of valuations, 2), by observing that if
f is a non-zero element of k{rX]], of order q, then f= where g is
a unit.

The valuation of which is the valuation ring is the one in
which the value of any non-zero element f of is the order o(f)
of f. Now, Theorem 1 shows that, more generally, if A is an integral
domain and S= X2, . . . , X,3] is the power series ring in any
number of indeterminates over A, then the mapping f—p- o(f) can be
extended uniquely to a valuation of the quotient field of S (in general,
however, S will not be the valuation ring of that valuation). If we
denote by o that valuation, then it is clear that the center of o in S
(see Ch. VI, § 5) is the maximal ideal of S. We shall refer to this
valuation o as the ?L-adic valuation of S (or of the quotient field of 5).
It is clear that the valuation o is trivial on A, and hence we may assume
that the residue field of o contains the quotient field of A.
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THEOREM 3. The quotients 1= 1, 2, . • , n — 1, belong to the
valuation ring of the valuation o. If t. denotes the residue of

in the valuation o, then t1, t2,. . . , are algebraically indepen-
dent over A, and the residue field of o is k(t1, t2, . . . , where k is
the quotient field of A (A, an integral domain).

PROOF. Since o(X1) = 1, i= 1, 2, . . , n, o(Xj/Xn) =0, and the first
assertion is proved. Let now F(X1, X2, . . . , be any non-zero
polynomial in n — I indeterminates, with coefficients in A, and let m be
the degree of F. We set g X2,. . , = XnmF(Xi/Xn,

, Then g is a form of degree m in X1, X2, ...,
with coefficients in A. We have o(g) = m = O(Xnhhl), hence the

o-residue of the quotient is different from zero. Since =

F(Xi/Xn, . . . , and since o is trivial on A, it follows
that F(t1, t2, . , tn_i) 0, showing that t1, t2, . • . , are algebrai-
cally independent over A.

The field k(t1, t2, . , tn_i) is contained in the residue field of o,
and it remains to show that these two fields coincide. Let be any
element of the residue field of o, 0, and let f and g be elements of

X2, . . , Xn]] such that is the o-residue of fig. Since 0,
we must have o(f) =o(g). Let o(f) = q. Then both and
have non-zero o-residues, and the quotient of these two residues is
It is therefore sufficient to show that the residues of and
both belong to k(t1, t2,. , tn_i). Consider, for instance, Let
fq be the initial form of f. Then o(f_fq) > q. whence the o-residue
of coincides with the o-residue of Since fq(X1, X2, ...,

fq(Xi/Xn, X2IXn, . . . , 1), the o-residue of is
fq(ti, t2, , tn_I, I) and belongs therefore to A(t1, t2, . • , tn_i).
This completes the proof.

We note that the restriction of o to the polynomial ring R A[X1,
X2, . , is a prime divisor of the field k(X1, X2,... , with
the same residue field as o, and that if n> 1 then this prime divisor is of
the second kind with respect to the ring R, its center in R being the
point X1—X2—-= (see Ch. VI, § 14).

We now go back to the general case, in which A is an arbitrary ring.
If we take the set of ideals q =0, 1, 2, . . , as a fundamental system
of neighborhoods of the element 0 of 5, then, by Theorem 1, S becomes
a topological ring (S. L. Pontrjagin, Topological groups, p. 172). [Ele-
ments "near" a given element f0 of S are those elements f for which
f—f0 has high order. Since we have o((f±g) — (f0 +g0))
{o(f—f0), o(g —g0)}, o(fg —f0g0) =o(f(g —g0) +g0(f—f0)) min{o(f) ±
o(g —g0), o(g0) ± and both o(f) and o(g0) are non-negative
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integers, it follows that f±g and fg are near
f and and g0; in other words, the ring

operations in S are indeed continuous.] Note that in view of the

relation = (0), S is a Hausdorif space. As a matter of fact, the

topology of S can be induced by a suitable metric in S; namely, fix a
real number r> 1 and define the distance d(f, g) between any two
elementsf, g of S by the formula d(f, g) where q = o(f—g).

The space S is complete, i.e., every Cauchy sequence {f1} of elements

f1 of S converges in S. For let fi = (f0i, f1i,
. . , . . .). Since we

are dealing with a Cauchy sequence, we must have fq1 =fqJ for all
i, j n(q), where n(q) is an integer depending on q. We set fq =fq1
for i = n(q) and f— (f0, , fe,.. .). Then o(f_fi) > q if i max
{n(O), n(1), . . . , n(q)}, showing that the sequence {fi} converges to f.

It follows in the usual way that if {f1} and {g1} are two Cauchy
sequences, then

(5) Lim (f1 = Limf1 + Lim g1,

(5') Lim g1.

Let now {h1} be an infinite sequence of power series satisfying the
sole condition that o(h1) tends to oo with i; in other words, {h1} is a
Cauchy sequence whose limit is the element 0 of S. Then the partial
sums fi = h° -'- h' + ... clearly form a Cauchy sequence. We
express this by saying that the infinite series h° h1 . . . + h1 + . . . is
convergent and we define the infinite sum to be the limit f of the

sequence {f1}:

h1 Lim (h°+h1+ ... +h1), if o(h1) —- + 00.
i=O

It follows easily from the definition of h1 that this infinite sum is

independent of the order in which the elements of the sequence {h1}
are written. We have the usual rules of addition and multiplication of
infinite series:

(6) =

(6') _ +g1h°).

Relation (6) follows directly from (5). As to (6'), the left-hand side is,

by (5'), the limit of the Cauchy sequence {pq}, where pq
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= g1hi, while the right-hand side is the limit of the sequence
i,j=o

where = g1hi. Hence pq — is a sum of terms g1hi in which

at least one of the integers i,j is q/2. Since o(gi) and o(h1) tend to
oo with i, it follows that the two sequences and have the

same 'imit, and this proves (6').
We note that (6') implies the distributive law

=

We also note that if we have h 0 for all sufficiently large values of i,
say for i> m, so that the sequence {h1} is essentially a finite sequence,
then the infinite sum coincides with the sum of the elements

h°, h1,. , in the ring S.
We note that the inequality (3) generalizes to infinite sums, i.e., we

have for any convergent series h1:

(7) h) �
The notion of infinite sums allows us to write every power series

1= (fo' Ii' where fq is a form of degree q (or is zero),
as an infinite sum; namely, we have

(8) f = f 10+11 + +

In this form, f appears as an actual power serks in X1, X2,. .. ,

The partial sums ft are now 10+11 + ... Each
monomial which occurs in any of the forms fq will be called a term
of the power series f.

In (8), every elementf of S is represented as a limit of polynomials.
Hence S is the closure of the polynomial ring R = A[X1, X2, . . . ,

or—equivalently—R is everywhere dense in S. The following character-
ization of subrings of S which are everywhere dense in S will be used
in the sequel:

LEMMA 1. A subring L of S is everywhere dense in S if and only if L
has the following property: if fq is any form in X1, X2,. . . , with
coefficients in A, then L contains at least one element whose initial form
isfq.

PROOF. Assume that L is everywhere dense in S and letfq be a form,
of degree q. If n an integer > q, L must contan an element f such
that n (since fq must be the limit of a sequence of elements
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of L). Since n > q, the inequality n implies that fq is the
initial form off. Note that in this part of the proof we have not used
the assumption that L is a subring of S.

Conversely, assume that L has the property stated in the lemma.
Let f be any element of S. We shall construct an infinite sequence

fi E L, such that o(f_fi) 1, whence f — Limf1. For 1=0 we
simply set f° =0. Let us assume that we have already defined the n
elements f°, f1, . . . ,f" in L and that we have then o(f_fi) i for
1=0, 1, . . . , n — I. If n we set =fn_l. If
n — 1, let be the initial form of and let be some element
of L whose initial form is If we set fn=fn_l + then fn E L,
since L is a subring of S, and we have o(f_f") = o(f_fn_l — n,
since both f_fn_l and are of order n — I and have the same initial
form This completes the proof of the lemma.

We have seen in Vol. I, Ch. I that in any polynomial in A[X1, X2,.
one can substitute for the indeterminates elements of any overring

of A (see Vol. I, Ch. I, § 16, end of section). This operation of sub-
stitution cannot be performed for power series without further ado
since infinite sums of power series have a meaning only if their partial
sums form a Cauchy sequence (hence converge, in the formal sense
explained above). Consider the power series ring Y1, Y2,..
Yrn]] in m indeterminates and m power series f1(X1, X2,.. . , Xv),

f X2, , Xv), , fm(X1, X2, . . . , in n indeterminates,
over A. We assume that each of the m power series fi is of order 1.

Under this assumption we proceed to define g(f1, f2, . . .
, fm), g( Y1,

Y2,. . being any power series in ArrY1, Let
g —g0 +g1 + + , being either zero or a form of degree q
in Y1, Y2, . . with coefficients in A. Then gq(f', f2, . . . , ftm)
defined as an element of X2,. . . , X,,]]. Furthermore, by
Theorem 1, is a power series of order q, since gq is a form of degree
q and since o(fi) � 1, 1 � i � m. Hence the series is defined as an

element of A[rX1, X2, . . . , Xv]]. This power series in Af[X1,

X2,. . , Xv]] we call the result of substitution of fl, f2, . .
. fm into

g( Y1, Y2,..., gm)' or the transform of g(Y1, Y2,..., by the
substitution In symbols:

(9) g(f', f2, . .. , frn) =

For fixed f', f2, . . . , frn, (9) defines a mapping
(10) ,fm), y2,...,
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of A[1 Y1, Y2, • • , into AEEXI, X2, • , Xv]]. We shall refer
to (10) as the substitution mapping (relative to the substitution
It follows easily from the rules (6) and (6') of addition and multiplica-
tion of infinite sums, that the substitution mapping (10) is a honwmor-
phism. Furthermore, the mapping (10) is continuous (with respect to
the topology introduced earlier in power series rings). To see this it
is sufficient to show that if denotes the ideal generated in A[1Y1,

by then the transform of by (10)
is contained in where p(i) tends to oo with i. This, however, is
obvious, since from the definition of the substitution mapping it follows
that if g E then g(f1, f2,. . .

, ftm) belongs to
The image of the ring i'm]] under the substitution

mapping (10) is a subring of A{[X1, X2, .. . , Xv]]. We shall denote
this subring by ,fm]].

It is not difficult to see that any continuous homomorphism T of
into X2, . . . , is a substitution mapping. For

let T( =fi. The continuity of T requires that high powers of fi
belong to high powers of the ideal Hence fi E i= 1, 2,. • ,m.
Now, let g=g0+g1+ ... ... be any power series in Y1, Y2,

Since T is a homomorphism we have T(gq) =gq(f1,

ftm) and = 1, f2,.
. . , ftm). Since g = and

since T is continuous, we must have

T(g) = Lim T( ± gq) = Lim gq(f1, , fm),
q=O q=O

i.e., r(g)=g(f1,f2,. in view of (9). This shows that T is the
substitution mapping relative to the substitution

In the special case m=n, the two rings Y2,. .. , Y,,,]] and
X2,. . . , Xv]] coincide and we have = X1. In this case, our

substitution mapping defines a continuous homomorphism of the power
series ring X2, . . . , into itself. We now describe a case
in which this homomorphism is an automorphism.

LEMMA 2. Let f1, f2,. .
, be n power series in X2,. .

Xv]] such that the initialform of fi is (1 n). Then the substitution
mapping p: g(X1, X2,. . , g(f1, f2,. . . , f") is an automorphism
of the power series ring X2, . . . , Xv]].

PROOF. We first show that the kernel of p is zero. Let g be a
non-zero power series in X2,. . , Xv]] and let be its initial
form. From (9) we find at once that g(f', f2,..

. ,
fn) E
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Hence g(f', f2,.. .
, f's) 0, and thus g is not in the kernel of Ob-

serve that we have shown here the following: g and g(f', f2,.. . , fn)

have the same initial form.
We next show that (p maps A[rX1, X2, • , onto itself, i.e.,

that Arrf1, f2, . . .
, fn]] = A[rX1, x2, . . . , Xv]]. If X2, . . . ,

is any form, with coefficients in A, then we have just seen that
X2, . . . , is the initial form of the element f2, . . .

, fn) of the
ring A[rf', f2, . . .

, fe']]. It follows therefore from Lemma I that the
ring f2, . . .

, fn]] is everywhere dense in X2, . . . , Xv]],
and in order to prove the lemma we have only to show that

is a closed subset of Af[X1, X2, . . , Xv]]. Assume then
that we have an element h, such that h = Limg1(f', f2, . . .

, fn), where

g1(X1, X2, . . . , is in X2, . . . , The order of
f2, . . .

, fn) _gi(fl, f2, . . .
, fn) is the same as the order of g1(X1,

X2, , —g'(X1, X2, . . . , Xv). Hence {g1(X1, X2, . . . ,

must be a Cauchy sequence as well as {g1(f', f2, . . .
, fn)}.

Let g= Lim g1(X1, X2, . . . , Xv). Since (p is continuous, it
follows that h (p(g) =g(f', f2, . . .

, fn), whence h E f2, . . .
, fn]l.

Q.E.D.
COROLLARY 1. Let f1, f2,. . .

, fm be m power series in AtJX1,
X2,. . . , Xv]], m n, such that the initial form off1 is X.. Then the
substitution V1 defines an isomorphism (p: g g(f', f2,. . .

, fm) of
Y2, . . , 1"m]] into X2, . . . , Xv]].

For the first part of the proof of Lemma 2 is independent of the
assumption m = n.

COROLLARY 2. Let A be an integral domain and let f', f2, . .
, fm

be m power series in X2, . . , Xv]], m n, such that the initial
forms of the fi are linearly independent linear forms f11,f12, . .

. f1m.

Then the substitution mapping p: g( Y1, V2,.., 1',,,) g(f1, f2,. . .
, fm)

is an isomorphism of Y1, Y2, . . . , Y,,,]] into X2, . . . , Xv]].
If, furthermore, m = n, V7 = X,, i 1, 2,.. , n, and the determinant of
the coefficients of the linear forms . .

, ff' is a unit in A (in
particular, if A is a field and the above determinant is 0), then (p is an
automorphism of X2,.. . , Xv]].

If Y1, Y2, . ., Yr,,) is the initial form of a non-zero element
g( V1, V2,. . , of V1, . then we find, as in the
case of the lemma, that s is also the order of p(g), since p(g)

,f1m) E and since in the integral domain A the linear
independence of the linear formsf11, f12, . .

, and the non-vanishing
of the form gç imply that , f12, . . . , fr") is different from zero and
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has an initial form of degree s (to see this it is sufficient to pass to the
quotient field of A).

If m n and if the determinant of the coefficients of the linear forms
f11, f12, . . . , ff' is a unit in A, then, for each integer q, the linear
substitution maps onto itself the set of forms of degree q in
X1, X2,. .. , with coefficients in A. It follows that also in the
present case the ring A1[f1,f2, .. . ,fn]] has the property of containing
power series with arbitrarily preassigned initial forms, with coefficients
in A, and the rest of the proof of the lemma is now applicable without
any change.

THEOREM 4. If A is a noetherian ring, then the power series ring
is also noetherian.

PROOF. We give here a proof parallel to the second proof of Hilbert's
basis theorem, cf. Vol. I, Ch. IV, § 1, i.e., a proof using the finite basis
condition. Let be an ideal in A[IX]]. For any integer 0 denote
by L1 (st) the set of elements of A consisting of 0 and of the coefficients
of in all elements of which are of order i. Then is an ideal
in A, and the ideals constitute an ascending sequence. Their
union is the ideal in A consisting of 0 and of the coefficients of
the initial termsl of all non-zero elements of Since A is noetherian,

has a finite basis {a1,. • , a power series
whose initial term has a as coefficient. Denote by d the greatest
integer among the orders of the series F.(X).

Now, for every j < d, let {b31,. . . , be a finite basis of the ideal
and let GJk(X) be a power series in whose initial term is
� k3 � n(j)). We shall prove that the ideal is generated by

the series F.(X), G3k1(X) (1 � i � q; d; 1 � k3 � n(j)). We prove
this in two steps:

(a) Let be the ideal (G3k1(X)) generated by the elements
We have c Every element P(X) of which has the order j < d
is congruent mod to an element of which has order �j +1. In
fact, the coefficient c of the initial term cXi of P(X) may be written in

n(j) n(j)
the form C= CkbJk (ck, E A). Thus is of

order �j + 1. It follows by successive applications of this result that
every element of order j < d of is congruent mod to an element of

of order � d. It remains to prove that any element of order � d of

t Since we are dealing now with power series in one variable, an initial form,
of degree i, consists of just one term cXt, c e A.
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9Z is in the ideal G1k1(X)). We will even prove that such an
element is in the ideal (F1(X),. •

(b) Let P(X) be an element of of order s � d, and let be its

initial term. We may write c
=

E A). Thus P(X) —

is an element of order � s of By successive

applications of this result we get q sequences (i = 1, 2,. . . ,q;
n = s, s + 1, ; = of elements of A such that, for every n, the
power series

P(X) —
i=1 j=s

is of order > n. As the exponents j — o(F1) tend to infinity with j,

each of the infinite sums converges and represents an

element s.(X) of Since the order of the power series P(X) —

is greater than n for every n, this power series is 0, and

we have P(X) s1(X)F1(X). Q.E.D.

COROLLARY. The power series ring AEEXI, . . . XjJ in n indeter-
minates over a noetherian ring A (in particular, over a field, or over the
ring of integers) is noetherian.

This follows from Theorem 4 by induction on n, since A[1X1,...,
is isomorphic to

A simple direct proof of the fact that X,J] is
noetherian may be given if one uses the fact that the polynomial
ring A[X1,. . . , is noetherian. But, since this proof applies as
well to a more general situation, we postpone it until the chapter
on Local Algebra (see VIII, § 3, Example 1, p. 260). On the
other hand we shall give later on in this section a proof that

Xv]] is noetherian (k, a field) using the Weierstrass' prepara-
tion theorem.

THEOREM 5. (Weierstrass preparation theorem) Let k be a field and
let F(X1, . . . , be a non-invertible power series (i.e., a non-unit in

X2,.. . , Xv,]]) with coefficients in k. Suppose that F(X1,. . . , X,j
contains terms of the form with non-zero coefficient a, and denote by
s (� 1) the smallest of all the exponents h having this property. Then for
every power series G(X1,. .. , there exists a power series U(X1,.. .,
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and s power series R1(X1, • • • , in X1, • • • , (0 � i � s — 1)

such that

(11) G(X1, • • • , U(X1, • • • , • • ,

+ • ,

The power series (I and R. are uniquely determined by G and F.
PROOF. For every power series P(X1,. . . , denote by r(P) the

sum of all terms in P which do not have as a factor, and by h(P) the
factor of in P — r(P). In other words we have

(12) P = r(P) +

where r(P), h(P) E X2, . . . , Xv]] and where, furthermore, r(P)
is a polynomial in of degree s — 1, with coefficients in
X2, , Note that if the power series ring X2, .
Xv]] is thought of as a vector space over the field k, then both operations
r and h are linear transformations in that vector space. By the definition
of the integer s, h(F) is a unit in X2, . . . , Xv]] (see Theorem 2),
and r(F), regarded as a polynomial in has all its coefficients in the
maximal ideal of the ring X2, . . . , We shall denote
this maximal ideal by m.

The problem of finding power series U and R0, R1, . . , such
that (11) holds is equivalent to the problem of finding a power series
U such that the following relation holds:

(ha) h(G) h(UF).

For if (11) holds, then h(G— UF)=O, whence (ha) holds by linearity
of h. Conversely, assume that U is a power series satisfying (1 Ia).
Then h(G — UF)— 0, whence G— UF— r(G— UF) (by (12)), i.e.,
G — UF is a polynomial in of degree s—I, with coefficients in

X2, . . . , and so (Ii) holds.
We have UF= Ur(F) + Uh(F), and hence (1 Ia) can be re-written

as follows:

(I Ib) h(G) = h( Ur(F)) + Uh(F),

and our problem is equivalent to finding a power series U satisfying
(lIb). Since h(F) is a unit in X2, . . . , Xv]] we shall try to
construct the power series

(13) V = Uh(F).
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We set

(14) M —r(F')[h(F)]—'.

Then, by (13), Ur(F) = — MV, and (1 ib) is equivalent to

(lie) h(G) = — h(MV) + V.

For every power series P, denote by m(P) the power series h(MP).
Notice that m is again a linear operation on power series. Furthermore,
if P, considered as a power series in over has
all its coefficients in some power m1 of the maximal ideal m, then
m(P) has all its coefficients in For convenience we set H= h(G).
With these notations condition (lie) may be written as follows:

(lid) V=H+m(V).
Since m is linear, condition (lid) implies that V= H+ m(H+ m( V)) =
H+ m(H) + m2( V), and, by successive applications:

(lie) V = H + m(H) + m2(H) + ... + +
for any integer q 0.

The property of the operation m which we have just pointed out above
shows that mi(H) is at least of order j, and V) is at least of order
q +1. Thus the infinite sum H + m(H) ± m2(H) + ... + +
converges, and, if a power series V satisfying (lid) exists, it must
therefore be the series

(15) V = H+m(H)+m2(H)+ ...
and this proves the uniqueness of V, whence of U and of the R..

We now prove that the series V given by (15) satisfies condition
(lid). Let us write V= H+ m(H) + ... + + Wq. The co-
efficients of Wq (Wq being considered as a power series in are all
in Then, since m is linear,

V-H-m(V) = H+ ...
— m(H) — ... — — m(Wq) Wq — — m(Wq).

Thus all coefficients of V—H— m(V) are in As this is true for
every q, we have V—H— m(V)=z 0, and condition (lid) holds. This
proves the existence of V, whence also of U and of the R2.

REMARK. In the next chapter we shall give a somewhat shorter proof
of the Weierstrass preparation theorem, based upon the properties of
complete local rings. An advantage of the proof given here is that the
questions of existence and unicity are treated simultaneously. A more
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substantial advantage is that the method of majorants is easily applicable
to the resolving formula (lie), with the result that if F and G are con-
vergent power series over the field of real or complex numbers, then
the series V, U and the R. are also convergent. To show this we open
now a brief digression on the preparation theorem for convergent power
series.

In the case of convergent power series over the field k of real or
complex numbers, the proof of the Weierstrass preparation theorem
runs as follows. We recall+ that a power series

F(X ... X) = a x
q

is said to be convergent if there exists a neighborhood N of the origin
in such that the series . . . . is absolutely con-

vergent for every (z1, . . . , z1j E N. Then there exist positive real
numbers and p such that !aq1. Conversely,
the existence of two such real numbers implies that . .

converges in the neighborhood N of 0 defined by <p 1,

n). It is easily seen that the convergent power series in
Xe]] form a subring of . , XJJ1, and that a convergent

power series with a constant term 0 admits as inverse a convergent
power series. A series . . . with real positive

coefficients is said to be a majorant of . . . . if

bq1 . q, aq1 for all q1, . . , It is clear that, in order to
prove the convergence of a power series F, it is sufficient to prove that
a majorant of F converges. The inequality aq1.. �

1/ / X\.means that pj
—

...
—

is a majorant of aq1. . .

In order to extend the Weierstrass preparation theorem to convergent
power series, it is sufficient to prove that, if the series M and H are
convergent, then

V = H + m(H) + ... + +...
is convergent (same notations as in the proof of Theorem 5). We
notice that the coefficients of V are polynomials with positive integral
coefficients in the coefficients of M and H. Thus, if we replace M and

+ See Bochner-Martin, "Several complex variables," Princeton (1948),
Chap. II.
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H by majorants M' and H', and assuming that M' is of posfthre order,
then the power series

Ti' =

(where the operation m' is defined by m'(P) = h(M'P)) is a majorant of V.
We may take

Ii,

P1 P1

\ P1 \ P1

(For the second one we write M= N1X1 + + and we
major separately each one of the series Ni.) Instead of H'1, we take
as majorant of H the seHes

II = I V \ / V \ \Pi

where is a series in one vaHable, majoring and enjoying

properties whkh we are going to describe.
We notice that the operation m' is not only additive, but linear over

We thus have

m'(H')
= (i :: Xi) 2 (i -

We set X= The series V' =H' + m'(H') + ... + + . . . will

be very easy to compute if a scalar multiple of the series

By definition of the operation h, this is true if there exist a
polynomial of degree � s — I and a real number A such that

= +

Thus ço(X) must be a rational function:

-
— 1— +
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We take A = 2s+1, and notice that the denominator 1 — 2s+1Xs ±
2s+1XS+l factors into (1 — 2X)(1 + 2X+ 22X2 + ••• + 2s1Xs — 2sXs).

The second factor takes the value 1 for X =0 and — 1 for X = 1.

Therefore it admits a positive root 1/a (a> 1). Thus the denominator
1 — 2s+1XS + 2s+1XS+l may be written in the form (1 — 2X)(1 — aX)

where is a polynomial of degree s — 1. We choose
to be just this polynomial We then have

1-X 1

= 1—2X 1—aX'

and thus for this choice of we will have h(p(X)/(1 — X)) =
As it is a rational function, this power series is convergent. Since

1-X 1 1 1

1—2X = 2+212x

the power series expansion of is

Except for the constant term (which is equal to 1), the coefficient of
is + ± + . .. since it is obviously > 1, is a
majorant of 1/(1 —X)=1 ±X+ ...

This being so, if we set A = — ... (i — and B =

(i
— ..

. (1_ and if we notice that, for

every power series (where X= we have

= h(B =

we get m'(H') = m'(Ap(X)) = ABh(p(X)/(1 — X)) =2s+1ABp(X). Hence,
by repeated applications,

m'2(H') = m'(2s ABp(X)) =

and = for every q. Then the computation of
the infinite sum V' = H' m'(H') + ... + ± . . . , reduces to the
computation of the sum of a geometric series:

= Ap(X) + + ....
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Hence

=
1— 2s+IB

—

—
X1\

PR (1-X1/p)..
I

-
P/L\ P1 P

+ +

Since V' is a rational function, this is a convergent power series. This
proves the preparation theorem in the case of convergent power series.

A power series F(X1, X2, . . . , which contains a term
which is a power of with non-zero coefficient c, is said to be regular
in To say that F(X1, X2, . . , is regular in is equivalent
to saying that F(O, 0, . . . , 0, is different from zero.

COROLLARY 1. Let F(X1, X2,.. . , be a power series in S =
X2, . . . , which is regular in (k, a field) and let the order s

of the power series F(O, 0, . . . , 0, be 1 (in other words, it is assumed
that F is not a unit).-T- Then there exist power series E(X1, X2, . . . , X,3,
R.(X1, X2, . . . , (i= 0, 1, . . . , s — 1) such that

(16) F(X1, X2, . . . ,

= E(X1, X2, . . . , ± X2, . . . , +
+R0(X1, X2,.. . ,

The power series E, R. are unique[v determined by F; E is a unit, and
none of the R. is a unit.

For if we apply Theorem 5 to the power series G = — we find

+ RS_I(XI, X2, . . • , ± . . . ± x2, . . . ,

= — U(X1, X2,.. . , X2,... , X,j.
Setting X1 = X2 = ... = =0 in this identity we obtain on the
right-hand side a power series in which has order s. Hence
R.(0, 0, • . , O)=O, 1, and no R.(X1, X2,. . . , is a unit.
It follows at the same time that U(O, 0,. . . , 0, must be of order

t The corollary holds trivially also if F is a unit; in (16) we have then E=F,
while the expression in the square brackets is the element 1.
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zero, whence U(X1, X2, .. , is a unit. If we now set E= U1,
we have (16). The unicity of E and of the R1 also follows from
Theorem 5 in the special case G= —

The polynomial (in

(17) F* =
—i-- X2, . . . ,

+ X2, . . . ,

in (16) is called the distinguished pseudo-polynomial associated with F;
it is defined only if F is regular in and its degree s (in is equal to
the order of the power series F(O, 0, . . . , 0, Xv). The relation (16)
shows that F and F* are associates in S.+

Note that F* has the following two properties: (a) it is a monic
polynomial in (b) its coefficients, other than the leading coefficient,
are power series in X1, X2, . . . , which belong to the maximal
ideal of kftX1, X2, . . . , Before deriving other consequences
of Weierstrass' preparation theorem, we point out the following con-
sequence of (a) and (b): if denotes the ring

then

(18) SF*flS* = S*F*.

We have to show the following: if H* = hF*, with H* E and h E S,

then h E S*. Let h = X2,... , and let s + m be

the degree of H* in Expressing the fact that hF*, regarded as a
power series in is actually a polynomial of degree s + m, we find

(19) hq+hq+iRs_i+ = 0, q>m.

Since the R all belong to itt, it follows from (19) that hq E Ut if q> m.
But then again (19) shows that hq E in2 if q> m. By repeated applica-

tion of this argument we find that hq E fl in1, whence hq = 0 for all

q> m. Thus h is a polynomial in (of degree m), showing that
h E 5*•

Since F and F* are associates in S we have SF= SF*. Then (18)
shows that the residue class ring S/SF contains S*/S*F* as a subring.

COROLLARY 2. The rings S/SF and S*/S*F* coincide.
For if G is any element of S then Theorem 5 shows that G is con-

gruent mod F to an element of 5*•

t Note that the distinguished pseudo-polynomial of a unit F is the element 1.
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The following lemma shows that every non-zero power series in
X2,.. , XJj may be construed to be regular in More

precisely, we have
LEMMA 3. If F(X1, X2,. , X,,) is a non-zero power series in

X2,. . . , X,,]] (k, a field), then there exists an automorphism
of k[1X1, X2, . . . , such that p(F) is regular in

PROOF. We assume first that k is an infinite field. Let fq be the
initial form of F. Since k is infinite we can find elements a1,

in k such that fq(a1, , a,,_1, 1) 0. Then we may use the
linear substitution —÷ X1 + (i= 1, 2, . . , n — 1),

(compare with the normalization lemma of Vol. I, Ch. V, § 4,

Theorem 8). By Lemma 2, Corollary 2, the corresponding substitution
mapping 92 is an automorphism. Furthermore, the initial form of 92(F)
contains the term fq(a1, a2, , Hence 92(F) is regular
in

We now give a proof which is also valid for finite fields and which
will show the existence of exponents u3 (j . . , n — 1) such that the
automorphism defined by = 92(X5) = X1 + has the
required property, i.e., is such that . . . , 0. We
order lexicographically the monomials which appear in F with non-
zero coefficients. Let . . . be the smallest one. Then, if

is another monomial which actually appears in F, we
have, either b1 > a1, or = a1 and b2> or = . . , =

and The corresponding monomials in
have u1a1 + u2a2 + ... + + and u1b1 + u2b2 +

+ + as exponents. If we take > >
+ . , u1 > u2a2 + + u,,_1a,,_1 + then we get u1b1 + ... +

+ > u1a1 + ... + in fact, if the index i is
defined by the condition a1 =b1, . . . , a_1 = b1_1, a, < b1, then the
difference u1b1 + ... + — (u1a1 + ... + a,,) of the two above expo-
nents is u(b1 — a.) + — a1+1) + . . . +1,,,— a,,. The first term is
� u, whereas the remainder is � — (u1+1a1+1 ... + a,,), and thus the
difference of the two exponents is >0 since u > uj+laj+l + ... + a,,.
In other words, in F(X,,ui,. . . , X,,Un-i, X,,) the monomial with exponent
u1a1 + ... + u,, cannot be cancelled by any other, and hence F(X,,ui,

X,,) 0.
COROLLARY. Given any finite set of non-zero power series F1, F2,...,

Fh in kI[X1, X2, . . . , there exists an automorphism p of
X2,.. , such that each of the h power series 92(F1) is regular in X,,.

It is sufficient to apply the lemma to the product F1F2. . . Fh.
We give now a second proof of the fact that kI[X1, . . . , X,jJ is
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noetherian. This proof can be applied verbatim to rings of convergent
power series.

THEOREM 4'. If k is afield, the formal power series ring ki[X1,.. .

is noetherian.
We prove by induction on n that every ideal in .. ,

has a finite basis (the cases n 0 and n I being trivial). We may
suppose that (0). By replacing, if necessary, by an automorphic
image we may suppose that contains a power series F which is
regular in (Lemma 3). For every G in we may write then

G = UF+ (Theorem 5). In other words, if we denote by S'

the power series ring i]]' we have = (F) ± (S' -'-

S' is a noetherian ring, by hypothesis,
n (S' + + ... + is a finitely generated S'-module, since

it is a submodule of the finitely generated S'-module S' + ... +
A finite system of generators of fl (S' + ... +

will thus constitute, together with F, a finite basis of Q.E.D.
We end this section with another application of the Weierstrass

preparation theorem. The proof we will give can be applied almost
verbatim to rings of convergent power series.

THEOREM 6. If k is a field, the formal power series ring
is a unique factorization domain.

PROOF. We proceed by induction on n, the cases n =0 and n = 1 being
trivial. Since is noetherian, we have to prove that, if
F is an irreducible power series, then the principal ideal (F) is prime;
in other words, we have to prove that, if GH E (F), then either G or H
is a multiple of F. Let us write GH = DF. By replacing, if necessary,
the series F, G, H, D by automorphic images cr(F), cr(G), cr(H), cr(D),
we may suppose that F, G, H, D are regular in (corollary to Lemma
3). We denote by F', G', H', D' the distinguished pseudo-polynomials
associated with F, G, H, D (Corollary 1 to Theorem 5). Since the
power series G'H' differs from GH by a unit only, and since it is a
distinguished pseudo-polynomial of the right degree in it is the
distinguished pseudo-polynomial associated with GH. Similarly D'F'
is the distinguished pseudo-polynomial associated with DF. As
DF= GH, we have D'F' = G'H', since the distinguished pseudo-
polynomial associated with a given power series is unique.

Now, F' is an irreducible element of X2,... ,

In fact, assume that g(X1, X2,. . . , is a factor of F' in
X2,. . . , not a unit in this latter ring. The leading

coefficient of g is a unit in X2,. . . , since the leading
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coefficient of F' is I (both g and F' being regarded as polynomials in
Xv). Therefore g must be of positive degree in (for g is not a
unit in X2, , and also g(O, 0, , 0; must
be of positive degree in X,,. Consequently g(O, 0,. . . , 0; is of
the form c c 0, since F'(O, 0, , 0; is also of this
form. This shows that g(O, 0, , 0; 0) =0, i.e., that g(X1, X2, .

is a non-unit in X2, . . . , Xv]]. Since F is an
irreducible element of X2, . . . , Xv]], we have proved that
F' is also an irreducible element of X2,. . . , By
the induction hypothesis, kf[X1, X2, . . . , is a UFD, whence
also X2, . . . , is also a UFD. (Vol. I, Ch. I, § 18,
Theorem 13.) Thus, from D'F' = G'H' we deduce that either G' or
H' is a multiple of F' in k[1X1, X2, . . . , Hence, afortiori,
either G' or H' is a multiple of F' in X2, . . . , Xv]]. Since
F', G' and H' differ from F, G and H only by unit factors in kI[X1,
X2,. , Xv]], we conclude that either G or H is a multiple of F.
This completes the proof.

COROLLARY. If F(X1, X2,. . , X,,) is a power series which is regular
in and is an irreducible element of X2, . . . , Xv]], then the
quotient field of the residue class ring S/SF is a simple algebraic extension
of the quotient field of X2,.. . ,

This follows immediately from Corollary 2 of Theorem 5.

§ 2. Graded rings and homogeneous ideals. Let A be a ring
and let R =A[X1, X2,. . . , be the polynomial ring over A, in n
indeterminates. Every element F in R can be written in the form of a
finite sum F= F0 F1 . . . + F1 ± . . . where F1 is either zero or a
form of degree j. The form F1 is called the homogeneous component of
degree j of F. The product of two homogeneous polynomials f and g
is again homogeneous, and if fg 0 then b(fg) = b(f) + b(g) = degree).
The homogeneous polynomials of a given degree q form, together with
zero, an additive group and a finite A—module Rq. We have

(1)

R an infinite (weak) direct sum (see Vol. I, Ch. III, § of
the subgroups Rq

(2) R = the sum being direct,

where, in the present case of polynomial rings, we have Rq (0) if q <0.
An ideal 91 in R is said to be homogeneous if the relation F E implies

that all homogeneous components of F are in
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In this section we shall derive a number of properties of homogeneous
ideals. However, we shall not restrict ourselves to rings.
We shall study homogeneous ideals in rings which are more general
than polynomial rings, namely in graded rings.

DEFINITIoN. A ring R is called a graded ring if it is a (weak) direct
sum (in the sense of Vol. 1, Ch. III, § of additive subgroups Rq of R
satisfying relation (1); here q ranges over the set J of integers. An
element of R is said to be homogeneous if it belongs to an Rq, and is said to
be homogeneous of degree q if it belongs to Rq and is different from
zero.

In a graded ring R we have therefore the direct decomposition (2);
it signifies that every non-zero element F of R can be written, in a
unique way, as a finite sum of non-zero homogeneous elements of
distinct degrees. These elements will be called the homogeneous com-
ponents of F, and the homogeneous component of F of least degree will
be called the initial component of F.

If S is a subring of R we say that S is graded subring of R if S is the
(direct) sum of its subgroups 5q = Sfl Rq, i.e., if we have S = It
is clear that the sum is then necessarily direct and that S is a graded
ring.

We define homogeneous ideals in a graded ring in the same way as
we have defined it above for polynomial rings. This definition can
also be expressed by saying that an ideal in a graded ring R is homo-
geneous if is also a graded subring of R.

Let R and R' be two graded rings: R = Rq, R' = R'q. A homo-

morphism of R into R' is said to be homogeneous of degree s if
cp(Rq) R'q for all q.

LEMMA 1. (a) If q is a homogeneous homomorphism of a graded ring R
into a graded ring R', then the kernel of is a homogeneous ideal in R,
and the image of is a graded subring of R'. (b) If is a homogeneous
ideal in a graded ring R and is the canonical homomorphism of R onto
the ring R/91, then R/91 is a graded ring with respect to the decomposition

R onto R/91 maps in

(1, 1) fashion the set of homogeneous ideals of R containing onto the set
of all homogeneous ideals of R/91.

PROOF. Assume that is a homogeneous homomorphism of R into
R', of degree s. Let Fq(Fq E Rq) be an element of the kernel
of p. We have p(Fq) = 0, with p(Fq) E R'q±s, and therefore neces-
sarily p(Fq) = 0 for all q. This shows that all the homogeneous com-
ponents of F belong to whence is homogeneous.



§ 2 GRADED RINGS AND HOMOGENEOUS IDEALS 151

Since R = Rq we find that cp(R) = and since p(Rq) obviously
coincides with n R'q+s, it f&lows at once that the image 5' =
is a graded subring of R'.

Now, let be a homogeneous ideal in a graded ring R and let q be
the canonical homomorphism of R onto We set S = R/6X,

Sq cp(Rq). From R Rq follows S = and from
we deduce that 5q5q' It remains to prove that the sum
direct, or—equivalently—that if a finite sum P= + + • •, with
Pq E 5q' is zero, then each term Pq is zero.But this follows directly
from our assumption that the ideal is homogeneous. The last
statement of the lemma is obvious.

Of particular importance in this chapter will be those graded rings
which contain a ring A and are homomorphic images of polynomial
rings A[X1, X2, . . . , with a homogeneous ideal in A[X1, X2, .

as kernel. We call such rings finite homogeneous rings, over A.
More precisely: a ring containing a ring A and finitely generated
over A, is homogeneous if there exists a homomorphism çz of a poly-
nomial ring R A[X1, X2,. . . , X,j onto 1? such that çz is the identity
on A and such that the kernel of çz is a homogeneous ideal in R. If we
set = then !? = Arx1, x2, . . . , and the homogeneity of the
ring .1? signifies that every algebraic relation F(x1, x2, . . , = 0
between the generators x2, with coefficients in A, is a consequence of
homogeneous relations. By the preceding lemma, a homogeneous ring
R A[x1, . , is a graded ring, the subgroup of homogeneous
elements of degree q being the set of elements of the form f(x1, x2,

wheref is a form of degree q, with coefficients in A. Note that a
homogeneous ring .1? admits a set of generators x2 which are homo-
geneous and of the same degree. It is not difficult to give examples of
finitely generated graded rings (over a given ring A) which are not
homogeneous. For instance, it can be shown (see end of this section)
that the integral ciosure of a finite homogeneous integral domain, over
a field k, is a finitely generated graded ring; however, this ring is not
necessarily a homogeneous ring.

THEOREM 7. In order that an ideal in a graded ring be homogeneous
it is necessary and sufficient that possess a basis (finite or infinite) con-
sisting of homogeneous elements.

PROOF. Suppose that 2t is homogeneous. If {F(a)} is any basis of
then all the homogeneous components Fq(C) of all the F(a) also belong

to and obviously form a basis of Suppose, conversely, that an
ideal possesses a basis {G(A)} consisting of homogeneous elements.
Let F be any element of and let {Fq} be the set of homogeneous
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components of F. We have then F= P(A)G(A), E R. If =

is the decomposition of P(A) into its homogeneous components,
then F = Pq(A)G(A), and in this sum the partial sum Pq(A)G(A),

A,q q+d(A)=m

where d(A) denotes the degree of G(A), is the homogeneous component
F711 of F, of degree m. Hence E and is homogeneous.

The class of homogeneous ideals in a graded ring R is closed under
the standard ideal-theoretic operations. More precisely:

THEOREM 8. Let and be ideals in a graded ring. (a) If and
are homogeneous, then + 93, fl are homogeneous.
(b) If is homogeneous, then its radical is homogeneous.

PROOF. The assertions relative to ± and are trivia1, by
Theorem 7. The assertion relative to n results trivially from the
definition. For take a basis {B(A)} of consisting of homogeneous
elements. If F E and if F= F3 is the decomposition of F into

its homogeneous components, then we have FB(A) = > F3B(A) E for

every A. Since, for fixed A, the products F,B(A) are homogeneous
elements of different degrees, and since is homogeneous, we deduce
that F3B(A) E for every] and every A. Therefore F3 E for every
j (since {B(A)} is a basis of and is homogeneous.

We now consider the radical of a homogeneous ideal Let F
be an element of and let F= + -'- . . . be the decomposition
of F into its homogeneous components, where then, is the initial
component of F. We have = + terms of degree > sp,

a suitable integer p. Since is homogeneous, it follows that
E E But then F—Fr E and therefore, by the same

argument, also the initial component of F—Fr belongs to In this
fashion we find that all the homogeneous components of F belong to

Q.E.D.
COROLLARY. If a primary ideal q in a graded ring R is homogeneous

then its associated prime ideal is also homogeneous.
Concerning prime homogeneous ideals the following useful remark

can be made: in order to prove that a given homogeneous ideal is prime
it is sufficient to verify that the property "fe p, g fg k," holds
for homogeneous elements f and g. fact, assume that this property
holds for homogeneous elementsf andg and let F and G be two arbitrary
elements of R such that F t,, G Let F= + + . ..,
G = + ... be the decompositions of F and G into homo-
geneous components. Let and be the first homogeneous
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component of F and G respectively which does not belong to
0, a 0). Then Fr+pGg+a and therefore

(since is homogeneous). Since •.• and
+ ± belong to p, it follows that FG

The above remark can be generalized to primary ideals:
LEMMA 2. If a homogeneous ideal q in a graded ring R has the property

that whenever a product fg of two homogeneous elements belongs to q and
one factor, say f, does not belong to q, some power of the second factor g
belongs to q, then q is a primary ideal.

PROOF. The proof will be similar to the one given above for prime
ideals, and we shall use the same notations. Assume that F q and
that FG E q. We have to show that G E 'Vq. In the proof we may
assume that F by + + . . . without
affecting the conditions F q and FG E q. The product is either
zero or is the initial component of FG, and hence E q since q is
homogeneous. Since q it follows that E Assume that it
has already been proved that . . belong to '\/q and
let be an integer such that + -i-- . . + E q. Then
F(G . — E q, and therefore, using again the fact that

q, we find that E Hence E 'Vq. Q.E.D.
We shall use Lemma 2 and the next lemma for the study of primary

decompositions of homogeneous ideals.
LEMMA 3. Let be an ideal in a graded ring R and let denote the

ideal generated by the homogeneous elements belonging to Then if
is prime or primary, also is prime or primary.

PROOF. Let F and G be homogeneous elements such that F
and FG E Then F If is prime then G E if is primary
then G is homogeneous, it follows, by the
definition of that G (or belongs to Hence, by Lemma 2,
the proof is complete.

We note that is the greatest homogeneous ideal contained in
THEOREM 9. Let be a homogeneous ideal in a graded ring R. If

admits a primary representation = n then it also admits a primary
representation = n in which the q*3 are primary homogeneous ideals.

PROOF. We take for q*7 the greatest homogeneous ideal contained in
q3. By Lemma 3, each q*3 is a primary ideal, and we have fl
On the other hand, since is homogeneous and it follows that

q*3, whence ok.. Thus, fl q*3, and the theorem is
proved.
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COROLLARY. Let be a homogeneous ideal in a graded ring R and
assume that admits a primary representation. Then the isolated com-
ponents of are homogeneous, and so are the associated prime ideals of

This follows from Theorem 9 and from the uniqueness of the
isolated primary components and of all the associated prime ideals of

Some of the direct components Rq of a graded ring R may be zero.
An important case is the one in which Rq =0 for all negative integers q;
that is so, for instance, if R a polynomial ring AIX1, X2,. . . ,

over a ring A. If Rq =0 for all negative q then the ideal generated
by the homogeneous elements of positive degree is given by Rq and

q>O

is not the unit ideal unless R0= 0. This ideal shall be denoted by
It is clear that if R0 has no proper zero divsor, then is a prime
ideal. A homogeneous ideal 2t in R shall be called irrelevant if

The consideration of the ideal is particularly useful if R0
is a field or if R is a polynomial ring X2, . , over a ring A.
In the first case, is a maximal ideal in R, it contains every proper
homogeneous ideal, and every irrelevant ideal is either the unit ideal or
is a primary ideal with X as associated prime ideal (Vol. I, Ch. III, § 9,

Theorem 13, Corollary 2). In the second case, is generated by
x1, x2, . . . , x71.

The next two lemmas refer to finitely generated graded rings, i.e.,
to graded rings of the form R Arx1, x2,. . . , where A is a noetherian
ring, R0 A and each x2 is homogeneous of positive degree. These
lemmas are useful in some applications. If is a homogeneous ideal
in R and B n is a primary irredundant representation of the
being homogeneous ideals, we denote by the intersection of those
primary components of which are non-irrelevant. Ckarly is
uniquely determined by for the prime ideals form an isolated
system of prime ideals of (see Vol. 1, Ch. IV, § 5, p. 212). For any
ideal in R we denote by 91q the set cit fl Rq.

LEMMA 4. If is a homogeneows ideal, then there exists an integer s0
such that = for s � so (in other words, and coincide in the
homogeneous elements of sufficiently high degree). Furthermore, is
the largest homogeneous ideal enjoying this property; in other words, if a
homogeneous ideal is such that there exists an integer m such that

then and
k

PROOF. Let — fl where is non-irrelevant for i 1, .. . , h,
i= 1

k

and is ¶rrelevant for i = h 1, . . . , k. We have fl For
i=1
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i = h + 1,. • ,k, contains a power of whence, for large s, is
h

the entire group Thus, for s large, we have = fl =
i= I

and this proves our first assertion. Suppose now that is as indicated
above. For 1 i h, q1 is whence its radical does
not contain the ideal X. Therefore for any given 4 1 h, there
exists an index j depending on i such that x3 From this it follows
that if F E then F E q1, since x3mF E In other words, we
have Applying the same result to the ideal (which also
coincides with in the homogeneous elements of large degrees),
we get and, by exchanging and we have
Hence = and all our assertions are proved.

LEMMA 5. The ideal is equal to : for s large enough.
PROOF. The ideals : form an ascending sequence; since R is

noetherian, this sequence stops increasing for large s: Xs) = Xstl)
With the notations of Lemma 4, we have R for h +1

i k and s large enough, since q2 contains all high powers of For
1 h, there exists an index j(i) such that XJ(1) whence a

such as F E q1;
q1 i such that I � i� h. From this it
follows that, for s large, we have

k h h

= fl — fl = fl C! =
z=I i=1 i=l

Our next theorem refers to a finite homogeneous ring A[x1, x2, . . , x1j,
where A is now not necessarily noetherian.

THEOREM 10. Let be an ideal in a finite homogeneous ring AIx1,
x2,.. . , (all being homogeneous of the same degree). If c2t is
geneous then for every element F(x1, x2,. . . , xj in and for every t in A
we have F(tx1, . . , txj E The converse is true if A is an infinite
field.

PROOF. Let F(x1, x2,. . . , F3(x1, x2,. . . , xj be the
composition of an element F of into homogeneous components (F3
stands for a form of degree j, with coefficients in A). We have

F(tx1, tx2, . . . , tiF3(x1, x2, . . . ,

If is homogeneous then F3(x1, . . , E whence F(tx1,
tx2,. . . , E To prove the partial converse, we have only to

1' If h is an integer such that each x1 is homogeneous of degree h and if
qj then as soon as
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show that the (finite-dimensional) vector space V which is spanned
over A by the homogeneous components F1 of F is also spanned by
the family of elements F(tx1, tx2, • , t E A. (It is clear that

V.) For that it is sufficient to show that any linear function
f on V (with values in A) which is zero on V. Let

= c1. We have then f(F(tx1, tx2,..., = > c3ti = 0 for all t in
A. Since A is an infinite field, the vanishing of the polynomial > c1Xi
for all values of X in A implies that all the coefficients c1 of that poly-
nomial must be zero. Hence 1=0 on V, as asserted.

REMARK. If R = A[X1, X2, . . . , X,,] is a polynomial ring and if v
denotes the degree of F, then the polynomial >c3X3 is of degree v,
and the conclusion that F belongs to would still be true in the case
of a finite field A, provided A has at least v + 1 distinct elements
t1, t2, .. ., Another proof can be obtained by using the Vander-
monde determinant The following is an example in which the
second part of Theorem 10 fails to hold for a finite field A. Assume
that A is a field with two elements (0, 1). In this case, if F(X1, X2,

is any polynomial whose constant term is zero then F(tX1,
tX2, . ., t E A, is either F(X1, X2, . . . , or 0. Thus, every
ideal in A[X1, X2, . . . , which is contained in the maximal ideal
(X1, X2, . . . , satisfies the condition "F E F(tX1, tX2, .. .,

E

We shall conclude this section with the proof of a result which
concerns the integral closure of a graded domain and which, in the
special case of homogeneous finite integral domains, is of basic import-
ance in the theory of normal varieties in the projective space (see
§ 4bis)

Let R = > be a graded domain and let K be the quotient field
of R. It is easy to see that the element I of R is a homogeneous element of
degree zero. For if 1 = Wm + i+ + (wq E Rq, n m, Wm

0), then 1 = 2WmWm+ ... + = wi,, + ... Since
Wm2 0 and 0 it follows from the equality Wm2 + + =
Wm + ... that Wm2 = Wrn and = Since and are homo-
geneous, this implies that m = n =0.

The group R0 is obviously a ring, and is not the since
I E R0.

An element x of the quotient field K will be said to be homogeneous
if it is a quotient of homogeneous elements of R. If x is a homogeneous
element, and if, say, x = wth and E then it immedi-
ately seen that the integer q — r depends only on x. We say that x
is homogeneous of degree q — r. It is clear that the product and
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quotient of homogeneous elements are homogeneous and that the degree
of a product is the sum of the degrees of the factors. Furthermore,
the homogeneous elements of K, of a given degree, form, together with
0, a group. In particular, it follows that the homogeneous elements
of K which are of degree zero form a field. We shall denote this field
by K0.

More generally, we shall denote by Kq the set of elements of K which
are homogeneous of degree q. As was pointed out above, we have
KqKq' and hence the sum is a subring of K. Further-

qef
more, it is easily seen that the sum is direct. In fact, if we have
a relation of the form + + + n m), then
we express the as quotients of homogeneous elements of R, with
the same denominator say, = where w E R.. Then the
above relation yields the relation

W the are all zero. We have
shown therefore that the ring > is again a graded ring.

It is clear that the integers q such that Kq 0 form a subgroup J'
of the additive group J of integers. Hence J' = Jm, where m is some
positive integer (we exclude the trivial case R = R0). We may there-
fore assume that J' = J, for in the contrary case we may simply re-
define the degree of the homogeneous elements of R by assigning to
any non-zero element of Rq (q O(mod m)) the degree q/m. We may
therefore assume that there exist elements in K which are homo-
geneous of degree 1.

Let y 0 be a homogeneous element of degree 1. If is an element
OfKq then EK0, EK0[y] and EK0[1/y]ifq<0. Hence
Rc: K0[y, 1/y], and therefore K= K0(y).

Note the relations
(3) Kq = Kq = KoIv, l/y].

qef

We assert that y is a transcendental over K0. For, assume that we
have an algebraic relation a

=0, a graded ring.
Since y 0, it follows that the a2 are all zero, showing that y is a trans-
cendental over K0.

Let 1? be the integral closure of R in K. The theorem which we
wish to prove is the following:

THEOREM 11. The ring 1? is a graded subring of the ring Kq.

More precisely: if we set Rq 1? fl Kq, then R > In the secial
case in which Rq =0 for all negative integers q also Rq = Ofor negative q.
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PROOF. It was pointed out above that Rc: K0[y, l/yJ. K0[y]
is a polynomial ring over a field K0 and is therefore integrally closed
in its quotient field K0(y)( = K). The ring K0[y, l/y] is the quotient
ring of with respect to the multiplicative system formed by the
non-negative powers of y; this ring K0[y, l/y] is therefore also
integrally closed in K. (Vol. I, Ch. V, § 3, Example 2, p. 261.)
quently K0[y, l/y] — > Kq[by (3)]. Every element of is therefore a
sum of homogeneous elements. In particular, if =0 for all negative q,
then Rc: K0[yl and therefore also Rc: K0[y]; thus in this special case,
every element of 1? is a sum of homogeneous elements of non-negative degree.

Let

(4) = ...
E Kq, t s) be an element of 1?. To complete the proof of the

theorem we have only to show that each (q = s, s + 1,. . . , t) is itself
an element of 1?.

We shall first consider the case in which the ring R is noetherian.
Since Rc: every element of 1? can be written as a quotient of two
elements of R such that the denominator is a homogeneous element.
Since is integral over R, the ring is a finite R-module. We can
therefore find a homogeneous element d in R, d 0, such that R.
We have therefore, for every integer 0, that E R. If denotes,
as in (4), the initial component of then the initial component of the
element of R is Hence E R for every integer i 0. We
have therefore shown that all the powers of belong to
the finite R-module R.(1/d). Since we have assumed that R is noetherian,
it follows that the ring itself is a finite Therefore also

is integral over R. Then also — + ... + E 1?, and in
this fashion we can prove step by step that all the q —5, s + 1,.. . ,

belong to 1?.
In the non-noetherian case we can achieve a reduction to the

noetherian case, as follows:
Let

(5) ... — 0, a,ER,

be a relation of integral dependence for over R, and let d 0 be a
homogeneous element of R such that E R for q s, s + I, . . . , t.
We consider the following homogeneous elements of R: the element d,
the products (q = s, . , t) and the homogeneous components
of the coefficients a1, a2, , of the above relation (5). We denote
these homogeneous elements, in some order, by x1, , XN, and
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we denote by A the smallest subring of R containing the elements x1.
Then A = Jrx11 x2, • if R is of characteristic zero (J= ring of
integers) and A X21• if R is of characteristic p 0

= prime subfield of R). In either case A is a noetherian integral
domain. If we set Aq = A fl Rq then it is immediately seen that
A Aq and that consequently A is a graded subring of R. In fact1
if is any element of A1 let be the homogeneous component of m
of a given degree q1 and let =f(x11 x21 . where f(X11 X21.. .

XN) is a polynomial with coefficients which are integers or integers
mod the characteristic p of R. If q1 denotes the degree of the homo-
geneous element x1 of R and fq(X11 X21 . . . denotes the sum of
terms X212. . . in f such that i1q1 + i2q2 + ... + =
q(c E J or C E then it is clear that =fq(Xiz x21. . and hence

Since the element d and the products q = s1 s + 1,. . . t1 are
included in the set {x11 x21 . . . it follows that belongs to the
quotient field of A. On the other hand1 since also the homogeneous
components of all the coefficients a1 in (5) are also included in the
set {x11 x21 . . . it follows that is integrally dependent over A.
Hence by the noetherian case1 the homogeneous components of
are integral over A1 hence a fortiori also over R. This completes the
proof of the theorem.

Theorem 11 can be generalized as follows:
Let K'0 be an algebraic extension field of K0 and let K' = K'0(y).

We set K'q = (q—an integer)1 so that is obviously a graded

ring. Then we have the following
COROLLARY. Theorem ii remains true if in the statement of that

theorem we replace the field K by the field K'1 the graded ring by

the graded ring and the ring R by the integral closure R'of R in

K' (in particular1 we must write R' = where R'q = R' fl K'q).
The proof is immediate. For1 the ring (weak direct sum of

the R'q) is obviously a graded ring1 having K' as quotient field1 and
R' is also the integral closure of this graded ring1 in K'. Since R'q1
by its very definition1 consists of all the homogeneous elements of K'1
of degree q1 which are integral over the graded ring

R' R'q.

It is easily seen that if z e P'q then z satisfies an equation of the
form

(6) + + + ... + 01 ajq E Riq1
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and that conversely, if an element z of K' satisfies such an equation (with
the ajq in Rq) then z E R'q. For, assume that z e R'q and let

= 0, beR,
be an equation of integral dependence for z over R. Each of the_n 4-1 terms
on the left-hand side of this equation belongs to the graded ring R'. There-
fore, if we denote by ajq the homogeneous component of a1, of degree iq, then
we find (6). Conversely, assume (6). Dividing (6) by ytml and observing
that e K0, we find that is algebraic over K0 and therefore must
belong to K'0 (since K'0 is the algebraic closure of K0 in K'). Hence the
element z is homogeneous of degree q, and since it is integral over R (in view
of (6)) it must belong to R'q.

§ 3. Algebraic varieties in the affine space. Let k be a field and
let K be an algebraically closed extension of k. The field k will be
referred to as the ground field, while K will be called the co6rdinate
domain. Given an ideal in the polynomial ring R_—krX1, X2,...,

we recall (VI, § 5bis) that the variety of in the affine space
is the set V of all points (x) (x1, x2, . . , (x1 E K) such that f(x) 0
for all f in We shall denote this variety by The fact that

is an ideal in the polynomial ring over k is expressed by saying that
V, the variety of is defined over k. Any point (x) of V is said to
be a zero of the ideal For every subset E of we denote by
5(E) the set of all polynomials in k[X1, X2,. . , X,j which vanish
at every point (x) of E. Clearly, 5(E) is an ideal. We shall denote
by I the set of all ideals of the form 5(E), Ec:

The set of points in which satisfy a finite set of equations
fl=0,f2=O, ,fqO, where fE X2, .. , is a variety,
namely it is the variety of the ideal generated by the polynomia1s
fl'f2' ,fq. Conversely, every variety can thus be defined by a
finite system of polynomial equations, with coefficients in k, for every
polynomial ideal has a finite basis.

We note the following relations:

(1)

(1') EcF

(2) n

(2') s(y 5(E1).

(3) fl U
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(4)

(4')

(5) = E E is a variety.

(5') = E I.

(6)

All these relations, except (2), (3), (5) and (5') are self-evident. In
(2) the sum > is not meant to be necessarily finite. The inclusion

fl follows from (1). The opposite inclusion follows

from the definition of the ideal-theoretic sum according to which
every polynomial in > is a finite sum each f3 belonging to at
least one of the ideals any such polynomial vanishes therefore on
fl

The inclusions fl U again follow from
(1) since fl On the other hand, if (x) U then
these exist polynomials f and g such that fE g E f(x)g(x) 0.
Since fg E it follows that (x) This shows that

U and (3) is proved.
The implication "r(J(E)) = E E is a variety" is self-evident.

On the other hand, if E is a variety, then E— for some ideal
We have, then, by (4'), whence 'V(J(E))c: E, and (5) now
follows from (4). The proof of relation (5') is quite similar (and is, in
fact, dual to the proof of (5)).

From (2) and (3) it follows that intersections (finite or infinite) and
finite unions of varieties are again varieties. The empty set (= variety
of the unit ideal) and the whole space (= variety of the zero ideal)
are varieties. It follows that becomes a topological space if the
closed sets in are defined to be the algebraic varieties immersed in

We have an induced topology on each variety V immersed in
ARK. Since intersections of varieties are again varieties, the closed
subsets of V are the algebraic varieties contained in V, i.e., the sub-
varieties of V.

If E is any subset of then the closure of E is, of course, the
least variety containing E. If V is any variety containing E, then

5(E) and V = 'V(J(E)). Hence 'V(J(E)) is the
closure of E. In particular, the closure of a point P is the set of all
points which are specializations of P over k (VI, § Sbis).

From (5) it follows that V1 and V2 are distinct varieties, then
5(V1) Hence a strictly descending chain V1> V2> ... >
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of varieties gives rise to a strictly ascending chain of poly-
nomial ideals 5(V1) < 5(V2) < • . . <5(V1) < • • and is therefore
necessarily finite. This very special property of varieties shows that
eveiy variety, with the above topology, is a quasi-compact space.

A variety V (defined over k) is said to be reducible (over k) if it can
be decomposed into a sum of two varieties V1 and V2 which are defined
over k and are proper subsets of V. If such a decomposition does not
exist, then V is said to be irreducible (over k).

THEOREM 12. A variety V is irreducible if and only if its ideal 5(V)
is prime.

PROOF. Assume that V is irreducible and Ietf1, f2 be two polynomials
such thatf1 5(V), i= 1, 2. Let W1 be the set of points of V at whkh
f1 vanishes (i= 1, 2). Then W1 is a variety, and it is a proper sub-
variety of V, since f1 5(V). Since V is irreducible, also W1 U W2
is a proper subset of V. Let (x) be a point of V, not in W1 U W2.
Then f1(x) 0 and f2(x) 0, whence f1f2 5(V). This shows that
5(V) is a prime ideal.

Conversely, assume that 5(V) is a prime ideal. Let V= V1 U V2,
where is a variety (defined over k), i = 1, 2, and assume that V2 V.
We shall show that V1 = V (and that therefore V is irreducible). By
(2') we have 5(V) = 5(V1) n 5(V1) .5(V2). Since 5(V2)>
5(V) and 5(V) is prime, it follows at once that 5(V) 5(V1), whence
V= V1. Q.E.D.

THEOREM 13. Every variety V can be represented as a finite sum of
irreducible varieties

h
(7) V= U

i== I

and the decomposition (7) is unique (to within order of the if it is
irredundant, i.e., if no is superfluous in (7).

PROOF. The existence of a decomposition (7) into irreducible
varieties follows easily by an indirect argument. Suppose, namely,
that there exists a variety V for which the existence assertion of the
theorem is false. Then V must be reducible, so that we can write
V— W U W', with W< V and W' < V. Then the existence assertion
of the theorem must be false for at least one of the two varieties W or
W'. What we have shown is that if the theorem is false for a given
variety V then there exists a proper subvariety V1 of V for which the
theorem is still false. This conclusion leads to the existence of an
infinite strictly descending chain V> V1> V2> ... of varieties, in
contradiction with a preceding result.
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Suppose now that (7) is an irredundant decomposition of V into
irreducible varieties and let

(7') V = U V'1

be another irredundant decomposition of V into irreducible varieties.

For any V1, 1 I h, we have V1 = V n V1 = (V'1 V1). Since

is irreducible, at least one of the g varieties V'1 n must coincide
with V1, i.e., we must have V'1 for some j, 1 By the same
argument we find V. for some s, I s h. We have then

V'1 and therefore V1 = V'1 (since the proper inclusion
would imply that is superfluous in (7)). We have shown

that each one of the h varieties V1 coincides with one of the g varieties
V's; and conversely. This establishes the unicity assertion of the
theorem.

The irreducible varieties V12 V2, . . . &
V,, are called the irreducible

components of V.
REMARK. In order to verify that a decomposition (7) into irreducible

varieties is irredundant it is sufficient to verify that V1 if 121=
1, 2, . h and For assume that we have a decomposition (7)
into irreducible varieties which is not irredundant2 and let2 say2 V1 be

h h
superfluous. Then U V12 V1= U (V1 fl V1). Since V1 is

i=2 1=2
irreducible2 this implies that V1 V1 n V1 for some i.e.2 that

V1 for some 1.

The above reasoning is similar to that which one uses to show that
if a finite set of prime ideals

2 h is superfluous in the intersection
fl fl fl (See Vol. I, Ch. 1V2 § 42 property A at end of

section.)
COROLLARY 1. If an Irreducible variety V has more than one point It

is not a Hausdorff space. [Compare with Theorem 39 of VT2 § 17 and
the observations (A)2 (B) and (C) following that theorem.]

If V is irreducible2 the union of two proper closed subsets of V
is never the entire variety V2 or—equivalently—the intersection of two
non-empty open subsets of V is never empty2 and hence V is not a
Hausdorif space.

COROLLARY 2. Every ideal In the set I admits an Irredundant
representatIon as Intersection of prime IdeaLs:

(8) =
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The irredundant decomposition (8) is unique, each one of the h prime
ideals is itself in the set I, and the h varieties V1 = are the
irreducible components of the variety

Let V= Since E I, we have = 5(V). Let V1, V2,...,
Vh be irreducible component of V. By the property (2') we have

fl fl where E I is a prime ideal, by
Theorem 12. Since V1 for we have ± for and this
shows that the representation n 2 fl fl is irredundant. The
unicity of the irredundant representation (8) of as an intersection
of prime ideals follows from the general theorems on primary decom-
positions of ideals in noetherian rings (and could also be proved directly
and in a straightforward fashion by an argument similar to the one
employed in the proof of the second part of Theorem 13). We observe
that the existence and unicity of an irredundant representation of
as an intersection of prime ideals is an immediate consequence of the
general decomposition theorems for ideals in noetherian rings and of
the fact that (see (6)). What new in the above corollary is
the assertion that the prime ideals in the decomposition (8) themselves
belong to the set I.

We shall now prove the following important theorem:
THEOREM 14 (THE HILBERT NULLSTELLENSATZ): The ideal

of the variety of an ideal in k[X1, X2,.. . , is the radical of
Or equivalently: if F, F1, F2, . . , Fq are polynomials in kIX1, X2,.

and if F vanishes at every common zero of F1, F2,. . , Fq (in an
algebraically closed extension K of k), then there exists an exponent p and
polynomials A1, , Aq in kIX1, X2, . .. , such that

(9) ±AqFq.

PROOF. We first show that the following statement is equivalent to
the Hilbert Nullstellensatz:

(10) If is empty then = (1).

It is obvious that (10) is a consequence of the Hilbert Nullstellensatz,
since the ideal of the empty variety is the unit ideal, and the only idea1

whose radical is the unit ideal is the unit ideal itself. On the other
hand, assume the truth of (10) and let F, F1, F2,. , Fq be poly-

in k[X1, X2, . . . , satisfying the conditions stated in the
theorem. We introduce an additional indeterminate T. The poly-
nomials F1, F2,. , Fq, 1 — TF have no common zero in K. There-
fore, by (10), the ideal generated by these polynomials in k[X1, X2,
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must be the unit ideal, and there exist then polynomials
B(X, T) in k[X1, X2,. . . , X,,, 7'] such that

1 = B1(X, T)F1(X) + ± Bq(X, T)Fq(X) + B(X, T)(1 - TF(X)).

Substituting 1/F(X) for T in this identity and clearing denominators,
we obtain a relation of the form (9).

Thus, in order to prove the Hubert Nullstellensatz we have only to
show the following: if is an ideal different from (1) then has at
least one zero in K. Since every ideal different from (1) is contained in
some proper prime ideal, it is sufficient to deal with the case of a
prime ideal different from (1).

The proof that a prime ideal different from (1), has always a
zero in K, is immediate if K is a universal domain (see VI, § 5bis, p. 22).
For in that case, one can always construct a k-isomorphism of the residue
class ring

ktxi, x2,. . , = k[X1, X2,. . . , (x1 ti-residue of

into K, and if is such an isomorphism then the point q(x2),
is a zero of in K. Thus, our proof of the Hilbert Null-

stellensatz is complete if K is a universal domain. The Nullstellensatz
for the case of a universal domain is often referred to as the weak
Nullstellensatz.

To prove the Nullstellensatz in all generality, it is sufficient to prove
it in the case in which K = k = algebraic closure of k, for every alge-
braically closed extension of k contains an algebraic closure k of k and
since, furthermore, the existence of a zero of in will imply the
existence of a zero of in every algebraically closed extension of k.
We have therefore to show that "every prime ideal in k[X1, X2, .
Xv], different from (1), has an algebraic zero," i.e., a zero

. . ,

such that E k.
We shall give two proofs of this assertion.
FIRST PROOF. Since every prime ideal, different from (1), is contained

in a maximal prime ideal, we may assume that is a maximal ideal. In
that case, the residue class ring k[x1, x2,. . . , = k[X1, . . ,

(x1 = of X1) is a field, and the Hubert Nullstellensatz results
then as a consequence of the following lemma:

LEMMA. If a finite integral domain k[x1, x2,.. . , x,,] over a field k
is a field, then the x are algebraic over k.

PROOF OF THE LEMMA. The lemma is obvious if n =1, for if x is a
transcendental over k then the polynomial ring krxi is definitely not
a field (the polynomials of positive degree are non-units). We shall
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use induction with respect to n. The ring S= x2, • ,

assumed to be a field, contains the field k(x1), and we have S =
k(x1)[x2, x3,. , Hence, by our induction hypothesis, the elements
x2, x3,. • , are algebraic over k(x1). It remains to show that x1
is algebraic over k.

Since each x7, 2 I n, is algebraic over k(x1), there exists a poly-
nomial a(X), with coefficients in k, such that a(x1) 0 and such that
the n — 1 products a(x1)x7, 2 n, are integral over kIx1l. It follows
that for any element =f(x1, x2, • , of S there exists an exponent
p (depending on such that ra(x1)}Pf(x1, x2,•• , is integral over
k[x1]. This holds, in particular, for every element of k(x1), since

S. Now, if x1 were a transcendental over k, then kfx1] would
be integrally closed in k(x1) and we would have, therefore, the absurd
result that every element of k(x1) can be written as a quotient

of two polynomials in x1, with denominator equal to a
power of a fixed polynomial a(x1), independent of

SECOND PROOF. This proof will be based on properties of integral
dependence. We first of all achieve a reduction to the case in which k
is an infinite field. For this purpose we consider an algebraic closure
K of the field k(X1, X2,.. . , and in this field we consider the
polynomial ring kfX1, X2, . . . , X,j, where k is the algebraic closure
of k in K. If denotes the extension of to the ring X2,...,

we have to show the existence of an algebraic zero (a1, a2, . ,

of and thus, if we fix any prime ideal in krx1, X2,.. . , such
that it will be sufficient to show the existence of an algebraic
zero of Thus we may replace in the proof the field k by the field k,
and since k is an infinite field, we have the desired reduction. Assum-
ing, then, that k is infinite, we apply the normalization theorem (Vol. I,
Ch. V, § 4, Theorem 8) to the integral domain S= krx1,

and we thus get a set of d algebraically independent elements
Z1, , Zd of S/k (d = transcendence degree of S/k) such that S is
integral over krz1, z2, . . . , We consider a specialization of klz]
to k by assigning to z1, . . , Zd arbitrary values a1, . . , ad in k.
The polynomials f(z1, z2,. . . , Zd) such that f(a1,
a prime ideal a0, in kIz1, z2, .. . , necessarily maximal, since
kIa1, a field. Since S is integral over kIz1, z2,.. . ,

there exists in S a prime ideal q lying over q0 (Vol. 1, Ch. V, § 2,
Theorem 3). The residue class ring S/ is integral over z2,

Zdlj% (Vol. I, Ch. V, § 2, Lemma 1), and this implies that the
q-residues of the x are algebraic over k. We have thus found an
algebraic zero of
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A slight modification of the above proof makes it possible to avoid
the use of the normalization theorem. For that purpose we fix an
arbitrary transcendence basis {z1, z2, . . , of the field k(x1, x2,

such that the z's belong to k[x1, x2,.. . , (for instance, we
could take for {z1, . . , a suitable subset of {x1, x2, ,

Each x, satisfies an equation of algebraic dependence, of the form
z2,. , + ... +g0(z1, z2, . , =0, where the are

polynomials with coefficients in k and where we may assume that the
leading coefficient is independent of i. Fix in the algebraic closure
k of k a set of elements ,• . . , such that z2' 0
(this is possible since k is an infinite field). Let be the kernel of
the k-homomorphism k[z1, . , —p- . . , deter-
mined by the conditions —* We denote by o the quotient ring
of k[z1, z2, . . , with respect to by o* the closure of o
in k(x1, . , and we fix a prime ideal in which lies over q.
Since z2,

z2, . , a unit in o. Consequently, each x, belongs to 0*;
the residue of each is algebraically dependent on
Zd] and thus is algebraic over k. Since the mapping krx1, x2,...,

—p- , determined by the condition —p- is a
homomorphism (with kernel q* n k[x1, x2, . . , . , is
an algebraic zero of the prime ideal

Various consequences can be drawn from the Hilbert Nullstellensatz.
COROLLARY 1. If is any prime ideal in X2, . . . , then
is the ideal of its own variety and hence is irreducible and

pEEl.
For, whence = e I. The irreducibility of

follows from Theorem 12.
We have therefore a (1, 1) correspondence between the prime ideals
in the polynomial ring X2,.. . , X,j and the varieties in

which are defined and irreducible over k. The correspondence is such
that if and V are corresponding elements then 5(V) and V=

COROLLARY 2. Every ideal which coincides with its own radical is the
ideal of a variety and therefore belongs to the set I. This set I coincides
therefore with the set of ideals such that = or equivalently,
I is the set of all polynomial ideals which are finite intersections of prime
ideals.

For if = then = by the Hilbert Nullstellensatz.
The rest of the corollary follows from relation (6) and from Theorem 13,
Corollary 2.

COROLLARY 3. If is a polynomial ideal and are the
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isolated prime ideals of then the varieties
are the irreducible components of "V(9t)/k.

Since n n is an irredundant representation of as
intersection of prime ideals, the corollary follows from the irreducibility
of 'V(p7) and from Corollary 2 (since E I, by that corollary).

COROLLARY 4. Let V be a variety in defined over k. If a
polynomial f in MX1, X2,. , vanishes at all the algebraic points of
V, then f vanishes at every point of V.

Let V0 be the set of algebraic points of V and let be an ideal in
k[X1, X2,. , such that V— Then V0 is the variety of
the ideal in the affine space over k. By the Hubert Nulistellen-
satz, as applied to the case K= k, the vanishing off at every point of
V0 implies that f E Hence f E 5(V).

The last corollary shows that a variety V in which is defined
over k is uniquely determined by the set of its algebraic points. Or,
in topological terms: the set of all algebraic points of a variety V is
everywhere dense in V.

§ Algebraic varieties in the projective space. Let k be a
ground field and let K be an algebraically closed extension of k (K=
coOrdinate domain). The points of the n-dimensional projective space

over K are represented by ordered (n + 1)-tuples (yo, . ,

of elements of K, the (n + 1)-tuple (0, 0,. . . , 0) being excluded and
two (n + 1)-tuples (yo, y1, . , (y'0, y'1, . . , representing the
same point P if and only if they are proportional (i.e., if there exists an
element 0 in K such that = i=0, 1, . . . , n). The (n + 1)-
tuple (yo, . . , is called a set of homogeneous coordinates of the
corresponding point. We shall often denote this point by (y). If
(y) is a point P in the field generated over k by all the ratios

such that y1 0 is independent of the choice of the set of homo-
geneous coOrdinates of P. This field will be denoted by k(P). By
the dimension, dim P/k, of P (over k) we mean the transcendence degree
of k(P)/k.

A set (y0, , y,,) of homogeneous coOrdinates of a point P is
called a set of strictly homogeneous coOrdinates of P if the following
condition is satisfied: the ideal of aP polynomials F( Y0, Y1,...,
(homogeneous or non-homogeneous) such that F(y0, y1, . . . , =0 is
homogeneous; or equivalently: the ring kIyo, y1, . . . , y,,] is homo-
geneous (n the sense of § 2).

LEMMA. Let (y0, y1, . . . , be a set of homogeneous coordinates of
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a point P and let s be an index, 0 s n, such that 0. Then (Yo'
, is a set of strictly homogeneous coördinates of P if and only if

is a transcendental over the field k(P).
PROOF. Assume that (yo' , is a set of strictly homo-

geneous coordinates of P and let F(Z) be a non-zero polynomial in one
indeterminate Z, with coefficients in k(P). Since every element of
k(P) is a quotient of two forms in k[y0, , of like degree, we
have

F(Z) = y1,• • , . ,

wheref(°) and are forms in k[Y0, Y1,.. •, of like degree h.
We have f(O)(y0, y1, • , 0, and f(i)(y0, y1, • , 0 for some
i 0. Let G( Y0, Y1, • • , = Y0, Y1, • • • , If, say,

f(v)(y0, y1, . • • , 0 and if we set Y0, Y1, • • , Y;,
then is the homogeneous component of G, of degree v + h, and we
have y1, . . . , 0 since 0. Since the y's are strictly
homogeneous coordinates of P, it follows that G(y0, y1, • . , 0, i.e.,

0. This shows that is a transcendental over k(P). The proof
of the converse is also straightforward and may be left to the reader.

COROLLARY. If K has infinite transcendence degree over k every point
of has sets of strictly homogeneous coordinates.

Let F( Y0, Y1,..., be a homogeneous polynomial over k and
let P be a point of If some set of homogeneous coordinates
(y0, . . , of P satisfies the relation F(y0, . . , =0 then
every set of homogeneous coordinates (y'o' Y'i' . , of P will
satisfy the relation F(y'0, . . , = 0. We then say that the
point P is a zero of the form F and that F vanishes at P. If is a
homogeneous ideal in k[ Y0, Y1,. . . , any common zero of the
forms belonging to is called a zero of the ideal and the set of
zeros of is called the variety of and is denoted by An
algebraic (projective) variety in defined over k, is any subset of

which is the variety of some homogeneous ideal in k[ Y0, Y1,...,
Y,j. Only varieties defined over the given ground field k will be con-
sidered, and the specification "defined over k" will be omitted.

If E is any subset of then the set of forms in ki Y0, Y1,...,
which vanish at every point of E is obviously the set of forms belonging
to a well defined homogeneous ideal, namely to the ideal generated by
these forms. This homogeneous ideal is called the ideal of the set E
and will be denoted by 5(E). We shall denote by I the set of all
homogeneous ideals in k[YO, Y1, . . ., of the form 5(E),
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Note that if is an irrelevant ideal 2, p. 154) then is empty,
for if is irrelevant then E for some integer p 1 and for all 1,
showing that no point (yo' (not all being zero) can be a
zero of

As in the case of the affine space we have a natural topology in
the projective space in which the algebraic (projective) varieties
are the closed sets. The closure of any subset E of he., the least
variety containing E, is given by 'V(J(E)). By a specialization of a
point P, over k, we mean any point Q which belongs to the closure of

the point P; in symbols: Q.
These notations and terms are identical with those used in the pre-

ceding section for affine varieties. The formulas (1)—(6) continue to
hold for projective varieties and homogeneous ideals, and there is no
change whatsoever in the proofs except that whenever we use poly-
nomials f, g, etc., we must now assume that f, g,••• are forms. It is
only necessary to bear in mind the fact that the set of homogeneous
ideals is closed under all the basic ideal-theoretic operations (see § 2,
Theorem 8). The definition of irreducible varieties can be repeated
verbatim for projective varieties, and then Theorems 12 and 13 continue
to hold, the proofs remaining the same (we need only recall, from § 2,
that for a homogeneous ideal to be prime it is sufficient that the con-
dition "fg E or g E be satisfied for formsf and g). Corol-
lary 2 of Theorem 13 continues to hold, with the additional property
that the prime ideals in (8) are homogeneous. While
going through the reasoning which was employed in the proof of that
corollary the reader should bear in mind the fact proved § 2 (Theorem
9, Corollary) that all the prime ideals of a homogeneous polynomial
ideal (over a field k of coefficients) are homogeneous.

In VI, § we have introduced the notion of a general point of
an irreducible affine variety and also the coordinate ring of such a
variety. We shall now extend these definitions to varieties in the
projective space

Let V be a non-empty irreducible variety in and let be the
homogeneous prime ideal of V in Y0, Y1,... , Y,J. The residue
class ring k[ Y0, Y1,..., = , y,,], where y1 = a-residue
of is called the homogeneous co6rdinate ring of V. It is clear that
this ring is a finite homogeneous integral domain (over k), in the sense of
the definition given in § 2 (p. 151).

Since V is non-empty, not all the indeterminates can belong to
Hence not all are zero. However, the are not general elements
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of K, and we cannot therefore, in general, regard (yo' , as a

point of We do call, however, the (n ± 1)-tuple (yo' 'Yn)
the general point of V. Since the kernel of the canonical homo-
morphism k Y0, Y1,..., Yn] , y,j is homogeneous, it
follows that (yo' Yi' , is a set of strictly homogeneous coordinates
of the general point of V.

If K is a universal domain, there exist k-isomorphisms of k(y0,
into K. If a is such an isomorphism then the point

(a(yo), a(yi), . . . , is a point of V and is also called a general point
of V; the point (yo' may be singled out by referring to it as
the canonical general point of V. Note that the set (o<y0), o<y1),...,

a set of strictly homogeneous coordinates.
The quotient field of the homogeneous coordinate ring is

not what is called the function field of V. We notice that is a

graded ring (see § 2, Lemma 1, p. 150), whence we can talk about homo-
geneous elements of this ring. Then the set of all quotients a/b,
where a and b are homogeneous elements of like degree in k[
(b 0), is obviously a subfield of the quotient field of k[ This
subfield we call the function field of V, and we denote it by k(V). The
field k(V) is generated over k by all the ratios whose denominator
is 0; if s is an index such that 0, we also have k(V) =

k( k
V the projective dimension of the homogeneous

prime ideal It is an integer between 0 and n. Since Yo' Yi' ,

are strictly homogeneous coordinates, it follows from the above lemma
that is a transcendental over k( V). Hence the transcendence degree
of k(y0, Yi' , (= dimension of the prime ideal is one greater
than the dimension of V (or also, one greater than the projective
dimension of ti).

According to our preceding definitions, k(V) is identical with k(P),
where P is the canonical general point of V, and dim V= dim P/k.

From the Hubert Nullstellensatz we can easily derive a corresponding
Nullstellensatz for homogeneous polynomial ideals and projective
varieties. We can see already that some modification will be necessary,
for we have already pointed out that the projective variety V of an
irrelevant ideal is always empty, while in the non-homogeneous case
the Hubert Nullstellensatz tells us that only the unit ideal has the
property that its (affine) variety is empty. Thus we cannot expect to
have a verbatim extension of the Nullstellensatz. However, it turns
out that the irrelevant ideals are the only exceptional ones:

THEOREM 15 (Projective Nullstellensatz): If is a non-irrelevant
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homogeneous ideal in kI Y1, . . •, then is non-empty and the
ideal of the variety is the radical of 2t.

PROOF. We set V= and we consider the affine variety C(V)
in which is the variety of the ideal it is the set of all points
(x0, . . . , in such that F(x)_—O for every F in Since is
a homogeneous ideal, the relation (x0, . . . , E C( V) implies (tx0,

t in K. Thus, if V is non-empty, C(V) is a
union of straight lines containing the origin (0,.. , 0).

It is furthermore clear that a point (x0, x1, , of different
from the origin, belongs to C(V) if and only if the point of whose
homogeneous coOrdinates are x0, x1, , belongs to V. The
variety C(V) is called the representative cone of V. Since 9i is non-
irrelevant, C( V) is neither empty nor is it reduced to the origin (by
the affine Nullstellensatz). Hence V is non-empty.

Since V is non-empty, it is clear that the (homogeneous) ideal of V
is contained in the ideal of C( V). Conversely, if a polynomial F( Y0,

., vanishes on C( V), we have, for every point (x0,. . . , of V

and for every t in K, F(tx0,. . , tx,,) = 0. Writing F= where

F3 is either zero or a form of degree j, we get F0 + tF1(x) ± . . +
= 0 for every t, whence F3(x) =0 for everyj since the algebraically

closed field K is infinite. Therefore the homogeneous ideal of V
is equal to the ideal of C(V). Theorem 15 now follows immediately
from the afline Nullstellensatz. Q.E.D.

The four corollaries of Theorem 14 hold for projective varieties and
homogeneous ideals with the following modifications:

In Corollary 1 it must be assumed that p is a prime homogeneous
ideal, different from the irrelevant ideal which is generated by
(Y0, V1,.., Yj.

Corollary 2 should read as follows: "Every ideal which coincides
with its own radical and is not an irrelevant ideal is the ideal of a
variety and therefore belongs to the set I. The set I is therefore the
set of all polynomial ideals which are finite intersections of prime
ideals and are different from the irrelevant prime ideal (Y0, Y1,

In Corollary 3 it must be assumed that is not an irrelevant ideal.
In Corollary 4, V is a projective variety in f is in ki Y0, Y1,

•, Y,,1 and is a form. By an algebraic point in we mean a
point whose homogeneous coordinates are proportional to elements
of k.

We note that the existence of algebraic points on every non-empty
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variety can also be proved by means of the existence theorem for
algebraic places (VI, § 4, Theorem 5', Corollary 2), as follows:

Let (yo' Yi' , be the canonical general point of an irreducible
non-empty variety V in and let be an algebraic place of k(y0,

Yi' , If v is the corresponding valuation, we may assume
that v(y0) < v(y1), 1<1< n. Let = where is then different
from 00 and is algebraic over k. The point (1, a1, . . , is immedi-
ately seen to belong to V, and thus V has an algebraic point, as asserted.

§
4bis, Further properties of projective varieties. We shall

begin by generalizing to projective varieties the notion of the center of
a place and the notion of a divisor which have been given for affine
varieties in the preceding chapter (VI, § 5bis and § 14).

Let Q be a point (z0, z1,•. , of V. We consider quotents
f(Yo' , y1, . , of elements of the homogeneous
coordinate ring of V, such that f and g are homogeneous, of like degree,
and such that g(z0, z1, , 0. These quotients form a ring,
contained in the field k( V), called the local ring of V at the point Q, or,
briefly, the local ring of Q (on V).

Without loss of generality we may assume that z0 0. Then also
Yo 0 since Q is a specialization, over k, of the general point (y0, Yi'

of V/k. Set x a = z1/z0. It is clear that the point
(a1, a2, • , a specialization of the point
(x1, x2,. . , xv). Therefore, if we consider the ring k[x1, x2, • . ,

then the point (a1, a2, , corresponds to a prime ideal of this
ring, and the local ring of Q is immediately seen to be equal to the
quotient ring of the ring k[x1, x2, , with respect to this prime
ideal. The points of the projective space which do not lie in the
hyperplane Y0 = 0 form an afline space Denote by Va the inter-
section V n ARK. We have just seen that each point of Va is a special-
ization of (x1, x2, , over k; also the converse is true and its
proof is immediate. Hence Va is an irreducible affine variety, with
(x1, x2, , as general point. This connection between projective
and afline varieties will be investigated in more detail in Section 6.
For the moment we only wish to call attention to the fact which was
established above, namely that if Q is any point of Va then the local ring
of the projective variety V at Q is the same as the local ring of the affine
variety Va at Q. At is also clear that the function fields k( V) and
k(Va) coincide, both being given by the field k(x1, x2, , xv). We
shall use these facts and notations in the remainder of the section.

Let be a place of the function field k(V) of V and let us assume
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that the residue field of is contained in the coordinate domain K
(this is no essential restriction on if K is a universal domain; see
VI, § 5bps). If v is the valuation determined by then is
meaningful for any i,j—_ 0, 1,.. , n, provided 0, since y,/y1 E k( V).
It is clear that there exists an index s such that � 0 for j
0, 1,. . . , n. For such an index s let = b, E K. The b, are
not all zero (since = 1) and thus determine a point Q = (be, . . ,

of If t is another index such that 0 for i= 0, 1, . . . , ii
and if we set = then = 1, whence 0, 0, and
furthermore, c, = = i =0, 1,.. . , n. This shows that
the point Q above depends only on the place and not on the choice
of the index s. It is easily seen that Q belongs to V. For if f( Y0, Y1,

., is any form in the homogeneous ideal of V, then we have
. . , =0, and since is a k-homomorphism it

follows that f(b0, b1,. . . , =0, showing that Q is on V. This point
Q is called the center of the place on the variety V. The properties
(1)—(6) of the center of a place on an affine variety, given in VI, §
continue to hold for projective varieties. The proofs are straightforward
and may be left to the reader (it is best to prove property 5 and to use
this property in the proof of the remaining properties).

In a similar way (i.e., by reduction to affine varieties) we can define
the center W, on V, of any valuation of k( V)/k: W will be a certain
irreducible subvariety of V (see VI, § 9, p. 38).

We now consider prime divisors of the function field k( V) of V.
Since k( V) is a field of algebraic functions, namely k( V) =k(x1, x2,

where x2 =y1/y0 (assuming that y0 0), the results of VI,
§ 14 are applicable. In particular, every prime divisor of k( V) is a
discrete valuation, of rank 1. Furthermore, every irreducible (r — 1)-
dimensional subvariety W of V/k is the center of at least one and of at
most a finite number of prime divisors. To see this, we have only to
fix a general point Q of W/k and—assuming that Q belongs to the affine
variety Va—observe that the prime divisors of k(V) having center W
on V coincide with the prime divisors of k(Va) (= k(V)) which have
center Wa on Va, and then apply Theorem 32 of VI, § 14.

We say that our variety V is normal at W if the loca! ring o(W; V)
(i.e., the local ring of V at the general point Q of W/k) is integrally
closed. Clearly, V is normal at W if and only if Va is normal at Wa
tsince o(W; V) = D(Wa, Va)i. We say that V/k is normal, or locally
normal, if it is normal at each of its points. Theorem 33 of VI, § 14
continues to hold for normal varieties in the projective space: if V/k
is normal at W and dim W= r — 1, then there is only one prime divisor
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of k( V) having center W. We denote this divisor by In particular,
if V/k is a normal variety then every irreducible (r— 1)-dimensional
subvariety W of V/k is the center of a unique prime divisor of k( V).

We now assume that V is normal and we introduce the free group of
divisors on V, i.e., the group generated by the irreducible (r — 1)-
dimensional subvarieties W of V. Using the notations of VI, § 14,

p. 98, we can now define the divisor (w) of any function w 0 in k( V):

(1)

where the sum is extended to all the irreducible (r— 1)-dimensional
subvarieties of V/k. That the sum (1) is finite can be seen as follows:

In the first place, there is only a finite number of irreducible (r — 1)-
dimensional subvarieties W of V such that (a) Va contains the general
point of We/k and (b) 0; this assertion concerns only the

variety Va and has been proved in VI, § 14 (p. 97).
In the second place, since the intersection of V with the hyperplane

Y0=0 is at most (r— 1)-dimensional, there is only a finite number of
(r— 1)-dimensional irreducible subvarieties W of V which do not
satisfy condition (a) above.

As has been proved in VI, § 14, p. 99, if w is not a constant, i.e., if w
is not algebraic over k, then there exists at least one polar prime divisor
of w, i.e., for at least one W in (1) we must have <0. Upon
replacing w by I /w we see, under this same assumption, that we must
also have VW(W) > 0 for at least one W.

We now prove the following analogue of Theorem 34 of VI, § 14,
for normal varieties in the projective space:

THEOREM 16. Let V/k be an irreducible variety in the projective space
and let R = k[y0, ... . , y,j be the homogeneous coordinate ring of

V/k. A necessary and sufficient condition that V/k be normal is that the
conductor of R in the integral closure R of R be an irrelevant ideal.

PROOF. Assume that the conductor of R in R is irrelevant and
let Q = (z0, . , be any point of V. We show that V is normal
at Q. Without loss of generality we may assume that z0 0. We set
x1 = and we call Va the affine variety consisting of
those points of V which do not lie in the hyperplane V0 0. The
point Qa (a1, . , lies on Va, and to say that V is normal at
Q is the same as saying that Va is normal at Now, the ring
k[x1, x2,. , is the non-homogeneous coordinate ring of Va/k. We
shall show that this ring is integrally closed, whence it will follow that
Va is a normal variety. Let be an element of the integral closure of
ktxi, x2, , Upon the substitution and clearing
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denominators, an equation of integral dependence for over krx1,
x2,.. , takes the form

(2) .
.

... 0,

where each f(i) is a form of degree h, with coefficients in k. Relation
(2) implies that E R. Since the conductor of R in R is irrelevant,
it contains a power of each y,. In particular, let, say, y0N E Then

E R, and since is homogeneous of degree zero, we have
—g(y0, , where g is a form of degree N+ h, with

coefficients in k. Hence x1, x2,.. , E k[x1, x2,. ,

Conversely, assume that V is normal. We have to show that there
exists an integer N such that y1NRc: R for i= 0, 1, . . , n. Since R is
a finite R-module (Vol. I, Ch. V, § 4, Theorem 9) and since each ele-
ment of R is a sum of homogeneous elements of R 2, Theorem 11),
it is sufficient to show that for any homogeneous element w of R there
exists an integer N (depending on w) such that y1Nw E R, for i= 0, 1,

n. Let us show, for instance, that y0Nw E R for some N. Let v
be the degree of w(v 0) and let w satisfy an equation of integral
dependence over R, of degree g in w:

(3) + A E R.

Each coefficient A. is a sum of homogeneous elements of R, and thus
the left-hand side of (3) is a sum of homogeneous elements of R. Since
R is a graded ring, the sum of terms having the same degree must
vanish. In particular, the sum of terms of degree vg must be zero.
Hence we may assume that A. is a form in Ye' . , of degree vi.
But then (3) shows that is integral over k[x1, x2, . . . , xrj. Since
V is normal, also Va is normal, and hence the ring kIx1, ,

is integrally closed (VI, § 14, Theorem 34). Hence E kIx1, x2,
xv], i.e., =f(y0' , Yn)/Y0S, wheref is a form of degree s.

Hence yOs_Pw E R, as asserted. This completes the proof of the
theorem.

A variety V/k in is said to be arithmetically normal if its homo-
geneous coordinate ring R kIy0, Yi' . , is integrally closed. It
follows from the preceding theorem that an arithmetically normal
variety is also normal. The converse is not always true, as can be shown
by examples.

For an arbitrary projective variety V/k, we consider a finite algebraic
extension F of the field k(V) and we denote by R the integral closure,
in F(y0), of the homogeneous coOrdinate ring R of V/k. Since Ye is a
transcendental over k( V) (we assume that Ye 0) it follows from
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Corollary to Theorem 11 2) that F? is a graded ring. Let Rq
(respectively, Rq) be the set of homogeneous elements of F? (respectively
of R), of degree q. Since, for each q 1, Rq is a finite dimensional
vector space over k and since R is a finite R-module (admitting an
R-basis consisting of homogeneous elements), it follows at once that
Eq is also a finite-dimensional vector space over k. Let {u0, .

be a k-basis of Eq and let Vq be the projective variety whose general
point is (u0, , Urn). A change of k-basis of leaves Vq un-
changed, up to projective equivalence. Thus Vq is uniquely deter-
mined for each integer q 0. We shall prove the following:

If q is sufficiently large then Vq is the derived normal model of V/k in
F,t and, moreover, Vq is an arithmetically normal variety provided k is
maximally algebraic in F.

[The proof given below applies without modification to models over
"restricted" domain (VI, § 18) and yields another proof of Theorem 42
ofVI, § 18.]

Let = k[y0/y1, y1/y1, . . , yjy1] and let V1 be the affine model
V(o1), so that V is the union of V0, V1, . . . , Let V'1 be the derived
normal model of V1 in F, i.e., let V(o'1), where is the integral
closure of in F. To prove that Vq is the derived normal model
N(V, F) of V in F it will be sufficient to show that V'1 is a subset of
17q for i— 0, 1,.. , n (for, N(V, F) is the union of the affine models
V'0, V'1,.. ., and is a complete model, while Vq, being a model,
is an irredundant set; see VI, § 17). Let us show, for instance, that

Vq if q is sufficiently large.
Without loss of generality we may assume that the k-basis {u0, u1,

um} of includes the element Let, say, Let
u2/u0,. . . , Then the affine variety V(ö0) is a

subset of Vq. We shall show that if q is sufficiently large then .

This will establish the inclusion V'0c: Vq, for q large.
Let be any element of ö0. Then = where w is a form, of

degree h, in u0, . , urn, with coefficients in k, whence w E
The element w satisfies a "homogeneous" relation of integral depen-
dence over R, i.e., we have + a1w1' + . .. + 0, where a1 E Rjhq.
Upon dividing this equation by and observing that a1/u01=
a1/y0huiQ E 00, we see that E We have therefore shown that

o'o (for any q). To prove the opposite inclusion 0'0c: (for large q)
we first observe that the monomials (i= 0, 1, . . . , n) belong to
Rq, hence also to and thus are linear combinations of u0, , urn,

t Here V and Vq are regarded as models, i.e., as collections of local rings; see
the opening paragraphs of VI, § 18.
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with coefficients in k. Therefore E Thus
On the other hand, if is any element of then, upon writing an
equation of integral dependence of ij on we see at once that for large
q the product is integral over R and therefore belongs to Rq.
Since is a finite o0-module, it follows therefore that if
17q} is an o0-basis of and q is sufficiently large, then all the products

are linear combinations of u0, , with coefficients in k,
and therefore the belong to Since also is contained in the
inclusion o'0c: öo is proved, for all large q.

It now remains to prove that Vq is arithmetically normal, i.e., that
the homogeneous coordinate ring 1= ui,. . , of Vq/k is
integrally closed (for large q). Let I' be the integral closure of I in its
quotient field. Then I' is a graded ring: I' = + ± I',, +
(the degree h of a homogeneous element of I' being defined by stipu-
lating that u0, , Urn are homogeneous elements of degree 1).
Since we have I'cR and hence We assert that "h=

To show this we first observe that R is integral over I, since
E I. Hence the elements of being integral over R, are also

integral over I. Therefore, in order to show that "h we have
only to show that is contained in the quotient field of I. This,
however, is obvious, since F(U0) (assuming—as we may—
that U0 and since F(U0) is precisely the quotient field of I, for
large q (we have just proved that if q is large then Vq is a derived normal
model of V/k in F, whence—at any rate—k(Vq) = F). We thus have
shown that

(4) 1' = ..., q-Iarge, say q a.

Since R is a finite R-module, we can write = Rz1 Rz2 ± ...
and we may assume that the z1 are homogeneous elements of R. Let

be the degree of and let p = max , a), where a is
defined in (4). We shall now show that if q p then Vq is arithmeti-
cally normal.

If q max . , then we have clearly

(5) Rq = Rq_siZi + Rq_s2Z2 +

Let j be any non-negative integer. Then:

= -L ... = R1Rq.

Therefore, a fortiori, we have = It follows that =
(Rq)h. If, now, also (4) holds, i.e., if we have q p, then we find
I' + Eq + ± 4 (Rq)h .... Recalling that kU0 +
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ku1 + + kUm, we conclude that I' + I. Now, we have R0 = k
and = k since we have assumed that k is maximally algebraic in F
(and therefore also in F(y0)). Therefore I'c I, i.e., I' = I, showing
that Vq is arithmetically normal.

§ 5. Relations between non-homogeneous and homogeneous
ideals. We consider the polynomial rings R =k[X1,..., and
hR = ktY0, Y1,.. •, Y1j in n and n + 1 indeterminates, respectively,
over the same field k. Our aim is to establish a natural correspondence
between arbitrary ideals in R and homogeneous ideals in hR. Given
any polynomial F(X1,. . . , in R, different from zero, we first define
its homogenized polynomial hF in as follows:

(1) hF( y0, . . . , = Y1/ Y0, . . . , Y0),

where denotes, as usual, the (total) degree of F; the fact that hF
is actually a polynomial, and not merely a rational function with
denominator a power of Y0, is clear. The homogenized polynomial
hF is a form having the same degree as F. We leave to the reader the
verification of the following formulas:

(2) h(FG) = hF.hG,

(3) G) = hUJ

Note that (3) reduces to G) = hF+ hG if F, G and F+ G have the
same degree and F + G 0. Note also that hF is never a multiple of Y0.

Conversely, with every polynomial Y0,.. ., in hR, we associate
the polynomial in R defined as follows:

(1') . . . , X1j = X1, . . , X,j.

Then it is clear that we have

(2') =

(3') =

Actually we shall apply the operation a only to forms (p, so that from
now on will always denote a form (unless the opposite is stated
explicitly). It is clear that if y0m is the highest power of Y0 which
divides p, then the degree of is equal to m.

We now study the relations between "i" and It follows
ately from the that we have

(4) a(hF) = F.
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On the other h.and, we have Y0, •.., Y0,

Yj = Y1/ Y0, , Yj Y0). Hence

(5)

or, by the preceding observation,

(5')

where is the highest power of Y0 which divides Thus
is, in general, a divisor of cp. The inequality < can hold only
if cp is a multiple of Y0, and is then the form obtained from cp &y

deleting the factor contained in cp. It follows that the homogeneous
polynomials of the form hF in (F E R) are exactly those polynomials
which do not contain Y0 as a factor.

We now extend the operations "i" and " to ideals. We shall
denote ideals in R by small German letters and ideals in by capital
German letters. Given an ideal a in R, the set of all forms hF, F E a,
is not the set of all forms belonging to some homogeneous ideal, for
this set does not contain any form which is divisible by Y0. However,
if we consider the set S of all forms hF (m 0, F E a), then it is
easily seen that S is the set of forms of a homogeneous ideal. To
show this we have only to show that the difference of two forms in 5,
of like degree, is still in 5, and that the product of any form in S by an
arbitrary form in also belongs to S. For, if this is shown, then it
will follow that S is the set of all forms which belong to the ideal
generated by the elements of S. Now, all that will follow directly
from the following characterization of 5: a form belongs to S if and
only if E a. The proof is immediate and s as follows:

If ap = F E a, then hF, and thus, by (5'), çz = . E S.
Conversely, if çz = . with F in a, then a(hF) = F E a, by (4).

We denote by ha the homogeneous ideal in whkh is generated by the
forms belonging to S. Thus, a form belongs to ha if and only if is of
the type m 0, F E a, or, equivalently, if and only if E a.

THEOREM 17. The operation a ha maps distinct ideals in R into
distinct ideals in hR; it preserves inclusion and the usual ideal-theoretic
operations, i.e., it has the following properties:

ru

[21 h(a+b) ha+hb

[3] h(ab) — ha.hb

r4] h(a
fl b) — ha

= ha:hb

F61 = Vha.
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Furthermore:

[7] If is a prime ideal in R, then hip is also a prime ideal.
[8] If is prime and q is an ideal primary for in R, then liq is primary

for hip

[9] If a = fl q7 is an irredundant primary representation of an ideal

a in R, then ha = fl hq. is an irredundant primary representation

of ha.
PROOF: If a is an ideal in R then a coincides with the set of all

polynomials a and b are distinct ideals
in R then

[1] is obvious, and [2] follows from the fact that, for any ideal a, ha
is generated by the forms hF where F ranges over a. Similarly, [31
follows directly from (2) and from the definition of products of ideals.
A form belongs to h(a n if and only if E a fl i.e., if and only if

belongs to ha and to and this proves [4]. The inclusion h(a: b)c
ha :1 follows directly from [3] and [1] and from the definition of
quotients of ideals. Conversely, let E ha :'b and let F be any poly-
nomial in Since hF E we have hF E ha, whence . hF) E a.
By (2') and (4) we have . hF) . F, and so the product . F belongs
to a, for every F in This implies that E a: E h(a: showing

Relation c6] follows from the following equivalences: E h(Va)
for some integer

pEVha.
Let q be a primary ideal in R and let and be two forms in hR

such that E hq, hq. Then . = E q and q. Con-
sequently, E ci for some m 1, showing that ptm E hq. It follows
now from Lemma 2, § 2, that hq is primary. Similarly, it can be
shown that if is prime then is prime, and this completes the proof
of [7] and [8], in view of [6].

As to [9], the fact that fl is a primary representation of ha

follows from [4] and [8]. It remains to show that this representation
is irredundant. If j is any of the indices in the set {i} then a fl q..

Hence, by the first assertion of the theorem and by 14], we have
fl This completes the proof of the theorem.

Not every ideal in 'R is of the form ha, where a is an ideal in R; in
fact, no ideal of the form ha, other than the unit ideal, can contain a
power of Y0. The question arises, therefore, of characterizing the
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class of ideals ha, R. Before studying this question it will be
convenient to extend the operation a to ideals in hR.

Given a homogeneous ideal in "R the set of all polynomials of the
form where ranges over the set of all forms in 9X, is easily seen to
be an ideal by using the formulas (2') and (3') and by observing that:
(a) if and are forms in and m = — 0, then the form
Y0mcp — is in and we have a( —

= — (b) every poly-
nomial in R can be written in the form with a form in "R (see (4)).
We denote this ideal by

We note the following properties of the composite operations ah
and ha:

(6) a(ha) = a, for any ideal a in R,

(7) for any homogeneous ideal in hR,

(7') for some integer m 1.

If a is any ideal in R then it follows from the definition of ha (and it
has also been po!nted out at the beginning of the proof of Theorem 17)
that a s the set of a11 polynomials where ranges over ha In
other words, we have (6). Relation (7) is obvious, for if E a
form) then E and E whence E since is a
multiple of by (5'). On the other hand, if is any form in

then = for some form in and hence, by (5'), and
can differ only by a factor which is a power of Y0. Thus, for every
form in there exists an integer s = such that Y0sp E
Since has a finite basis, (7') follows.

THEOREM 18. The operation ¶�t maps the set of all homogeneous
ideals in "R onto the set of all ideals in R; it preserves inclusion and the
usual ideal-theoretic operations, i.e., it has the following properties
and are homogeneous ideals in hR):

{1}

{2}

{3}
{4}

{5}

{6}

Furthermore:

{7} is the unit ideal if and only if contains a power of V0.
{8} if and only if y0s for some integer s (and

hence also for all s sufficiently large).
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{9} If is a homogeneous prime ideal which is different from (0) and
does not contain Y0 then is a proper prime ideal.

{10} If is a homogeneous primary ideal which is different from (0)
and does not contain any power of Y0, then a proper primary
ideal, and if is the prime ideal of then a93 is the prime ideal
of

{1 1} If =fl is an irredundant primary representation of all

the being homogeneous (see § 2, Theorem 9), then = fl
where the are those primary components of which do not
contain any power of Y0, and the representation = fl js

primary and irredundant.

PROOF. We have a = a(ha), by (6), and this shows that the range of
the operation —p- is the set of all ideals in R.

The relations {1}, {2} and {3} are obvious. The inclusion
follows from {1}. Conversely, let F be any polynomial in

Then where is a form in and is a form in
It follows from (5') that = and = Y0m'(htF), and therefore,
if say m' m, then Consequently n and
F= E n showing the opposite inclusion fl n
and proving {4}.

The inclusion follows from . (vt: {3} and {1}.
On the other hand, let F be any polynomial in and let m be an
integer such that (7') holds. Then we have:

(Y0m . (yam. = y0n; . h(F. y0m

and therefore E : where = . Since = F, it follows
that F E and this proves {5}.

The inclusion where p is some integer 1, implies, by
{1} and {3}, whence On the other hand,
if F is any polynomial in and m is an integer satisfying (7'), then
we have, for a suitable integer p 1: (Y0m E y0m i.e.,
p E where = Y0m.F. Since = F, it follows therefore that
F E Hence and this proves {6}.

if E for some m � 1, then = (1) since a( = 1. Con-
versely, if = (1), then = 1 for some form p in and by (5'), such
a form is necessarily a power of Y0. This proves {7}.

We have, for any integers 1, (vt: Y0s). Y0s). Applying
the operation a and using {1}, {3} and {7}, we find that Y0s) =

Therefore, if = y0s for some s, then = Conversely,
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assume that = Since Y0ic and similarly for
there exists an integer s such that = = • •, =

y0s+1 = •••. We have Y0s) = = = Y0s), hence

Ys) = Y0s).

On the other hand, we have, by (7'): Y0m(h1(9I: Y0s)) = y0s for some
integer m 1, and therefore, by our choice of s, ha(91: y0s)ci
Consequently, by (7), we have Y0s) = y0s Similarly we obtain

Y0s) = y0s Therefore = y0s by (8), and this estab-
lishes {8}.

Let be a homogeneous primary ideal in hR, different from (0) and
not containing any power of Y0, and let F and G be two polynomials
in R such that FG E F From (7'), and from the fact that
FG E it follows that Y0m(htF)(htG) E for some m 1. Since is

primary and F y0m it follows that hG E whence
G = a(hG) E This shows that is primary, and thus
the first part of {1O} is established. In a similar fashion one proves {9}.
The second part of {1O} follows from {6}.

The first part of {11} follows from {4} and {7}. That all the are
primary follows from {1O}. To prove the assertion of frredundancy,
let v be any one of the indices] and let = fl We have

since fl is an irredundant representation. A fortiori, : ( Y0s) c1

for all s 1. On the other hand, since no power of Y0 belongs to £ç
we have : (

Ys) = and hence : (
Ys)

: ( Y0s) = for all s.
Consequently, : (

y0s)
: (

Y0s), for all s. It follows then by {8}
that i.e., fl fl This completes the proof of {11}

I
and of Theorem 18.

COROLLARY. If is any homogeneous ideal in 'R then, with the same
notations as in part {1 1} of Theorem 18 we have:

(9) = fl;.
In particular, we have = h(a9j) if and only if no prime ideal of 9i contains
Y0. The set of ideals of the form ha, where a is an ideal in R, coincides
with the set of homogeneous ideals in no prime ideal of which contains
1'o.

Relation (9) follows immediately from part {11} of Theorem 18, part
[4] of Theorem 17, and from relations (7) and (7'). The last assertion
of the corollary follows by observing that if 9t = ha then = a(ha) = a and
hence = ha =
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Note that the preceding corollary shows that for any homogeneous
ideal the ideal h(a91) can be characterized as the greatest homogeneous
ideal Q3 such that

REMARK. Another method for studying the operation is to
notice the existence of two different ways for passing from hR =

to R = krX1,.. , X,j:
(1) The mapping where now is not necessarily a form, is,

by formulas (2') and (3'), a homomorphism of into R, and formula
(4) shows that it maps onto R. Its kernel is obviously the ideal

= ( V0 —1). If we identify R with hR/a, the ideal gets identified
with + In other words: the passage from to R may be
regarded as a residue class ring formation. This proves, for example,
assertions {2} and {3} in Theorem 18.

(2) Another way of looking at the mapping is to imbed
R = k[X1,.. . , in k( Y0,.. ., by setting X1 = Y1/ Yo,...,

= Yj V0. Then R is contained in the quotient ring S =k[ Y0,...
where M is the multiplicative system formed by the powers of

Y0; and we have

(10) R = k[ Y1/ V0, .., Y0] = S n k( Y1/ Vo,..., Yj Ye).

In fact, the inclusion Rc: S fl k( Y1/ 1'0, . . . , Yj Y0) is clear. Con-
versely, if a rational function P( 1'0, . . . , y0q (P= polynomial)
belongs to k( Y1/ Y0, . . . , Yj Y0), it remains invariant if we multiply
the variables Y0, . , by one and the same quantity, whence P is a
homogeneous polynomial of degree q, and our rational function belongs
to k[Y1/ Vo,..., Yj Y01.

By this identification the polynomial (X1,. . . , X,3 corresponding
to a form cp of degree q becomes Y0, . . . , y0q = p(l, Y1/ Y0, .
Yj Y0). Thus if 9t is a homogeneous ideal, becomes the ideal
generated in R by (and—in fact—consisting of) the elements Y0,...

y0q where p is a form in and where q is its degree. It is clear
that this ideal is contained in 91k[Y0, . . . , fl k[Y1/ y0, . .

Y,1/ Y0]. Conversely, if a polynomial P( Y1/ Y0,.. , Yj Y0) belongs
to the ideal Y0, Y1, . . , it may be written in the form
A( y0,. .., y0q, where A( Y) E as P( Y1/ Y0,..., Y0) =

p( Y0,. .., Y0T where p is a form of degree r, not a multiple of
Y0, this implies that q r and that A = Hence A is a form of
degree q, and P(X1, . , X,1) = A(1, X1, . , X,1) is an element of
Hence

(10') = ¶2ik[Y0, • • ' k(Y1/Y0, . . . ,
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We have already mentioned above that the representation of as
+ proves immediately assertions {2} and {3} in Theorem 18.

On the other hand, formula (10') proves immediately the assertions
{4}, {6}, {9} and {1O} in Theorem 18, provided one takes into account
the behavior of intersections, radical, prime ideals and primary ideals
under quotient ring formation and under contraction (Vol. I, Ch. IV,

8 and 10).
We shall end this section with a discussion of the extension of the

preceding results to arbitrary finite integral domains S = krx1, x2,
xv]. Guided by the imbedding (10) of the polynomial ring R =
kIX1, X2,. . . , in the field k( Y0, Y1,. .., we proceed as
follows:

We adjoin a transcendental Yo to the quotient field of S, we set
=y0x1, 1= 1, 2,. , n, and we denote by hS the ring kIy0, y1,. . . , y,,l.

It is immediately seen that hS is a homogeneous ring over k (compare with
the proof of the lemma in § 4). For every homogeneous element
a = P(Yo' . . , of degree q, where cp is a form, we set aa =
x1, x2,. , x,,) = Since q is determined by a, aa depends only
on a. If we attempt now to define ha for any element a in S by analogy
with the definition given in the case of polynomial rings, we meet a
difficulty arising from the fact that there are in general infinitely many
polynomials F(X1, X2,. . . , X,,) with the property that F(x1, x2,

= a. Were we to agree to take for F a polynomial of smallest
possible degree, say v, and then define ha to be y0&'F(y1/y0, Y2/Yo,

we would find that the relation h(ab) = hahb is not necessarily
satisfied. However, we do not need a definition of the operation for
elements of S; what we need is only to define that operation for ideals
in S. The definition is the same as in the case of polynomial rings,
namely: if a is an ideal in 5, ha is the ideal generated by the homo-
geneous elements cp of hS such that E a. On the other hand, if
is any homogeneous ideal in hS we define as the ideal consisting of all
elements of S of the form where cp is any homogeneous element of

With these definitions, Theorems 17 and 18 remain valid if R,
hR and V0 are replaced by 5, hS andy0 respectively. Similarly, formulas
(6), (7) and (7') as well as the corollary to Theorem 18 remain valid.
We shall briefly prove this assertio'i.

Let r be the k-homomorphism of the polynomial ring R = k[X1,
X2,. , onto S= k[x1, • , such that X1- and let
n be the kernel of i-. We can extend to a homomorphism (which we
shall continue to denote by the same letter of kI Y0, Y1,. .., by
setting Y0-r =y0. Then r induces a homomorphism of the subring of
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k[ Y0, , (note that Y2 = Y0X1) onto hS such that Yçr =y1.
The kernel of this homomorphism of onto hS is easily seen to be the
ideal From now on we shall identify S with R/it and hS with

(11) S = R/n, hS = hR/hn

We note that, by (6), we can also write

(11') hS = S =

where
Now the canonical homomorphism of R onto R/n maps in (1, 1)

fashion the set of all ideals of R which contain the kernel n onto the
set of all ideals in 5, and this mapping preserves inclusion and all the
usual ideal-theoretic operations (see Vol. I, Ch. III, § 7, formulae
(11)—(16)); this mapping also sends prime and primary ideals into
prime and primary ideals respectively (see Vol. I, Ch. III, § 8, Theorem
11 and III, § 9, Theorem 14), and transforms irredundant primary
representations into irredundant primary representations (Vol. 1, Ch. IV,
§ 5, Remark at the end of the section). A similar statement holds
for the canonical homomorphism of onto h5 and for the induced
mapping of the set of all homogeneous ideals of which contain the
kernel = onto the set of all homogeneous ideals of In view of
these facts, it is seen at once that the validity of Theorems 17 and 18
for R and 'R implies their validity for S and

§ 6. Relations between affine and projective varieties. With
every point P= (x1, x2,. . , of we associate the point
of p,1K having {1, x1, . . , as a set of homogeneous coordinates.
The mapping P of into is one to one, for if two
points cp(P)=(1, x1, x2, . . . , and x'1, x'2, . , coin-
cide, then we must have, for some t in K, 1 = t. 1, = showing that
t =1, = x, P' = P. This mapping is not onto, for no point of the form
(y0, . , with Yo =0 can be in 1-lowever, every other
point of is in for if Yo 0 and if we set =y1/y0, then
the point (Yo' Yi' . , in is the (p-image of the point (x1, X2,

of Thus, the mapping (p identifies the affine space
with the complement of the hyperplane V0 = 0 in the projective space

We think of having carried out this identification and we shall
regard therefore the afline space as a subset of the projective space

The hyperplane V0 = 0 is called the hyperplane at infinity (for
the above identification), and the points or varieties which are contained
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in the hyperplane at infinity are said to be at infinity. The points not
in the hyperplane V0 =0 are said to be at finite distance.

In this section we shall denote algebraic varieties in the projective
space by capital letters such as V, W, . . . , while algebraic varieties in
the affine space will be denoted by small letters such as v, w, .
Similarly, capital German letters will be used to denote
homogeneous ideals in Y0, Y1, . . . , Yj, while small German letters
a, b,..., will denote ideals (homogeneous or non-homogeneous) in
k[X1, X2,. . . , Xv]. If V is a variety in we shall denote by aV
the intersection of V with and we shall call a V the affine restriction
of V:

(1) •aV=

The fact that aV is also a variety (an affine variety) is included in the
following relation: If is a homogeneous ideal in Y0, Y1,...,
then

(2) =

(It is understood that in (2) the operator has two different meanings
according as it is applied to a homogeneous or non-homogeneous ideal:

means the projective variety of the homogeneous ideal while
stands for the affine variety of the ideal

a point P = (1, x1, x2,. . . , of belongs to
if and only if x1, x2, . , 0 for all forms Y0, Y1,

in the ideal and since consists of all the polynomials
X1, X2,. . . , such that p(Y0, Y1,..., is a form in we

see that a point P of belongs to i) if and only if the n-tuple
(x1, x2, , of its non-homogeneous coordinates is a zero of the
ideal and this proves (2) and shows that is an affine variety.

If v is any affine variety we denote by hv the least algebraic (projective)
variety containing v, or equivalently, using the topology in intro-
duced in §4:

(3) 1'v closure of v in

We call hv the projective extension of v.
THEOREM 19. If v is an affine variety in then

(4)

v hv maps in (1, 1) fashion the set of all affine varieties
in onto the set of all projective varieties having no irreducible com-
ponents at infinity. If v is irreducible, so is hv, and if LI is the irredun-
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dant decomposition of an affine variety v into irreducible components, then

U hv is the irredundant decomposition of hv into irreducible components.

If V is an irreducible projective variety, not at infinity, then a V is irreducible

haV V.

PROOF. We first observe that if a is any ideal in k[X1, X2,. . . ,

then
=

This follows immediately by setting = ha in (2) and by recalling that
= a 5, (6)). Now, let v be a given affine variety. Then v = 17'(a)

for some ideal a in k[X1, . , Xv]. Formula (6) shows that there
exists a projective variety V such that aV v (namely, the variety

Since hv is the smallest projective variety containing v, it
follows a fortiori that ahv = v, which proves (4). Formula (4) also
shows that if v1 and v2 are distinct affine varieties then /1v1 hv2, for
a(hv1) = v1 v2 = a(hv2). Hence the mapping v hv is (1, 1).

Let v be an irreducible non-empty variety and let liv = V1 U V2 where
V1 and V2 are projective varieties. We have, by (4): v = V1 U V2) =
aV1 u aV2. Since v is irreducible, either aV1 or aV2 coincides with v.
Let, say, a V1 = v. Then V1

V1 liv is irreducible. Note that since v is
non-empty, liv is not at infinity.

Let v be an arbitrary affine variety and let v = v1 be the irredundant

decomposition of v into irreducible varieties. We know that each
variety liv is irreducible, and it is clear that liv = U liv (the closure of

a finite union of sets is the union of the closures). It remains to show
that the representation U hv1 is irredundant. If it were not irredun-

dant, say if hv were superfluous, then we would have liv1 for some
1 (see § 3, Remark following the proof of Theorem 13) and hence,

by (4), v1, which is impossible.
Let V be an irreducible projective variety in not at infinity.

By (4) we have ahaV=aV, i.e., the two projective varieties haV and V
differ only by points at infinity. If, then, we denote by the hyper-
plane at infinity, then (haV) 'j V. Since V is irreducible and

1 V, it follows that ha V contains a V
and therefore ha V, which proves (5). The irreducibility of a V
follows from (5), from the irreducibility of V and the preceding part
of the theorem.
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We have just shown that every irreducible projective variety T7, not
at infinity, is the map of some affine variety under the operation
namely of a V. This, and the other assertions of the theorem which
have already been established, show that the mapping v /zV maps the
set of affine varieties onto the set of projective varieties having no
irreducible components at infinity. This completes the proof of the
theorem.

COROLLARY. The mapping V aji maps the set of all projective
varieties in onto the set of all affine varieties in If V= U

V into irreducible components, then
a v= U a V1 where the V3 are those irreducible components of V which
are not at infinity, and U a V3 is the irredundant decomposition of a V into
irreducible components. If V and V' are two projective varieties then
aV= aV' if and only if V and V' differ at most by irreducible components
which are at infinity.

The first assertion of the corollary follows from (4). It is clear
that aV U aV1 if V— U (the notations being as in the corollary),

for is empty for any which is not a From Theorem 19 we
know that each aV1 is an irreducible variety. 1ff' andj" are two distinct
indicesj then neither of the two varieties and contains the other.
Hence, by (5), neither of the two varieties aV, and aV.,, contains the
other. This shows that the decomposition aV= U aV1 is irredundant.

The last part of the corollary now follows immediately.
In addition to formula (2) the following ideal-theoretic relations

may be pointed out:

(7) a(f(V)) = 5(aV),

(8) h(5(v)) =

(9)

(10) '//(ha) =

(For the sake of symmetry we have reproduced here in (9) the
formula (2).)

In these relations, V and v denote arbitrary varieties, projective and
affine respectively, is an arbitrary homogeneous ideal in k[ Y0, Y1,

., and a is an arbitrary ideal in kIX1, X2,. . . , Xv]. The sym-
bols 5(V) and refer to the homogeneous ideals of V and hv in
k[ Y0, while 5(v) and denote the ideals of the
afline varieties v and aV in k[X1, X2,. . . , Xv].

To prove (7), we observe that if F(X1, X2,. . . , is any poly-
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nomial in X2,.. ,X,j and if cp = hF (see § 5), then F e 5('V) if
and only if the form p( Y0, Y1, , vanishes at each point of
aji, or—equivalently, if and only if Y0çD E 5(V). We thus see
that F e f(" V) if and only if there exists a form in 5(V) such that

F, i.e., if and only if F E a(5( V)).
If a form Yo, Yi, . . . , is in 5(hv) then Xi, X2, . . . , E

f(v), whence cp( Y0, Y1,. . . , E h(5(v)). On the other hand, if a
form Y0, Y1, . . . , Y,j belongs to h(5(v)), then it is clear that this
form vanishes at every point of v, i.e., at all points of hv which are at
finite distance (since hv fl = v). Since hv has no irreducible com-
ponents at infinity, it follows at once that cp vanishes on FzV, and this
proves (8).

As to (10), let , be the isolated prime ideals of a. By
Theorem 17 5), . . , are the isolated, prime ideals of h0
If we set = and then v1, v2,. , are the
irreducible components of 'r(a), while V1, V2,. . . , are the irre-
ducible components of Since it follows from (9) that

a V2. Therefore, by (5), V. and consequently, by Theorem
19, the irreducible components of h(r(a)) are also V1, V2,. . . ,

This establishes (10). Note that in the proof of (10) we used implicitly
the Hilbert Nullstellensatz (or equivalent consequences).

We conclude this section by comparing corresponding irreducible
varieties in and Let W be an irreducible variety in not
contained in the hyperplane at infinity, and let ¶3 be its prime ideal in
k[Y0,. . ., Then its affine restriction w = aW is an irreducible
affine variety in (Theorem 19). We have, as was seen above:

w="J'V, W__hw,

and every irreducible affine variety may be written as aW, with W
irreducible.

For studying the prime ideal of w, we use formula (10') in § 5

which gives (after identifying X2 with Y0):

(11)

where M denotes the multiplicative system {1, .,
y,. be the of Y1. The ring kEY0,. . ., . k[ Y0,.

is, (Vol. I, Ch. IV, § 10, form. 1) (and since n M= 0), isomorphic
to the quotient ring k[y0, . . , where M' is the multiplicative
system {1, Yo'

.
,

. . . ,} in the homogeneous coordinate ring
k[y0, . . . , By formula (11) the affine coOrdinate ring k[x1,. . .
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of w='W (which is k[X1, • , • , is
a subring of kIy0, , More precisely, it is the intersection of
this ring with the field k(x1,.. , = k(y1/y0, . • , We have
therefore

(12) krx1,.. , xe,] = n k(y1/y0, • ,

It follows from this that the function field of w = OW is equal to the
function field of W. Thus, in particular, an irreducible
variety (not contained in V0 =0) has the same dimension as its affine
restriction; and an irreducible affine variety has the same dimension as
its projective extension.

If the homogeneous coordinate ring of W is integrally closed, then
k[y0, . . is integrally closed (Vol. I, Ch. V, § 3, Example 2,
p. 261). It follows then from (12) that the coordinate ring of aW is also
integrally closed. In other words, if W is arithmetically normal then
aW is normal. This result is included in the results proved in §

§ 7. Dimension theory in finite integral domains. The basic
theorems of dimension theory in finite integral domains are essentially
included in, or are easy consequences of, two general theorems on
noetherian rings: the lemma on minimal prime ideals proved in VI,
§ 14 (p. 91) and the "principal ideal theorem" proved in Vol. 1,
Ch. IV, § 14 (Theorem 29). To derive the main facts of dimension
theory in finite integral domains from these two general theorems will
be our first object in this section. The proofs in this theory are, as a
rule, of inductive character, and the induction is carried out by passage
to residue class rings modulo a prime ideal. It is therefore not feasible
to deal with the dimension theory of polynomial rings separately,
outside the general framework of dimension theory of arbitrary finite
integral domains. It is for this reason that we do not confine ourselves
in this section to polynomial rings.

Our second object in this section will be to derive the dimension
theory ab initio, without presupposing the two general theorems cited
above, but rather proving again these two theorems (in the special
case of finite integral domains) by using special properties of finite
integral domains. The special properties which play a particular role
are those expressed by the "normalization theorem" (Theorem 25) and
by the lemma preceding that theorem.

Let k be an arbitrary ground field and let R k[x1, x2,. . , x,' be a
finite integral domain over k (the x7 are not necessarily algebraically
independent over k). We denote by r the transcendence degree of R
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over k. We recall our definition of the dimension of a prime ideal
in R (VI, § 14, p. 90): the dimension of t is the transcendence degree
of Rft over k (it is tacitly assumed that R and that consequently

contains k; if = R, we may define the dimension of as — 1).

The lemma proved in VI, § 14, p. 91, states that if is a minimal
prime ideal in R then dim = r — 1. We recall also from Vol. I, Ch. IV,
§ 14, p. 240, that if h = resp. d= is the height, resp. the depth,
of then there exists at least one strictly ascending chain

(1)

resp. at least one strictly descending chain

(1')

of prime ideals and there does not exist such a chain with more than
h + 1 (resp. d+ 1) prime ideals. We note that in the case of an integral
domain R, the first term in the above ascending chain is necessarily
the ideal (0).

In all that follows it is necessary to bear in mind that if and are
two prime ideals in R then

Idim
(2)

>

The first inequality follows from the fact that the canonical homo-
morphism of onto is proper (cf. Vol. I, Ch. II, § 12, Theorems
28 and 29), the last two inequalities are self-evident. In particular, it
follows that every proper prime ideal has dimension <r.

The main theorem of dimension theory is the following:
THEOREM 20. If R is a prime ideal of dimension s, then

(3) = r—s,

(3') d(t) = s.

PROOF. We shall prove (3) by induction from s + 1 to s, since (3) is
trivial if s r (in which case = (0)). We assume (0). From (1)
it follows that r > dim ... > dim th_ i> dim = s, and hence

r — s (note that = (0), whence dim = r). At any rate,
is finite, and we can therefore find a prime ideal in R such that

(since (0)) and such that there are nc prime ideals between
and t,. Then is a minimal prime ideal in the finite integral

domain R = and hence, by the cited lemma of VI, § 14, we have
I +dim i.e., dim 1 (since dim By



194 POLYNOMIAL AND POWER SERIES RINGS Ch. VII

our induction hypothesis we have r — s—I, and hence
r — s. This establishes (3).

We shall prove (3') by induction from s — 1 to s since (3') is trivial
if s = 0 (in which case t' is necessarily a maximal idea!). From (1') it
follows that 0 dim < dim 1< <dim < dim t' s, and
hence s. We now consider the finite integral domain R = R/t,
and we fix a minimal prime ideal in R. Let be the prime ideal in
R which contains t' and is such that = Since R has trans-
cendence degree s, we have dim = dim = s — 1 (by the cited lemma
of VI, § 14). By our induction hypothesis we have therefore =
s — 1, and consequently s. This establishes (3') and completes
the proof of the theorem.

COROLLARY 1. If and are two prime ideals in R such that
and if s and s' are the dimensions of and respectively, then there exists
at least one strictly ascending chain of s — s' + I prime ideals connecting

andp':

(4)

and there does not exist any such chain with more than s —s' I ideals.
Furthermore, any strictly ascending chain of q I prime ideals connecting

and q < s — s', can be refined to a chain (4) of maximum length.
The first assertion of the corollary follows from the fact that in the

ring which has transcendence degree s over k, the prime ideal
p'/p, which has dimension s', must have height s — s'. The second part
of the corollary follows by applying the first part to each pair of con-
secutive members of the given chain of q ± I prime ideals.

COROLLARY 2. If and are prime ideals in R such that <
and such that no prime ideal can be inserted between and then the
dimensions of and differ by unity, and so do their heights and depths.

Obvious.
COROLLARY 3. In a finite integral domain R of transcendence degree

r >0 there exist proper prime ideals of all dimensions 0, 1, 2,. . . , r — 1.

This follows from the theorem, in the special case = (0).
COROLLARY 4. Let = k[y0, y1,. . .

, yn] be a homogeneous finite
integral domain and let and be prime ideals in hR, of dimension
s+1 and s' +1 respectively, such that < If and are homo-
geneous, then there exists at least one strictly ascending chain of s — s' + 1
prime homogeneous ideals connecting and

Assuming that y0 0 we set x2 =y1/y0, i = 1, 2,. . . , n, and we con-
sider the integral domain R = kix1, . . , xv]. We apply the results
proved in § 5 in regard to the relationship between homogeneous ideals
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in hR and arbitrary ideals in R. We set ti = and = Then
and are prime ideals of dimensions s and s' respectively, and we
have P < By Corollary 1 we have a chain (4) of s —s' ±1 prime
ideals connecting and p'. Then the chain < ...
hp,1 < satisfies the required conditions.

COROLLARY 5. In a homogeneous finite integral domain 'R of trans-
cendence degree r + 1 there exist proper homogeneous ideals of all dimensions
0,1,2,.

We note, in regard to Corollary 5, that the irrelevant prime ideal in
hR is the only prime homogeneous ideal of dimension 0, since every
homogeneous ideal (different from the unit ideal) is contained in the
irrelevant prime ideal. We recall also from § 4 that if a homogeneous
prime ideal in has dimension s 1 then its projective dimension
is s, and s is also the dimension of the variety of

The preceding results have an immediate geometric interpretation
terms of algebraic varieties, in view of the (1, 1) correspondence that
exists between the homogeneous prime ideals in the polynomial ring
k[Y0, Y1,. . ., and the irreducible algebraic varieties in the pro-
jective space (see § 4). Thus the lemma proved in VI, § 14, con-
cerning minimal prime ideals, signifies, geometrically speaking, that
every maximal irreducible (proper) subvariety of an r-dimensional irre-
ducible variety has dimension r —1. This is true for both projective and
afline varieties. Corollary 3 implies that every irreducible affine
variety V, of dimension r >0, carries points of all dimension 0, 1, .

r — 1, and in particular V carries algebraic points. This yields another
proof of the Hilbert Nullstellensatz. As a matter of fact, Corollary 3
implies that if a finite integral domain R is a field (hence has no proper
prime ideals), then its transcendence degree is 0, and this is precisely
the lemma which we have proved in § 3 and from which we were able
to derive the Nullstellensatz in a straightforward manner.

Other important consequences of the lemma proved in VI, § 14 are
obtained by making use of the "principal ideal theorem" proved in
Vol. I, Ch. IV, § 14 (Theorem 29). We have namely

THEOREM 21. If R is a finite integral domain, of transcendence degree
r, and is a non-unit in R, then every isolated prime ideal of Rf has
dimension r —1.

This is simply a re-statement of the "principal ideal theorem" in
which use is made of the knowledge that every minimal prime ideal in
R has dimension r —1.

COROLLARY. If is a homogeneous finite integral domain, of trans-
cendence degree r +1, and f is a homogeneous element of hR, different
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from zero and of positive degree, then every isolated prime ideal of hR .f
has pro jective dimension r — 1.

Obvious, sincef is a non-unit, hR .f is a homogeneous ideal and every
prime ideal of 'R .f is homogeneous 2, Theorem 9).

In geometric terms, the above corollary may be stated as follows: if
V is an irreducible r-dimensional algebraic variety in the projective space

andf( Y0, Y1,..., is a form in k[ Y0, Y1, •••, of positive
degree, such that the hypersurface H:f( Y) =0 does not contain V, then
each irreducible component of the intersection V n H has dimension r — 1.

To see this we have only to take for 'R the homogeneous coordinate ring
kIyo, y1, . , of the variety V 4, p. 170), observe that our assump-
tion concerning the form f( Y0, Y1,..., signifies that the element
f(y0, . . , of is different from zero and finally recall 3,
Theorem 14, Corollary 3) that the irreducible components of H n V
are the varieties of the isolated prime ideals of the principal ideal
generated in hR by f(yo, y1, ,

In the same way as Theorem 21 represents a re-statement of the
"principal ideal theorem" (Vol. I, Ch. IV, § 14, Theorem 29), the
following generalization of Theorem 21 is a re-statement of Theorem
30 of IV, §14:

THEOREM 22. If R is afinite integral domain, of transcendence degree r,
and is a proper ideal in R which admits a basis of s elements, then every
isolated prime ideal of 91 has dimension r — s.

COROLLARY. If is a homogeneous finite integral domain, of trans-
cendence degree r +1, and 91 is a proper homogeneous ideal in R which
admits a basis of s elements, then every isolated prime ideal of 91 has
projective dimension r — s.

The maximum of the dimensions of the isolated prime ideals of an
ideal 91 in a finite integral domain R is called the dimension of 91. If R is
a homogeneous finite integral domain and 91 is a homogeneous ideal in
R, then one uses preferably the projective dimension of 91, which is
defined as the dimension of 91 diminished by unity. Theorem 22 and
its corollary assert that, under the conditions stated, the dimension,
resp. the projective dimension of is not less than r — s.

An ideal 91 in a finite integral domain R is said to be unmixed (or
equidimensional) if all its prime ideals have the same dimension. It
is clear that an unmixed ideal has no imbedded prime ideals. A
previous theorem on principal ideals in noetherian integrally closed
domains (Vol. I, Ch. V, § 6, Theorem 14) permits us to strengthen
Theorem 22 in the case in which R is integrally closed (in particular,
then, if R is a polynomial ring):
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THEOREM 23. If R is an integrally closed finite integral domain, of
transcendence degree r, then every proper principal ideal in R is unmixed,
of dimension r —1. If, in addition, R is also a unique factorization
domain (in particular, if R is a polynomial ring), then also the converse is
true, i.e., every unmixed ideal of dimension r — 1 is principal.

PROOF. The first part of the theorem is a restatement of Theorem 14
in Vol. 1, Ch. V, § 6. Conversely, if is an unmixed ideal, of dimension
r— 1, then all its prime ideals are minimal, and if R is a UFD then
each is a principal ideal (G1) and each primary ideal having as

associated prime ideal is a power (G1v1) of We have therefore, for
suitable integers = fl (G1v1). Since R is a UFD and the G. are

two by two relatively prime, it follows that coincides with the princi-
pal ideal generated by fl G.vi. Q.E.D.

For polynomial rings we have the following special result concerning
zero-dimensional (whence maximal) prime ideals.

THEOREM 24. Every zero-dimensional prime ideal in a polynomial
ring R = k[X1, X2,. . . , Xe,] in n indeterminates (k, a field) has a basis
of n elements.

(NOTE. By Theorem 22, can have no basis of less than n elements.)
PROOF. We shall proceed by induction with respect to n, the case

n =0 being trivial. Since is zero-dimensional, each X1 is algebraic
over k modulo i.e., n k[X1] (0). Consider = n k[X1]. The
ideal is principal, say (f1(X1)), where f1(X1) is necessarily an irre-
ducible polynomial in k[X1]. Let 1? = R/R. = k[a1, g2, . . .

,

where a1 is the of X1, and X3, . . . , are the R.
residues of X2, X3,. . . , respectively. Since a1 is algebraic over k
(being a root of f1(X1)), we have k[a1] = k(a1) is a field. It is clear that
g2, X3,. . . , are algebraically independent over k(a1), since is
the principal ideal generated byf1(X1). Hence R is a polynomial ring
in n —1 variables X2, X3,. . . , Xe,, over the field k(a1). By our induc-
tion hypothesis, the zero-dimensional prime ideal = in 1? has a
basis of n — 1 elements, say . . . , If, then, is any element
in R whose residue is (1=2, 3, . . . , n) then ff1, f2, . . . , is a
basis of

REMARK. It follows from the above proof that the prime ideal has
a basis consisting of n polynomials of the form

f1(X1), f2(X1, X2), . . . , X2, . . . , Xe).

If a1, , are the of X1, X2, . . . respectively,
then we can take for X2,. .. , Xj any polynomial in k[X1, X2,
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such that f1(a1, ,

a over k(a1, • , (= kIa1, a2,. • , The following
additional conditions determine the polynomials uniquely and lead
to a canonical basis of (relative to the ordering X1, X2, . . . , of the
variables):

(1) Each is of degree in where = rk(a1, . . , : k(a1,
. . , a._1)], and is monic as a polynomial in X1.

(2) is of degree in X1, forj= 1, 2,.. . ,

If k is algebraically closed, then the are in k, and has the follow-
ing basis:

X1—a1, X2—a2,...,
Before proceeding any further in dimension theory we shall show how

all the preceding results can be obtained without recourse to general
theorems on noetherian rings. It is clear that Theorem 21 is the key
result, from which all the theorems proved in this section (and also the
two earlier results, namely the lemma of VI, § 14 and Theorem 29 of
Vol. I, Ch. IV, § 14, in the special case of finite integral domains)
follow as immediate consequences. We shall therefore show how
Theorem 21 can be proved directly by using special properties of finite
integral domains. Actually, we shall find it essential, in this new
treatment, to deal only with homogeneous finite integral domains.
Therefore, what we shall prove directly is Theorem 21 in the case of
homogeneous domains R, i.e., we shall prove the corollary of Theorem 21.
In view of the relationship between ideals in R and hR, established in
§ 5, Theorem 21 in the general case is an immediate consequence of
the "homogeneous" formulation given in the corollary of that theorem.

We first prove a general lemma on finitely generated homogeneous
rings. Let R = . . , be such a ring, where A is an
arbitrary commutative ring (with element 1). A set of homogeneous
elements z0, z1, . . , of R, of positive degrees, is said to be a homo-
geneous system of integrity,, if the ring R integral over the ring S=
A[z0, Z1, . . ,

LEMMA. In order that a set {z0, z1,. . , of homogeneous elements
of R, of positive degrees, be a homogeneous system of integrity it is necessary
and sufficient that the ideal 3 generated in R by z0, z1,. . , be irrele-
vant.

PROOF. We first observe that it is sufficient to prove the lemma
under the assumption that the m -'- I elements are of the same degree.
For if, say, is the degree of z1 and if we set = Z1v/vL, where v =

then the m + I elements u0, u1,• . , of R are homo-
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geneous, of the same degree v. It is clear that the ideal generated
by z0, , zr,, in R is irrelevant if and only if the ideal generated
by u0, u1, • , Urn is irrelevant. On the other hand, since u1 E S and
since the z, are integral over the ring Alit0, it1, • , iç,3, it follows that
R is integral over S if and only if R is integral over A[U0, it1, . . . ,

We shall therefore assume that the z1 have the same degree v.
Assume that {z0, z1, • , is a homogeneous system of integrity.

Each of the elements y, is then integral over the ring S= A[z0, z1,
Zrn]. Consider one of the y1's, say Let

(5) z0, z1, • ,

= 1(z0, z1,. . . , Zrn)yOS_1+ z1, . • = 0

be an equation of integral dependence for Yo over S. Here each is
a polynomial with coefficients in A. We have z1 = F1(y0, YI'

• ye),
where F. is a form, of degree v, with coefficients in A. We set G( Y0,

= Yo, F0( Yo, Y1, . . . , F1( Yo, Y1, . . . , .

Frn(Y0, Y1, . . . ,

We have then G(y0, , =0. Since R is a homogeneous ring
it follows that we must have , =0, for every homo-
geneous component of the polynomial G( Y0, Y1,. . ., Ye). In
particular, we have , y1j = 0. If we denote by

p of p3• (j= s —1,
s—2, . . . , 0), then we find that Y0, Y1,..., = y0s +

Y), F1( Y),. . , Y)) y0s_pv, where s' = [s/v]. Hence

(6) Z1, . . . , Zrn)yOS_V+

Z1, . . . , . . . = 0.

This is still a relation of integral dependence for Yo over 5, but now
the coefficients . are homogeneous in the of positive
degrees 1, 2,. .., respectively. It follows from (6) that YOS belongs to
the ideal 3. Similarly, some power of each of the elements Yi' Y2'

belongs to 3. Hence 3 is an irrelevant ideal.
Conversely, let us assume that the ideal 3 is irrelevant. To prove

that R is integral over S it will be sufficient to prove that R is a finite
S-module (see Vol. I, Ch. V, § 1, condition (c"); actually, these two pro-
perties of R are equivalent, in view of Vol. 1, Ch. V, § 1, Theorem 1). Let
t be an exponent such that 3, where is the prime irrelevant ideal
generated by Yo' Yi' , and let {w5} be the (finite) set of monomials
yoaoyia'. of degree + a1 + ... + < t. We shall show that
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every monomial in they's can be written in the form a3w3, with a5 e S,

and thus establishthat the monomials w3 form a basis of R over S.
We proceed by induction with respect to the degree of the

monomial e, for the assertion is trivial if < t. We therefore
assume that t and we write = MG, where M is a monomial of
degree t and G is a monomial of degree — t. Since M E 3, we
can write M = H1z1, where we may assume (since R is a homogeneous

ring) that each H1 is a homogeneous element of R, of degree t —
Substituting into the above expression of we find = GH1z1. The

coefficient GH1 of; is homogeneous, of degree — t + t — =
— a(z1) < and is therefore a linear combination of monomials

y0aQy1al. . . yen, of degree <9(e), with coefficients in A. By our induc-
tion hypothesis we have therefore GH2 = a1,3w3, with e S. Hence

= o3w3, where = E S. This completes the proof of the

lemma.
The following application of the preceding lemma is an extension of

the normalization theorem which was proved in Vol. I, Ch. V, § 4
(Theorem 8) only for infinite ground fields:

THEOREM 25. (Normalization theorem.) If R = k[x1, x2,.. . , x,,] is
a finite integral domain over a ground field k and r is the transcendence
degree of R over k, then there exist sets of r elements z1, z2,. . , in R
such that R is integral over the ring k[Z1, z2, . , Zr]. If R is homo-
geneous, then the Z1 can be chosen so as to be homogeneous, and for one of
the we can choose an arbitrary homogeneous element of positive degree.

PROOF. We first consider the case in which R is a homogeneous ring.
By the preceding lemma we have only to show that there exists a set of
homogeneous elements Z1, . , Zr in R, of positive degree, such
that the ideal 3 generated by these elements is irrelevant. To say
that a proper homogeneous ideal 3 is irrele'Vant is the same as saying
that it is of dimension zero, for the irrelevant prime ideal (x1, x2,. . . ,

is the only zero-dimensional prime homogeneous ideal in R and the pHme
ideals of a homogeneous ideal are all homogeneous 2, Theorem 9). To
prove that there exist homogeneous elements Z1, Z2, . . . , of positive
degree, having the property that the ideal 3 is irrelevant, it will be
sufficient to show that we can choose the elements Z1, Zr such
a way as to satisfy the following condition: if 3. is the ideal generated
by Z1, . . , i= 1, 2,. .. , r, and denotes the zero ideal, then

(7) dim > dim ... > dim Br,
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where is, of course, the ideal 3. For if (7) holds then it follows that
dim = r — i, 1=1, 2,. • , r, since dim = r and dim 0 (the
elements being all of positive degree, the ideal 3 is not the unit
ideal).

We choose for z1 an arbitrary homogeneous element of positive
degree and different from zero. Then, of course, we will have r>
dim Assume that we have already found elements z1, z2, . . . ,

such that r > dim > dim 32> > dim Let be
the isolated prime ideals of For any f= 1, 2, . . . , h we can find a
homogeneous element u5 which belongs to fl but does not belong to

Upon replacing each of the h elements u1, u2,. . . , Uh by a suitable
power of that element, we can arrange matters so that the elements u3
are all of the same degree. Then the element = u1 ± u2 + . . . +
does not belong to any of the ideals Let p be the dimension of the
ideal generated by z1, z2, . . . , and let be a prime ideal of
Sj+1 which has dimension p. The ideal contains also and thus
contains at least one of the ideals Let, say,
Since E and we have > Therefore p=dim 3i+1=
dim < dim dim This completes the proof of the theorem in
the homogeneous case.

In the general case we adjoin a transcendental Yo to the field k(x1,
. , we set y1 and we consider the homogeneous finite

integral domain "R = k[y0, Yi' , y,,]. This domain has transcen-
dence degree r + 1. By the preceding case, there exists a homogeneous
system of integrity {u0, u1, . . . , uj in "R consisting of r + 1 elements,
and we can take as one of these elements an arbitrary non-zero homo-
geneous element of positive degree. We take for u0 the element
If v1 is the degree of u1 we replace {u0, u1, . . . , uj by the following
homogeneous system of integrity {v0, v1, . . . , vj: v0 =yOv,

v = v1v2. The elements of this new system of integrity
are all of the same degree v. For each element y1 (i = 1, 2, . . . , n)
there exists a relation of integral dependence over k[v0, v1, . . . ,

which has the form:

(8) y1s+p1(vo, v1, . . . , v1, . . . , . . . = 0,

where Pq is a form of degree q (see proof of Lemma, equation (6)). If
we set = v j= 1, 2, . . , r, and divide (8) by relation (8)
yields the following relation:

XjS+p1(1, zi, . . . , Zl, Z2, . . . , Zr)XiS_2V+ . . = 0,
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and this is an equation of integral dependence for x• over kfZ1, Z2,
ZrJ. This completes the proof.

We shall now proceed to our stated objective of giving a seLf-contained
proof of Theorem 21 based on the above lemma and on the normalization
theorem just proved. For reasons explained earlier we shall deal only
with the homogeneous case of Theorem 21, i.e., with the corollary to
Theorem 21. We shall denote by R (instead of by FiR, as in the
corollary) our homogeneous ring , but we continue to
denote by r + 1 the transcendence degree of R/k. Let f be a non-zero
homogeneous element of R, of positive degree. We set Z0 —f and we
choose r other homogeneous elements Z1, z2, . . , Zr in R, of positive
degree, such that the set {z0, Z1, . , is a homogeneous system of
integrity of R (Theorem 25). Note that since R has transcendence
degree r + 1 over k and the are integral over krZ0, Z1, . . , Zr.], the
r + 1 elements Z1 are algebraically independent over k.

Let be any isolated prime ideal of the principal ideal Rf (= RZ0)
and let be the of Z1. We shall prove that z1, ,

are algebraically independent over k. This will estabflsh the fact that p
has (affine) dimension r (and projective dimension r —1) and will
settle Theorem 21.

Let h(Z1, Z2, . . ., Zr) be any non-zero polynomial in r indeter-
minates, with coefficients in k. We have to prove that z2, . ,

0, or—equivalently—that h(Z1, Z2, . . , Zr) Since this has to be
shown to be true for any isolated prime ideal of RZ0, we see that
what we are asserting equivalent to the assertion that the element
h(Z) h(Z1, , Zr) 1r5 prime to the radical i.e., that we have:

(9) =

Let be any element of R . h(Z). We have then, upon denoting
by a suitable power of

(10) Ih(Z)]Pe = UZ0, (u E R, = 7p).

Let

(11) Us+ a1(Z0, Z1, . . . , Zr)US_l+ . . + Z1, . . , Zr) 0

be the equation of least degree which u satisfies over the field k(Z0,
. , Since u is integral over krZ0,

Z1, . . , Zr are algebraically independent over k (whence k[z0, Z1,
Zr] is an integrally closed domain), it follows that (11) must be

an equation of integral dependence for u over k[Z0, . , (Vol. I,
Ch. V, § 3, Theorem 4), i.e., the a1(Z0, z1, . . . , are polynomials,
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with coefficients in k. From (10) and (11) we deduce that the equation
of least degree that satisfies over k(z0, z1, . . . , Zr) i5 the following:

12' Cs +
a1(Z0, Z1, ,

Cs_I + . . . +
Z1, ,

— o( [h(Z)]Ps —

Since also C is integrally dependent over krZ0, it follows
again by the cited Theorem 4 of Vol. I, Ch. V, § 3, that the quotients

must be polynomials (in the algebraically inde-
pendent elements , Zr). Then (12) shows at once that

e R. Z0, i.e., E Therefore also belongs to (since
This proves (9) and completes the proof of Theorem 21.

§ 8. Special dimension-theoretic properties of polynomial
rings. In this section we are going to prove two special results of
dimension-theoretic nature which hold in polynomial rings and which
do not extend to arbitrary finite integral domains.

THEOREM 26 (MACAULAY). Let be an ideal in R =k[X1,..., X,,i,
of dimension n — h. If is generated by h elements F1,. . . , then

is unmixed.
PROOF. We proceed by induction on h, the case h = 0 being trivial

(and the case h 1 having already been treated in Theorem 23, § 7).
We have to show that every associated prime ideal of is (n —
dimensional. Let d be the dimension of Since is (n —

we already know that —h. Since k[X1,.. . ,

has transcendence degree d, d of the variables X1, say X1,. . . , are
algebraically independent mod In other words we have n k[X1,

= (0), whence the multiplicatively closed set M of non-zero
elements of k[X1,. . . , has no element in common with

We consider the quotient ring RM and the extended ideals
It has been seen in Vol. I, Ch. IV, § 10 (Theorems 16 and 17)

that is an associated prime ideal of 9IRM. Now RM is obviously
the polynomial ring

k(X1,. . . , Xd)[Xd+I,.. . , Xfl].

Since and have the same quotient field, has
transcendence degree d over k, whence it has transcendence degree 0
over k(X1, . . . , Xd). In other words, is a maximal ideal. In
order to show that d= n — h, i.e., that h = n — d, we argue by contra-
diction and suppose that h < n — d. Then we have, in the polynomial
ring in n — d variables, an ideal generated by h < n — d elements
and admitting a zero-dimensional associated prime ideal. Furthermore,
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it is easily seen that the ideal has dimension n — d— h. For, the
prime ideals of are the ideals of the form where o is any
prime ideal of which does not intersect M. If s is the dimension of o
then the above argument, given for the ideal t,, shows that ORM has
dimension since Hence dim
and since 9IRM is generated by h elements we must have dim
n — d— h, in view of Theorem 22 7).

We shall show, however, coming back to the notations of Theorem 26,
that if h < n and is any prime zero-dimensional ideal then p is not an
associated prime ideal of This result, when applied to the poly-
nomial ring R111, will contradict our assumption that h < n — d and will
complete the proof of the theorem.

We consider the ideal (F1, . . . , Since it is generated by
h — 1 elements, its dimension is at least n —h + I (Theorem 22, § 7).
If the dimension of 93 were greater than n — h ± 1, would admit an
isolated prime ideal of dimension > n — h ± 1. Then all the isolated
prime ideals of Fh) would be of dimension > n—h (Theorem 21,
§ 7, applied to k[X1, . . . , and this would contradict the fact
that they contain Thus the dimension of is n — h ±1, and our
induction hypothesis implies that all the associated prime ideals

of have dimension n — h + 1. We denote by 1'"
the associated prime ideals of which are of dimension n — h. Since
h < n, none of the ideals (I r') is maximal. We are going to
construct an element D of the maximal ideal p, of a particular type,
which does not belong to any For this we need a lemma:

LEMMA 1. Given a finite family {t 1' of non-maximal prime
ideals in k[X1, .. . , X,,], there exists an index t and a polynomial

such that the of Vt = ± . . . ,

is transcendental over k for every j.
PROOF OF LEMMA 1. We renumber the in such a way that:
(a) The of X1 is transcendental over k. for j = 1, .. . , r(1)

and algebraic over k for j > r(1);
(b) The of X2 is transcendental over k for j r(1) +

1, . . . , r(2), and algebraic over k for j > r(2) ;+

and so on. Since, for everyj, one at least of the elements X1, .. . ,

has a transcendental having dimension > 0), all the
ideals are included in our renumbering; in other words: there exists
an index such that, for j=r(t— 1)+ 1, . . . , r', the of

t If the o1-residue of X1 is algebraic for allj(1 r') then, of course, the set
of indices 1, 2, •, r(1) is empty. A similar remark applies to the set of
indices r(1) + 1, , r(2) introduced in (b).
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is transcendental over k and the t'3-residues of X1, • , are
algebraic over k. Thus, for any polynomial • , and for
j=r(t— 1)-i-i, • • • , r', the t'3-residue of • • • , is trans-
cendental over k. We take now j so as to satisfy the inequality

I 1). Then, since is transcendental over k,
mod there is at most one exponent a such that + is alge-
braic over k, mod (otherwise some differences
would be algebraic over k, mod whence also would be alge-
braic over k, mod We can thus find an exponent a(t — 1) such that
X, + is transcendental over k, mod for j= r(t —2) + 1,
r(t— 1), and also for jr(t— 1)± 1, , r' in view of what has been
seen above about . . ,

Since X1, • , are algebraic over k, mod for j > r(t —2),
it follows that, for any polynomial • , and for any
j> r(t — 2), ± + , is transcendental over k,
mod As above, for every j such that r(t —3) + 1 r(t — 2),
there exists at most one exponent a such that is
algebraic over k mod Thus we can find an exponent a(t —2) such
that is transcendental over k mod for
r(t—3)+ 1 and also for j>r(t—2) from what has been
seen above. Continuing in the same manner, we get a polynomial

+ . . . whose is transcendental
over k for everyj. This completes the proof of the lemma.

We now return to the proof of Theorem 26. From the structure of the
polynomial we immediately see that

k[..X1, . . . , k[..X1, . . . , . . . ,

Since the ideal is maximal, the p-residue Yt of is algebraic over k.
Let D ==f( be the minimal polynomial of over k. We have
D E Since the of is transcendental over k for everyj,
D does not belong to any It is clear that the residue class ring

is isomorphic with the polynomial ring
. . .

,

Let now a be an element of R — k[X1,.. . , X,,] such that —

(F1,.. . , Fh). We then have aD E Fh) and there exists an
element b in R such that aD— bFh E Thus bFh E D).

Now, Fh does not belong to any associated prime ideal of the ideal
D). In fact, since D)/(D) is generated by h — 1 elements in

R/(D) (namely by the classes of F1, . . . , Fh_l, mod D), since its
dimension is n — h (for D has been chosen outside of the prime ideals of

and since R/(D) is a polynomial ring in n — I variables, the induction
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hypothesis shows that every associated prime ideal of D)/(D),
whence also every associated prime ideal of D), is of dimension
n — h. If such a prime ideal were to contain Fh, it would contain
in contradiction with the fact that D has been chosen outside of the
(n — h)-dimensional prime ideals of

This being so, the relation bFh E D) implies b E D) (Vol. 1,
Ch. IV, § 6, Theorem 11). Thus there exists an element c in R such
that b — cD E This relation, together with the relation aD — bFh E

implies that (a — cFh)D E But, since D has been chosen outside all
the associated prime ideals of we deduce that a — cFh e and that
consequently a E Fh) = This shows that = whence
cannot be an associated prime ideal of rfhis concludes the proof of
Macaulay's Theorem.

Before proving an important result about the dimension of the sum
of two ideals, we need a lemma about unmixed ideals:

LEMMA 2. Let be an ideal in R = , X,J, different from
R, and let {z1,. , Z(J} be a finite set of algebraically independent elements
of over k such that is integral over k[z]. Then has dimension
d, and a necessary and sufficient condition that be unmixed is that no
element of k[z], different from zero, be a zero divisor in

PROOF. Let be any prime ideal of R containing and let =
Then is integral over n k[z]), whence the dimension of

is d. On the other hand, there exists a prime ideal of
which contracts to (0) in (Vol. 1, Ch. V, § 2, Theorem 3), and for
such an ideal the corresponding prime ideal of R (i.e., the ideal
such that and = has dimension d. This proves that
has dimension d, and, moreover, that the associated prime ideals
of which are of dimension d are those for which n k[zl = (0).

Now, in the set of zero divisors is tJ where the are

the associated prime ideals of (Vol. 1, Ch. IV, § 6, Theorem 11,
Corollary 3). Thus the condition that no element of krzi, different
from zero, is a zero divisor in is equivalent to the condition that
we have n = (0) for every i, i.e., that all the ideals be of
dimension d. The proof of the lemma is now complete.

Let and be two ideals in an arbitrary finite integral domain
R. If is a prime ideal of dimension a, and an ideal of dimension
b generated by n — b elements, then the application of Theorem 22 7)
to shows that if + (1), then all the isolated prime ideals of

+ have dimension a — (n — b) = a + b — n. This result continues
to be true if is not a prime ideal, provided we suppose that all the



§8 SPECIAL PROPERTIES OF POLYNOMIAL RINGS 207

isolated prime ideals of ¶It have dimension a: in fact every isolated
prime ideal q of ¶?Z -4- contains some and is therefore an isolated
prime ideal of ± Therefore the dimension of every isolated prime
ideal of ±58 is at least a -'- b — n. This fact will be useful in the proof
of the next theorem where we show that in the special case of a poly-
nomial ring this same result remains valid without the assumption that

is generated by exactly ii — b elements:
THEOREM 27. Let and be two prime ideals in R k[X1,. • ,

of dimensions a and b. If + is not the unit ideal, then all the isolated
prime ideals of 9i+93 have dimension

a second copy k[X'1, , X',,] of k[X1,...,
and denote by the ideal in k[X'1,. , X',,] corresponding to

In the polynomial ring in 2n variables k[X1,. . . , X'1, ,

we consider the ideal U generated by and 23', and the ideal generated
by X'1 — X1, , X's, — We first prove that there is a 1 — 1

correspondence between the isolated prime ideals of + (in krXl)
and the isolated prime ideals of U + (in k[X, and that this
correspondence preserves dimensions.

With every prime ideal in k[X], we shall associate the ideal
X'1 — X1, . . , — in X']. The k-homomorphism of

k[X, X'] onto k[X] defined by q(X1) = q(X'1) = X1 obviously admits
as kernel. Since = is a prime ideal and has the same
dimension as Furthermore, the inverse image + contains

and whence it also contains U + Conversely, if F(X, X') E
+ we have F(X, X) E + and we may write F(X, X) =

A(X) + B(X), (A(X) E B(X) E Since F(X, X') F(X, X) mod
and since B(X) B(X') mod we have F(X, X') A(X)

B(X') mod i.e., F(X, XL) E Therefore is the inverse
image of + under p, and this proves that is an isolated prime
ideal of U + if and only if is an isolated prime ideal of + (Vol. I,
Ch. IV, Remark at the end of § 5, p. 213).

The consideration of p proves also that is a prime ideal of dimen-
sion n. Since it is generated by n elements (e.g., by X'1 — X1,. . .,

— Xv), the remark preceding Theorem 27 shows that Theorem 27
will be proved if we prove that all the isolated prime ideals of U have
dimension a + b: in fact, every isolated prime ideal of U + will
have then dimension a + b + n — 2n = a + b — n, and hence also every
isolated prime ideal of + will have dimension a + b — n.

We shall even prove that U is an unmixed ideal, of dimension a + b,
and for this purpose we shall use Lemma 2 and the results on tensor
products established in Vol. I, Ch. III, § 14.
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We set = krX]/2t, where X stands for {X1, X2, , x stands
for {x1, x2, , and denotes the 2t-residue of Similarly, we
denote by k[x'] the ring We know that k[X, X'l is a tensor
product of k[X] and kIX'], over k (Vol. I, Ch. III, § 14, p. 184). It
follows from Theorem 35 of Vol. I, Ch. III, § 14, that the rings
k[x] ® k[x'] and k[X, X']/U are k-isomorphic and that there exists a
k-isomorphism f of the first ring onto the second such that if F(X) is
any element of k[X] then f sends F(x) into the U-residue of F(X) and
F(x') into the U-residue of F(X').

By the normalization theorem we can find a algebraically independent
elements z1, z2, . . , in k[x] and b algebraically independent ele-
ments z'1, z'2, . . , in k[x'] such that k[x] is integral over kIz] and
k[x'] is integral over h[z'] 7, Theorem 25). Then, by the linear
disjointness of k[x] and k[x'] in k[x] ® k[x'] (after identification of the
rings k[x] and k[x'] with the corresponding subrings in the tensor
product; see Vol. I, Ch. III, § 14, p. 183), the a + b elements z, z' are
algebraically independent over k, and it is clear that the ring k[x] ®
k[x'] is integrally dependent over /i[z, z']. Since and are prime
ideals, the rings k[x] and k[x'] are integral domains. Hence by
Theorem 36 of Vol. I, Ch. III, § 14 it follows that no element of
k[z, z'] (=k[z] ® k[z']), different from zero, is a zero divisor in
k[x] ® k[x']. If we now carry over these conclusions to the ring

X']/U, by means of the isomorphism f, and if we use Lemma 2,
we find at once that the ideal U is unmixed and has dimension a + b.
Q.E.D.

Theorem 27 has the following geometric application. Let V and W
be two irreducible varieties in affine space The dimensions of
their prime ideals 2t, 93 in k[X1, . . . , are dim (V) and dim (W),
respectively. We have seen that V n W is the variety of the ideal
2t + 3, formula (2)), and that the irreducible components of this
variety are the varieties of the isolated prime ideals of 2t ± 3,
Theorem 14, Corollary 3). Therefore, Theorem 27 may be translated
into:

THEOREM 27'. If V and W are two irreducible varieties in and if
the intersection V n W is non-empty, then every irreducible component of
V n W has a dimension dim (V) ± dim (W) — n.

REMARK. Theorem 27 does not extend to arbitrary finite integral
domains. In other words, if V and W are two subvarieties of an
ambient variety Z, then it is not necessarily true that, for every irre-
ducible component C of V n W, we have
(1) dim dim dim (W)—dim (Z).
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For example, we take for Z the cone in A4K, with equation X1X2 —
X3X4 = 0. The planes V(X1 = X3 = 0) and W(X2 = X4 = 0) are sub-
varieties of Z, and their intersection C is reduced to the origin. We
have dim (Z) =3, dim (V)= dim (W) = 2, dim (C) = 0, and the above
inequality is not verified. 1-lowever, it can be proved that this inequality
holds for every irreducible component C of V n W which is simple
onZ.

For non-empty varieties V, W in projective space the inequality
(1) is still valid for every irreducible component C of V n W. In fact,
the homogeneous prime ideals of V and W in k[Y0, Y1,...,
have projective dimensions dim (V) and dim (W), whence their ordinary
dimensions are dim (V) ± 1 and dim (W) +1, respectively. Further-
more, + (1), for both and are contained in the irrelevant ideal
(Y0, Y1,..., Yr). Hence, if C is an irreducible component of
V n W, its prime ideal being an isolated prime ideal of + has an
ordinary dimension (dim(V)+ 1)+(dim(W)+ 1)=dim(V)
+ dim (W) — n +1, and a projective dimension dim (V) + dim (W) — n.
Note that in the projective case we have established the inequality (1)
without assuming that V n W is non-empty. Hence in the projective
case we have the following result (which has no affine analogue):

If dim (V) + dim (W) n, then V fl W is non-empty.
Again we note that this last result is not generally true if the ambient

variety of V and W is an arbitrary variety Z. In other words, if the
dimensions a and b of two subvarieties V and W of an n-dimensional
irreducible projective variety Z satisfy the inequality a + b n, then it
is not necessarily true that V n W is non-empty (even if Z is a variety
free from singularities). The simplest example is the following:
Z is a ruled irreducible quadric surface (n =2) and V, W are straight
lines on Z (a = b =1) which belong to the same ruling of Z (and are
therefore skew lines).

§ 9. Normalization theorems. In this section we intend to give
a new version of the "normalization theorem" proved in § 7 (Theorem
25), together with a systematic treatment of the so-called "normaliza-
tion methods." These methods partly reduce the study of arbitrary
ideals in a polynomial ring (or in a power series ring) to the study of the
ideals generated by a certain number of the variables. The treatment
we give, as well as the treatment given in the second half of § 7, is
independent of the dimension theory developed in the first part of § 7.

Moreover in our present treatment we shall deal simultaneously with
polynomial rings and power series rings. In the next section we shall
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apply the normalization methods to the study of the dimension theory
of power series rngs.

Let R denote either the polynomial ring A[X1, • •, or the power
series ring Ar[X1, • •, in n variables over an arbitrary commuta-
tive ring A (with unit element, as usual). We recall 7, p. 198) that
a system of n forms (F1, . . . , with strktly positive degrees, is
said to be a homogeneous system of integrity in R = AIX1, X2, . . . ,

if the elements X1, . . , are integral over the ring S= . . ,

In the case of a power series ring R = A[{X1, X2,..., we
modify this definition by requiring that X1, X2, . . ., be integral
over the ring S = ArIF1, F2,. . . , F,j]. By replacing the forms F. by
suitable powers, we can always reduce the study of a homogeneous
system of integrity to that of a homogeneous system of integrity con-
sisting of forms of like degrees. The following lemma is useful.

LEMMA 1. If {F1,. . . , are n forms of like degree d which con-
stitute a homogeneous system of integrity in R, then each indeterminate
satisfies a relation of the form

. . . . . . , = 0,

where is a form of degree s —j and s is a suitable integer.
PROOF. We consider a relation of integral dependence

(1) ... = 0

satisfied by over S. We single out the terms on the left-hand side
which are of degree t in X1, X2, . . . , and obtain

(2) ... = 0.

In this relation, must be a form, and must be ether zero or
a form of degree t—j in X1,.. . , Since F1,.. . , are forms of
degree d, the degree t —j of (considered as a form in X1, . . . ,

must be a multiple of d, say t —j= dm (unless is zero). Hence
relation (2) may be written as follows:

(3) . . . _L.p,,1*(F)X1t_md± . . . = 0,

where p.* = is a form of degree j. Factoring out a suitable
power of X1, we see that we may assume that t is a multiple sd of d,
and this proves Lemma 1.

Lemma 1 has the following easy consequences:
(1) The notion of homogeneous system of integrity is the same for

polynomials and power series. More precisely, a system of n forms
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{F1,. , is a homogeneous system of integrity in A[rX1,. ,

if and only if it is a homogeneous system of integrity in A[X1,.. ,

(2) It follows from Lemma 1 that, if . . is a homogeneous
system of integrity, then the ideal (F1, , is irrelevant: in fact,
since the forms have strictly positive degrees, the relation given in
Lemma 1 implies that E (F1, , This result, together with
its converse, has already been proved in the lemma of § 7 (see p. 198)
for the case of polynomial rings (and also, more generally, for the case of
finitely generated homogeneous rings). The converse result holds also
in the case of power series, i.e., we have that if the ideal (F1, . . . ,

is irrelevant (the F1 being forms), then every X7 is integral over
In fact, we can even prove the following result

(which is not a trivial consequence of the integrity of X1,. . . , over
in contrast with the case of polynomials): If F1,

F,1 are forms such that the ideal (F1, . . . , is irrelevant, then
R = A[EX1,. . . , X,j] is a finite module over S = For
the proof we first observe that the proof of the above cited lemma

7, p. 198) provides us with a finite system {w3} of monomials in
X1,. , such that every monomial ma(X) can be written in the
form ma(X) = with aaj in S. Hence, in order to prove our

assertion it suffices to show that the coefficients aaj may be chosen in
such a way that their orders (in Xv]]) tend to infinity
with the order of ma(X). We may assume (since we can replace the
F's by suitable powers) that the forms F. have the same degree d.
Then, as in the proof of Lemma 1, we write aaj as a power series

and we decompose into an infinite sum = of

forms having degree q). Singling out the terms of degree
in the sum aajwj, we get

ma(X) =

the summation being extended to all pairs (j, q) of integers such that
= dq ± This proves our assertion.

The last result, together with its analogue for polynomials, may be
generalized in such a way as to make the notion of homogeneous
system of integrity useful also for questions which arise in a non-
homogeneous set-up.

THEOREM 28. Let {G1,. . . , G,j be a system of n elements in R
having a homogeneous system of integrity {F1,. . . , F,j as system of
initial forms in the power series case (of highest degree forms in the
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polynomial case). Then R is a finite module over ArrG1,.. .,
(or over T= A[G1,. . . , Ga]).

PROOF. Upon replacing G1, . . . , by suitable powers, we may
assume that the forms F1, . . , have like degree d. We have just
proved the existence of a finite set of monomials w3(X) which is a basis
of R over A[rF1,. . . , (or A IF1,.. . , Furthermore, we
have seen that every form u(X) in R may be written as

(4) u(X)

where is a form such that d. + h(w1) = Now, if v(X) is
any element of R, we apply (4) to each monomial u(X) which occurs in
v(X), and by addition of terms we find a relation of the form

(4') v(X) = çIi3(F)w1(X),

where the are power series in F1, F2,. . , (or polynomials in
F1, F2, . . . , and where

(5) d. 0(v) — 0(w1) in the power series case,

with equality for at least one value off;

(5') d. — in the polynomial case,

again with equality for at least one value of].
We prove that {w1(X)} is also a basis of R over T, and thus will

prove Theorem 28. For every v(X) in R, we consider the difference
v(X) — where v(X) çLi3(F)w3(X) (formula (4')). In

the power series case, replacing the Fr's by the Ga's leaves unchanged
the initial form of the element of R, for the equality sign

holds in (5) for at least one value off. We therefore have

(6) o(v(X) — > o(v(X)).

Suppose, by induction on s, that we have found power series
such that o(v(X) — s. We can then write, by (4')

v(X) — —

where, by (5), the order satisfies the inequality d• s — 0(w3).
If we set + and replace the Fr's by the G.'s, we get

o(v(X) — s + 1.
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Furthermore the inequalities d S — show that the sequences
are Cauchy sequences in the power series ring in n variables. Let

be the limit of By passage to the limit we obviously have
v(X) and this proves our assertion in the power series

case.
In the polynomial case we proceed by induction on the degree s of

v(X). The case 5=0 is straightforward, if care has been taken to
include the monomial 1 among the w1(X) 's. As above, we write
v(X) = and consider the differences v'(X) v(X) —

Since the replacement of the Fr's by the Ga's leaves

the highest degree form of unchanged, we have a(v') <

a(v), and our induction hypothesis shows that v'(X) — x3(G)w3(X)

with suitable polynomials x3. Therefore v(X) is also a linear com-
bination of the monomials w3(X), with coefficients in A[G1,. . . ,

Q.E.D.
A system of n elements G1, . . . , of R satisfying the conditions

of Theorem 28 is called a normal system of integrity of R.
THEOREM 29. Let A be an integral domain and let G1,. . . , be a

normal system of integrity in R A[rX1,. . . , Xv]] (or R = A[X1,. ..,
Xv]). Then the elements G1,. . . , are analytically (or algebraically)
independent over A.

PROOF. We first treat the polynomial case, which is quite simple.
Let K be the quotient field of A. Since every is integral over
A[G1,. . . , Ga], the field K(X1,. . . , is algebraic over K(G1,.
Ga). As the former has transcendence degree n over K, it follows that
{G1,. . . , is a transcendence basis of this field (Vol. 1, Ch. II,
§ 12, Theorem 25). Therefore these elements are algebraically inde-
pendent over K, and, a fortiori, over A.

In the power series case, suppose that we have a non-zero power
series . . . , Y,j in ii variables over A such that . . . , 0.
We denote by F. the initial form of G., and by its degree. With
every monomial Y1S1. . . Y1sn appearing with a non-zero coefficient
in cp, we associate the integer w(,ct) s1d1 + . . . + The monomials

for which w(,ct) takes its smallest value q are finite in number. Thus
the sum of the corresponding terms of p is a polynomial 0, and
the difference cp — contains only monomials for which w(,ct) > q.
From this it follows that p(G1, . . . , — . . . , Fj, considered
as a power series in X1, . . . , contains only terms of degree > q.
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Now, since (F1,. , is a homogeneous system of integrity, the first
part of the proof. shows that the element çb(F1,. , of

is different from 0. Since it is a form of degree q, it follows that
p(G1,. , is a power series of order q in X1, X2,.. , in
contradiction with the hypothesis that p(G1,. , =0. Therefore
the relation , = 0 implies cp =0, and this proves our
assertion.

REMARK. The conclusion in Theorem 29 remains valid if we suppose
only that A is a ring without nilpotent elements.

The key to the so-called normalization methods is the following
theorem, which is contained in the "normalization theorem" proved in
§ 7 (Theorem 25). We, however, give here a proof which is independent
of dimension theory.

THEOREM 30. Let k be a field, and let F be a non-constant form in
R = k[X1,.. . , Then there exists a homogeneous system of integrity
{F1,. .. , in R such that F1 — F.

PROOF. We first study the case in which k is an infinite field, in which
case the proof is a mere repetition of the proof of the normalizaton
lemma given in Vol. I, Ch. V, § 4 (Theorem 8). Namely, we choose
elements , of k such that F(1, . , 0. Then, if we
set G(X1,. . . , F(X1, X2 + a2X1,. . . , + and d— the
coefficient of in G is F(l, . , a,j 0. The relation F(X1,

G(X1, X2 — a2X1,. . . , — a,7X1) shows that the ideal
generated by F, X2 — a2X1,. .. , — contains X1'F(l,

(= G(X1, 0,. . . , 0)), and hence it contains also X1', since F(1,
. , a,j 0. Since contains X1' and — aX1 for any j 2, it

contains Xf'. Hence is irrelevant, and {F, X2 — a2X1,. . . , —

a homogeneous system of integrity.
If k is a finite field, we proceed by induction on the number n of

variables. For n I our assertion is trivial. The case n 2 requires a
special proof (which does not make use of the finiteness of k). We
set X2/X1 T and write F(X1, X2) = X1'F(1, T), where d== bF. The
polynomial F(1, T) is 0. We choose a polynomial G(T) in k[T]
which is relatively prime to F(1, T), and denote by r its degree. It is
well known that every polynomial H(T) of degree d+ r— I may be
written in the form

11(T) - A(T)F(1,

where < r and < a(F(I, T)) d. In particular, for every q
such that 0 q d+ r —1, we have

- Aq(T)F(1,
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where Mq < r and < d. Upon multiplication by we get

(X1T_lAq(T))F(Xi, X2) + (Xid_lBq(T)) (X1TG(T)).

As X1T_lAq(T), T) and X1TG(T) are forms in X1 and X2, this
shows that the ideal generated by F(X1, X2) and X1TG(T) contains all
the monomials of degree d r — 1. It is therefore irrelevant, and our
assertion is proved for n 2.

We now study the passage from n —1 to n, under the assumptions
that n is 3 and that k is a field of characteristic p 0 (this is implied
by the hypothesis that k is finite). For every power q of p, the q-th
power . . , is a polynomial in . . . , which we
shall denote by . , Xi). By renumbering the variables, we
may assume that actually occurs in F. We assert that there exists
a power q of p and a form G(X1,. .. , of degree q such that

. . . , G(X1, . . , 0. In fact, F(X1, . . . , Xj,
considered as a polynomial in over k(X1,. . . , has only a
finite number of roots in the algebraic closure K of k(X1, . .. ,
On the other hand, since n — 1 2, there exists, for any power q of p,
a form . , of degree q which is not the p-th power of
any element of k(X1, . .. , Thus the elements . ,

of K are all distinct, since their minimal equations — G(q) = 0 have
distinct degrees. Therefore one of them must be distinct from the roots
of the polynomial F(X1,.. . , Xj (regarded as a polynomial in Xj.
If we take for G this polynomial we have . ,

G(X1,. .. , 0, as asserted.
This being so we denote by H the form . . , G(X1,

By our induction hypothesis there exist n —2 forms
H2, . . . , in k1X1,.• , such that the ideal generated by
H, H2, . .. , is irrelevant in k[X1,. . . , On the other hand
H is congruent to modulo — G(X1, . . . , whence H belongs
to the ideal generated by F and — G. Therefore the ideal generated
by F, H2, . . . , is irrelevant k[X1, . . . , Xv], and this
proves our assertion.

REMARK. In characteristic 0, we can still find an exponent q and a
form G(X1, . . . , of degree q such that the q-th roots of G are
distinct from the roots of F (considered as a polynomial in Xv).
Then the last part of the proof may be extended to the case of
characteristic we take for H(X1,... , the so-called
"resultant" of the elimination of between F(X1,. . . , X,j and

- G(X1,.. ,

COROLLARY. Let k be afield. Any non-constant (resp. non-invertible)
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element F of R k!X1, , (resp. X,JT) may be included
is some normal system of integrity of R.

We apply Theorem 30 to the highest (resp. lowest) degree form of F,
and then use Theorem 28.

As our last topk in this section, we now define the notion of system
of integrity. A system of n elements F1, , in R = . ,

(resp. , X,J]) is called a system of integrity of R if R is a
finite module over A [F1, . . . , FJ (resp. . . . , It follows
from Theorem 28 that a normal system of integrity (in particular, a
homogeneous system of integrity) is actually a system of integrity. The
two theorems which are given below give the existence of systems of
integrity which are "adapted" to the study of a given chain of idea1s.
As these theorems will mostly be used for studying the dimension
theory of power series rings, and in order to avoid tedious repetitions,
these theorems will only be stated and proved in the power series case.
Statements and proofs in the polynomial case are entirely analogous.

THEOREM 31. Let k be a field and a proper ideal in R =
XJ]. There exists a system of integrity {F1, . . . , Fj of R,

such that, z7 we set S= then the ideal fl S is generated
by F1,• .. , where d is an integer, 1 n. The classes fd+ ,

of Fd+l,. . . , mod are analytically independent over k, and R/91 is a
finite module over . . . , fr]].

PROOF. Among the finite subsets of which are contained in
systems of integrity of R, we choose one with the greatest possible
number d of elements. Let {F1,. . . , Fd} be such a subset and let
{F1, .. . , be a corresponding system of integrity. We assert that

(7) n k[IFd+l, . . . , (0).

In fact, assuming the contrary we could introduce an element 0
of this intersection in some normal system of ntegrity {Pd+l, . . . ,

of . . , (Corollary to Theorem 30), since, by Theorem
29, this ring is a power series ring. Then . , would be
a finite module over , Pa]], whence also k[1F1,. . . , F,J1
would be a finite module over kfiF1,. . . , Fd, . , Pj], and
therefore krrX1,. .. , would be a finite module over . . . , Fd,

Hence {F1,. .. , Fd, . , would be a system
of integrity of R such that {F1, . . . , Fd, Pd+l}c in contradiction
with the of d.

Since the n S contains F1, . . . , Fd and since relation (7)
holds, follows that n S is generated by F1, . . . , Fd. Thus R/91
contains S/(F1,. . . , Fd) = . . . , as a and relation
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(7) proves that , are analytically independent over k.
Finally, since R is a finite module over S, R/9t is obviously a finite
module over ,f,,)j. Q.E.D.

The analogue of Theorem 31 in the polynomial case contains the
normalization theorem of § 7 (Theorem 25).

THEOREM 32. Let 9.1q be a sequence of proper ideals in
R = k[tX1, . . . , Then there exists a system of integrity {F1, .

of R and q integers 1 d1 d2 n such that, if we set
S = kftF1, . . , then n S is generated by F1,. . . , Fd.. The

classes 1' , of . , module are analytically indepen-
dent over k, and is a finite module over

PROOF. In case q = 1, Theorem 32 reduces to Theorem 31. We
proceed by induction on q, and suppose that we have a system of
integrity {G1,.. . , of R and q — 1 integers d1 d2 ... such
that, in the ring T . , Ga]], the ideal T fl is generated by
G1,. .

The ideal 91q fl T contains G1,. . . , since We con-
sider the subring T' = Gj] of T, which is a power
series ring, by Theorem 29. If 91q n T' = (0), we take dq = dq_1,

F7 = G7, S = T, and then S n 621q is generated by F1,. . . , as asserted.
Otherwise we apply Theorem 31 to the ring T' and to the ideal 91q fl
there exists an integer dq such that 1 dq n — dq_1 and a system of in-
tegrity {Hd . . . , . . . , H,j of T' such that 91q n T' n

Ha]] is generated by . . . , Then it is easily seen
that {G1, . . . , Hd 1+1' .

, H,j is a system of integrity of R,
and that for this system of integrity all the assertions about the ideals
S n (j= 1, 2, . . . , q) are satisfied. The other assertions are easily
verified, as in Theorem 31. Q.E.D.

§ 10. Dimension theory in power series rings. As was shown in
§ 7, the normalization methods provide a smooth treatment of dimension
theory of finite integral domains. In this section we shall give a similar
treatment of dimension theory in power series rings, over a field.
However, since, in this case, the elementary methods of § 7, based
upon the notion of transcendence degree, are not available, it will be
necessary to use some deeper results of the general theory of prime
ideals in noetherian domains.

We first consider the situation described in Theorem 32 9), in the
case in which , are distinct (proper) prime ideals. Since
R = Xv]] is integral over S = F,J], the ideals
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n S must be (Vol. I, Ch. V, § 2, Theorem 3, Complement
1). Therefore we must have d1 < d2 < <dq. Since the integers
d. all He between 0 and n, follows that q < n. As also (0) a prime
ideal R, we have therefore:

THEOREM 33. In R= k!TX1,. , any chain of prime ideals
distinct from R has at most n ± 1 terms.

The existence of maximal chains of prime ideals of R, Le., of chains
of prime R) with n I terms, is proved by the
example of (0) < (X1) < (Xi, X2) < <(X1,.. , Xv). Now we have
a more precise result:

THEOREM 34. Any chain < p2 of prime ideals (distinct
from R) in R = kTTX1, . . . , Xj1 can be refined into a chain of n ± 1 prime
ideals (distinct from R).

PROOF. We again use Theorem 32 9): there exists a system of
{F1,... , F,j of R and a sequence of integers d1 < d2 < < dq

such that, S= kIIF1,. . . , F,j], the ideal n S generated by
F1, . . . , Fe.. As was pointed out above, the integers d1 are distinct.
Let < i < n) be the prime S generated by F1,. . . , F.
(we set = (0)). To prove the theorem it will be sufficient to show
that, given any index i (0< n) distinct from d1,.. , there exists
at least one prime ideal n such that the
family of , still totally ordered by

We assume that there exists an index r such that < i < (the
cases i < and dq < i are treated a similar, and even simpler, manner).
We consider the factor ring R' = 5' = n S= S/ed,
the prime ideals = and = in 5' and the prime ideal
V = R'. The ring R' is an integral domain, integral over
5', and we have < and n 5' = Since 5' is integrally closed
(as is a power series ring over a field; see Theorem 6, § 1), we may
apply the "going down Theorem" (Vol. 1, Ch. V, § 3, Theorem 6):
there exists a prime ideal in R' such that < and V' n 5' =
If we set = we deduce from this that fl S = F7 and that

Q.E.D.
COROLLARY 1. Given any prime ideal in R . . . , its

height and its depth satisfy the relation + = n.

Consider, in fact, two chains of prime ideals (0) < ...
where and ... where is a maxi-

mal (actually the unique ideal of R). Thefr reunion a
chain with + + I terms, which cannot be refined any more.
Thus I =n+ 1.

COROLLARY 2. and are two prime ideals in R= X,J]
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such that < and such that no prime ideal can be inserted between
and then their heights differ by unity, and so do their depths.

In fact there exists a chain (c) of n ± 1 prime ideals in R admitting
and as terms. Since and the

ideals t and must necessarily be the 1)-st and the 1)-st
terms of this chain. Since their indices (c) differ by unity, our
assertions follow.

REMARK (1). The depth of a prime ideal of R = k[1X1,. . ,

is sometimes called its dimension. Thus the unique prime ideal of
dimension 0 of R is its maximal ideal. On the other hand, Theorem 34
shows that the (n — 1)-dimensional prime ideals of R are its minimal
prime ideals; they are principal since R is a unique factorization domain

1, Theorem 6).
REMARK (2). It follows from the proof of Theorem 34 that, if

{F1, . . . , is a system of integrity such that n . . . , is
generated by F1, . . , (cf. Theorem 31, § 9), then the dimension of

is n — q. This shows that, in the case of a prime ideal, the integer q
is independent of the chosen system of integrity {F1, . . . , We also
see immediately that the factor ring kIIX1, . . . , is integral over
a power series ring in variables; the integer is also called the
dimension of the ring . . , this notion shall be generalized
in VIII, § 9 (in the framework of the dimension theory of local rings).

REMARK (3). Conversely, if is a prime ideal in R kftX1,...,
Xv]] such that is integral over a power series ring S' in d variables,
then d is the dimension of In fact, a chain of ± 1 distinct
prime ideals in gives, by contraction, a chain of + 1 distinct
prime ideals in S', whence d by Theorem 33. On the other
hand, a chain of d+ 1 prime ideals in S' gives, by application of the
"going up Theorem" (Vol. I, Ch. V, § 2, Theorem 3, Corollary) a chain
of I prime ideals in whence

REMARK (4). Remarks (2) and (3) give a characterization of the
dimension of a prime ideal in Xv]]: it is the
number of variables of any power series ring over which is integral.
Here stops the analogy with the polynomial case. In fact, the following
sentence "the maximum number of elements of which are analyti-
cally independent over k" cannot be taken as a convenient definition of
the dimension of since this number is always infinite as soon as the
depth of is larger than 1. For proving this it suffices to show the
existence of infinitely many analytically independent power series in
the power series ring in two variables k[rx, yll. It is even sufficient to
prove the existence of three analytically independent power series
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a, b, c in y], since, as krra, bIl contains three analytically
dent power series u, v, w, the power series u, v, w, c are also analytically
independent; by repeated applications we then get infinitely many
analytically independent power series in kIIx,

For constructing three analytically independent power series in
kIIx, y]], we first notice that, if the power series s1(x), • • • , are
algebraically independent over k, then the power series ys1(x), • ,

are analytically independent over k. For, if cp is a power series such that

• , = 0, and if we write
=

denoting a form

of degree j, we get • , 0, whence •,

=0 and =0 since the series s1(x),. • , are algebraically

independent over k.

It is therefore sufficient to prove the existence of three algebraically
independent power series in for example 1, x and s(x), where
s(x) is transcendental over k(x). The existence of such a transcendental
power series may be proved by various methods, some of these using
cardinality arguments, others (valid only in characteristic 0) using the
existence of transcendental analytic functions like ex or sin x. We gve
here a third method, inspired by Liouville's constructon of trans-
cendental numbers, and prove that the series

s(x) — • . •

is transcendental (over k(x)). Suppose that s(x) is a root of a poly-
nomial F(T) of degree q: F(T) a0(x) ± -L with
a.(x) E klx], and let d be the maximum of the degrees of the poly-
nomials a.(x). We may assume that F(T) s irreducible over k(x).
For any polynomial p(x), the series s(x) —p(x) is a root of the poly-

G(T) We set

G(T) =

b0(x) a0(x) ± a1(x)p(x) ± •• We have b0(x) 0
since G(T) is irreducible over k(x). On the other hand, we have

d q• t9p, where denotes, as usual, the degree of a polynomial.
We take for p(x) the polynomial 1 ± x ± x2! ± x3! L ... where
n is an integer such that n > I and n > q 1. We then have
ap=(n—1)! and

(n — 1)(n — 1)! n!, whence < n!. On the other hand, in the relation

G(s(x) —p(x)) — + ± ± . . . ) + . .

. . . 0,
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all the terms, except those of b0(x), have as a factor. This contra-
dicts the facts that b0(x) 0 and that < n!.

§ 11. Extension of the ground field. Let k be a field and let K be
an extension field of k. The polynomial ring R = k[X] = k[X1, X2,

may be considered as a subring of the polynomial ring S=
K[X] K[X1, X2, . . , Xv]. We shall study in this section the
extension to S of ideals in R. Most of the results of this section can
also be derived from properties of tensor products and free joins
(Vol. I, Ch. III, 14, 15). However, on the whole we shall deal with
our present topic ab initio, for the following reasons: (1) in view of the
special importance of polynomial ideals and their extensions it seems
desirable to have a self-contained treatment which can be given at an
early stage, without having to develop first the machinery of tensor
products; (2) most of the results concerning the behavior of poly-
nomial ideals under ground field extensions admit direct and simple
proofs. However, we shall constantly emphasize the connection
between the results of this section and those of Sections 14 and 15 of
Chapter III. This connection is based on the following two facts:
(1) the polynomial ring S is a tensor product of K and the polynomial
ring R, over k; (2) if a is an ideal in R, then the extension ae of a to S
may be viewed as the ideal generated in the tensor product R ® K by
the ideal a of R and the ideal (0) of K, and hence Theorem 35 of Vol. I,
Ch. III, § 14 is applicable. In other words, we have that the residue
class ring S/ae is k-isomorphic with the tensor product R/a ® K.

The notational conventions will be the same as in Vol. I, Ch. IV, § 8.
Ideals in R and in S will be denoted respectively by small and capital
German letters. All the formulas (1)—(8) concerning extensions and
contraction of ideals, given in Vol. I, Ch. IV, § 8, naturally continue to
hold in the present case. However, some of the inclusions given there
can now be improved to equalities. Namely, we now have the following
equalities:

(1) aec — a;

(2)

(3)

whereas in the general case treated in Vol. I, Ch. IV, § 8, we could only
assert that (a b)ecae fe and (a:t) We shall now
prove relations (1)—(3).

We fix once and for always a basis {u7} of K over k. This basis may
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of course have infinitely many elements, and we agree to include the
element 1 of k in the basis; let, say, u1 1. It is clear that the are
also linearly independent over the polynomial ring R X2,...,

and every element of S has a unique of the form
u1f1(X), where the f1(X) belong to R and all but a finite number of

the f1(X) are zero.
Since S Ru1, it follows that ac Hence if z is any element

of ac then z z E R then the relation (z1 — z)
0 and the linear independence of the over R imp! ies

z z1 E a. We have thus proved that a, and this establishes (1).
To prove (2), let z E ac n Then in the unique

expression z of z as a linear combination of the with co-
efficients in R, the belong both to a and to b. This shows that
z E (a n and establishes (2).

Finally, let z E ac: be, z uz1, z1 E R. If b is any element of
then we must have zb u.z1b E ac, whence z.b E a,

z E (a:b)e. This proves (3).
We observe that relation (1) is also a consequence of the above

cited Theorem 35 of Vol. I, Ch. III, § 14. In fact, according to that
theorem we have (a, n R = a, where b is now the ideal (0) in K and
(a, is therefore the ideal ac.

In view of relation (1), the ring R/a may be regarded as a subring of
S/ac. We shall assume from now on that a R. In that case we may
also regard the field K as being contained in S/ac. Furthermore, since
S is generated by X1, X2, . . . , and the elements of K, and since
the ae_residues of the belong to R/a, it follows that S/ac is generated
by its two subrings K and R/a. By the cited Theorem 35 of Vol. I,
Ch. III, § 14 the ring S/ac must be a tensor product of R/a and K,
over k; in other words, K and R/a are linearly disjoint over k. This
can be verified directly as follows:

Let v1, v2, . . , Vq be elements of K which are lineat!y independent
over k, and assume that we have a retation of the form v1z1 E ac;

where the are in R. We have to prove that the z1 belong to the ideal
a. This time we fix a basis of K/k which includes the elements v1:
say, u1 = v1, for j =1, 2, . . . , q. Then we have v1z1 u1x1, E a,

and from the linear independence of the over R we deduce that
E a, j= 1, 2, . . , q, as asserted.

Before we proceed with the general case of an arbitrary extension
field K of k we need a result concerning the special case in which K
is a pure transcendental extension of k. For convenience, we adopt
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from now on the following notation: if is a prime ideal in ring R,
different from R, then we denote by F(b) the quotient field of R/p.

THEOREM 35. Let be a prime ideal in R and a a primary ideal in R
having as associated prime ideal. If K is a pure transcendental extension
of k, then is a prime ideal, qe is a primary ideal having as associated
prime ideal, and has the same dimension as Furthermore, if is
a set of algebraically independent generators of K/k then =
and the are aLco algebraically independent over

PROOF. Assume that the theorem has already been proved in the
case in which K has finite transcendence degree over k. It is then
easy to see that the theorem holds in the general case. Namely, to
prove that is prime, assume that we have F(X)G(X) E where F
and G belong to S. We write F(X)G(X) = where
A7(X) E S and E The coefficients of the polynomials F, G
and A. belong already to some intermediate field K' between k and K
which has finite transcendence degree over k and is itself a pure trarts-
cendental extension of k. If we use the superscript e' to denote
extension of ideals to R' = K'[X1, X2, . . . , Xv], we have then that
F(X)G(X) E Hence, by the finite case, either F or G belong to

and therefore also to This shows that is prime.
Similarly, to show that qe is primary and has as associated prime

ideal, we have only to show that if we have a relation of the form
F(X)G(X) E qe, where F and G belong to S, and if F(X) then
G(X) E qe (since the relations qec' and are obvious). Now,
this assertion follows again easily by considering a suitable inter-
mediate field K' between k and K, having finite transcendence degree
over k. In a similar way one deals with the other parts of the theorem.

We may therefore assume that K has finite transcendence degree
over k. This allows us to use induction with respect to the trans-
cendence degree of K/k and reduce the proof of the theorem to the case
in which K is a simple transcendental extension of k. Let then K— k(u),
u being a transcendental over k.

Let x1, x2, . . . , denote the u-residues of X1, X2, . . . , We
have . . , xrj, and k[x1, . . , is an integral
domain. Hence in order to prove that is prime, i.e., that is an
integral domain, we have only to show that u is a transcendental over
k(x1, . . , In other words, we have to show that if we have a
relation of the form E where E R, then E But this is
obvious, since the powers of u are linearly independent over R and
since where {v1} is any basis of K/k (choose a basis
which includes the powers of u).
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We have therefore that u is a transcendental over = k(x1, x2,
and that = It follows that tr.d. k(x1, x2,...,

x,,, u)/k(u) = tr.d. k(x1, x2,• • , x,,)/k. This proves that dim = dim
and that is a prime ideal.

Let be a prime ideal of To complete the proof of the theorem
we have only to show that It is clear that since
and therefore We shall now show that

Let F(X) be any element of

F(X) = ±ym_lUm_l + ...

where E R and f(u) E k[u]. Since is a prime ideal of qe, qe is a
proper subset of the ideal qe: SF. Let G(X) be an element of this
ideal, not contained in cr:

G(X) = + + z0)/g(u),

where z1 E R and g(u) E k[u]. At least one of the polynomials z3
does not belong to If the leading polynomial belongs to q, then
we replace G(X) by G1(X) = G(X) — and observe that also
G1(X) belongs to SF and does not belong to qe. We therefore
may assume that q. From F(X)G(X) E qe follows that E (1

and hence E since q. Since p it follows that also the
polynomial

F1(X) = ± ...
belongs to and hence we conclude, as before, that Ym-i E Con-
tinuing in this fashion we conclude that all are in whence F(X) E
This concludes the proof of the theorem.

Those assertions of the theorem which concern the prime ideal
and its extension are easy consequences of Vol. I, Ch. III, § 14,
Theorem 36 and Corollary. In fact, ;f we denote by K' the quotient
field of then, by the cited theorem, the ring is a subring of
the tensor product K ® K', and by the corollary to that theorem
(Vol. 1, Ch. III, § 14, p. 186) the generators t. are also
independent over K'. It follows that K ® K' is an integral domain,
that the quotient field of K ® K' is the purely transcendental extension
K'({t1}) of K' and that the transcendence degree of K'/k is the same as
the transcendence degree of K'({t1})/k({t1}). Since it is obvious that
the ring K ® K' and its subring 5/pe have the same quotient field,
everything is proved.

We now go back to arbitrary extensions K of k and we prove
THEOREM 36. If is a primary ideal in R and = then the prime
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ideals of ç1e are those and only those prime ideals in S which satisfy
the conditions cJ.3c = and dim dim

PROOF. Let be a prime ideal of We have q, whence
since is prime. We also have qe :

qe, and hence a fortiori
qe: qe, since c43cec: By (3) we can write
I-fence we have (q: qe, and therefore taking contractions in R and
using (1) we find q: ci. Therefore showing that

Let K' be an intermediate field between k and K such that K' is a
pure transcendental extension of k and K is an algebraic extension of K'.
We denote by R' the polynomial ring K'[X1, X2,. . . , X,,] and by

the extended ideals R' ci. The ideal qe is also the exten-
sion of 1' to S. Since, by the preceding theorem, q' is primary and

= it follows, by the preceding part of proof, thatn R'
Since K is algebraic over K', S is integral over R'. Hence dim =
dim (Vol. I, Ch. V, § 2, Lemma 1). Since, by the preceding theoreni,
we have dim dim we conclude that dim = dim

Conversely, assume that is a prime ideal in S such that and
dim = dim Since q, we have qe and therefore must
contain at least one prime ideal of However, if is a prime ideal
of qe contained in then must coincide with since dim =
dim (dim = dim by preceding part of the proof, and dim =
dim by hypothesis). This completes the proof of the theorem.

COROLLARY 1. If a is an unmixed ideal in R, then also ac is an unmixed
ideal, of the same dimension as a.

If a = q is a primary ideal, then all the prime ideals of qe have the
same dimension, equal to the dimension of = 'V q. Thus qe is un-
mixed, of the same dimension as q. If now a is an arbitrary ideal, the
corollary follows from relation (2).

COROLLARY 2. If K is a purely inseparable extension of k and q is a
primary ideal in R, then also 1e is primary.

For let be a prime ideal of If F E then for some integer
the polynomial is contained in R and therefore belongs to

i.e., to where = i/ci. Conversely, if F is a polynomial in S==
K[X1, X2,. . . , X,,] such that FP1 belongs to for some integer 0,
then FP1 E and hence F E since is prime. Hence is uniquely
characterized as the set of all polynomials F in S such that E for
some integer Thus qe has only one prime ideal and is therefore
primary.

COROLLARY 3. If q is a primary ideal in R and = 'Vq then the prime
ideals of coincide with the prime ideals of

Obvious.
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We shall now study in more detail the behavior of a prime idea! t in
R under extension to S. We give the following definitions:

(1) t splits in S if pe is not a primary ideal.
(2) p is in S if pe is an ntersection of prime ideals (or,

equivalently, if = In the contrary case is said to be ramified
in S.

(3) is absolutely prime if for every extension K of k the ideal pe is
prime. In other words: is absolutely prime if it is unramified and
does not split, for any extension K of k.

(4) is quasi-absolutely prime if pe is a primary ideal for any extension
K of k.

(5) p is absolutely if p is unramified for any extension
K of k.

Since the ring 5/pe is the tensor product K ® Rft over k, we can
state the following lemma:

LEMMA. If p is a prime ideal in R then
(1) does not split in S and only if every zero divisor in K ® is

nilpotent (or—equivalently------if and only if the zero ideal in the tensor pro-
duct K ® R/p is primary);

(2) p is in S if and only if zero is the only nilpotent element
in K ®

(3) is a prime ideal and only if K ® is an integral domain.
In Vol. Ch. § 15 (Theorem 39) we have proved that if K and

K' are two integral domains containing a field k and if the quotient
field of one of these domains is separable over k, then K ® K' has no

k

proper nilpotent elements. This yields at once the following conse-
quence of the above lemma:

COROLLARY. If either K or the quotient field F(p) of R/p is separable
over k1 then p is in S. In particular, if F(p) is separable over
k, then p is an absolutely prime ideal. If k is a perfect field (in
particular, if k is afield of characteristic zero) then every prime ideal in the
polynomial ring R = k!X1, X21.. . , X is absolutely

The sufficient conditon for absolutely unramified prime ideals, given
in the above corollary, is actually also a necessary condition. We have
therefore the following

THEOREM 37. A necessary and sufficient condition for a prime ideal
in the polynomial ring R k[X1, X2,... to be absolutely
is that the quotient field of be separable over k.

PROOF. If is absolutely unramified we take for K the field
(we may assume that p 0). Let x1, x21.. , be the p-residues of
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X1 X2,.. , X,, respectively. We have = k[x1, x2, , x,3 and
x2, , ® k[x1, x2, ,

By assumption, is an intersection of prime ideals. By Corollary 2
to Theorem 36, is a primary ideal. Hence is a prime ideal, and
K[x1, , is an integral domain. By the definition of tensor
products, R/p and K are linearly disjoint in K ® R/p. We have there-
fore that the quotient field of R/p and the field are linearly disjoint,
over k, in their common overfield (x1, x2,. , xv), and the theorem
now follows from the definition of separability (Vol. 1, Ch. II, § 15,

p. 113). Q.E.D.
We now characterize the prime ideals which are quasi-absolutely

prime. If K is a subfield of a field Q, we say, as in Vol. I, Ch. III, § 15

(p. 196), that K is quasi-maximally algebraic in Q if every element of Q
which is separable algebraic over K belongs to K (or equivalently: if
every element of Q which is algebraic over K is purely inseparable over
K). We say that K is maximally algebraic in Q if K is algebraically
closed in Q, i.e., if every element of Q which is algebraic over 1K belongs
to K.

THEOREM 38. If is a prime ideal in a polynomial ring R =
k[X1, X2,. .. , then p is quasi-absolutely prime if and only k is
q.m.a. in the field (= quotient field of

PROOF. Assume that is quasi-absolutely prime and let a be an
element of which is separable algebraic over k. We shall show
that a E k.

Let G(T) + a7 E k, be the minimal poly-
nomial of a over k. We take for K a normal extension of k such that
G( T) factors completely in linear factors over K:

(4) G(T) — (T—c'1)(T—c'2). (T—c'q),

Since a E there exist polynomials A(X), B(X) in R such that
a A(x)/B(x), where x1, x2, , x71 are the p-residues of X1, X2, ,

and B(x) 0. Upon substitution in (4) and after clearing denominators,
the equation G(a) 0 yields the relation

(A(x) - =0.

This is to be viewed as a relation in the ring K[X1/pe and is therefore
equivalent to

(5) fJ E
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By assumption, is a primary idea', and its radical is therefore a
prime ideal. Hence, at least one of the q factors on the left-hand side
of (5) must belong to Now, and therefore also is invariant
under all the k-automorphisms of K (more precisely: under all the
kiX] — autornorphism of K[X] which are extensions of k-automorphisms
of K), and the of K act transitively on the q roots of
G( T). Hence all the q factors A(X) — c'1B(X) belong to Now, the
q roots are distinct, since G(T) is a separable polynomial. If q
were greater than 1, it would then follow that B(X) belongs to Then
some power of B(X) would belong to and hence also to since

= Hence B(X) itself would belong to in contradiction with
the fact that B(x) 0. Hence q must be equal to 1, and this proves
that a E k.

We now assume that k is q.m.a. in We consider an arbitrary
extension K of k and we must prove that the extended ideal of in
K[X1, X2,. , Xj is primary. Let K' be an intermediate field be-
tween k and K such that K' is a pure transcendental extension of k and
K is an algebraic extension of K'. By Theorem 35, the ideal

K'[X] is prime. Furthermore, the field (= quotient field of
is a pure transcendental extension of the field and if say

{ t.} is a set of generators of K' over k consisting of algebraically inde-
pendent elements over k, then F(V) = and the are also
algebraically independent over (Theorem 35). Hence, by the
lemma proved in Vol. 1, Ch. III, § 15 (p. 196), the field K' is q.m.a.

Since is also the extension of to K[X], we see that we
have now achieved a reduction to the case of ground fields K' and K in
which the bigger ground field K is an algebraic extension of the smaller
one, K'. We may therefore assume that K is an algebraic extension of k.

We fix a prime ideal of To show that is primary we have
only to show that It will be sufficient to show that c

since the opposite inclusion is obvious. Let F(X) be any element of
and let denote the of Then is also the p-residue of

since = (see Theorem 36), and we have =0. We fix a suit-
able power ps of the characteristic p such that the coefficients of the
polynomial G(X) = [F(X)]Ps are separable algebraic over k. Let a be
a primitive element of the field generated by the coefficients of G(X)
over k and Ietf(T) be the minimal polynomial of a over k. If q is the
degree of f(T), then we can write G(X) in the form

(6) G(X)
=

G1(X)ai, G1(X) E kIX].
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We have = 0, i.e.,

G3(e)ai = 0.

If the coefficients G1(e) in (7) are not all zero, then (7) is a relation of
algebraic dependence for a over F(p) (= and it is of degree <q.
However, the assumption that k is q.m.a. in implies that the poly-
nomialf(T) remains irreducible in This follows from the fact
thatf(T) is a separable polynomial. In fact, if f1(T) is a factor of f(T)
in and if we assume that the leading coefficient of f1(T) is 1,
then the coefficients of f1( T) are elements of which are separable
algebraic over k (since these coefficients belong to a decomposition field
of the separable polynomialf(T)) and therefore must belong to k. Thus
f1(T) must divide f(T) already in k[T] and therefore must coincide
with f(T). From the irreducibility of f(T) over follows that
the coefficients G3(e) in (7) must be zero. That signifies that the poly-
nomials G3(X) belong to Hence, by (6),

G(X) is the power of F(X). This
completes the proof of Theorem 38.

The preceding theorem can also be derived from two basic theorems
on free joins of integral domains, namely Theorems 38 and 40 of Vol. I,
Ch. III, § 15. We first observe that by the above lemma and by
Theorem 38 of Vol. I, Ch. III, § 15 and its corollary 2 (Vol. I, p. 195) it
follows that does not split in S if and only if and K are quasi-
linearly disjoint over k. Hence by Theorem 40 of Vol. I, Ch. III, § 15,
it follows at once that if k is q.m.a. in then is quasi-absolutely
prime. Conversely, if is quasi-absolutely prime and if a is an element
of which is separable algebraic over k, then we take for K the field
k(a) and we then conclude, by Theorem 40 of Vol. I, Ch. III, § 15, that

and k(a) must be quasi-linearly disjoint over k. Now suppose
that a does not belong to k. Then 1 and a are linearly independent
over k. Since a is separable algebraic over k, it follows that for any
integer s the elements 1 and aPS are also linearly independent over k
(see Vol. I, Ch. II, § 23, Theorem 8). By the quasi-linear disjointness
of k(a) and over k it would then follow that 1 and a are also linearly
independent over and this is in contradiction with the fact that a
belongs to

From the preceding results we obtain at once a characterization of
absolutely prime ideals. Let us say that a field F is a regular extension
of a subfield k of F if the following two conditions are satisfied: (1) F
is a separable extension of k and (2) k is maximally algebraic in F. We
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observe that in the presence of condition (1), condition (2) can be
replaced by the weaker condition (2') that k be q.m.a. in F. For, if (1)
and (2') hold and a is any element of F which is algebraic over k, then
also it follows from the very definition of separability in terms of linear
disjointness (Vol. I, Ch. II, § 15, p. 113) that k(a), as a subfield of F, is
also separable over k. Hence a is separable algebraic over k and thus
belongs to k. This shows that (2) holds.

THEOREM 39. Let be a prime ideal in a polynomial ring R =
kIX1, X2,. . . . Xv]. A necessary and sufficient condition that be abso-
lutely prime is that the field be a regular extension of k.

PROOF. It is clear that is absolutely prime if and only if is both
quasi-absolutely prime and absolutely unramified. Our theorem is
therefore a direct consequence of Theorems 37 and 38, in view of the
remark just made above in regard to the equivalence of the conditions
(2) and (2') (in presence of condition (1)).

REMARK. The results derived in this section give us information not
only about the behavior of a given prime ideal under various exten-
sions K of the ground field but also about the behavior of the various
prime ideals in R under a fixed extension K of k. Thus we have
shown that (1) if K is a pure transcendental extension of k then is
prime for every p (Theorem 35); (2) if K is a separable extension of k
then is an intersection of prime ideals for every (Corollary of
Lemma); (3) and finally, if K is a pure inseparable extension of k then

is primary for every To these results we can now add the fol-
lowing: (4) Jfk is q.m.a. in K then is primary for every (5) If K is a
regular extension of k then is prime for every (4) follows directly
from Theorem 40 of Vol. I, Ch. III, § 15 (but could also be derived
from the results established in this section).

§ 12. Characteristic functions of graded modules and homo-
geneous ideals. Let R be a graded ring 2). We recall that if Rq
denotes the set of all homogeneous elements of R, of degree q, we have

R Rq, where the sum is direct. In this section we restrict our-

selves to graded rings for which we have Rq (0) for q <0. We also
recall that Rq+r.

A graded module M over R is a module M, together with a direct sum
decomposition

M
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of the additive group of M, such that, for every pair of integers (q, r), we
have

RrMq

Mq of degree q. Given any
element X E M, we can write, in a unique way,

X =

Xq where a finite number, are zero.
The element Xq is called the homogeneous component of degree q of x.
The notation Mq for the additive group of homogeneous elements of
degree q of M will be used without further warning.

A submodule N of M is said to be homogeneous if the relation x E N
implies that all the homogeneous components of x belong to N.

The homogeneous submodules of R, where R is considered as a
module over itself, are obviously its homogeneous ideals 2). As in
the case of ideals (Theorem 7, § 2) one proves that, in order for a sub-
module N of a graded module M to be homogeneous, it is necessary and
sufficient that N be generated by homogeneous elements of M. It is
a straightforward matter to verify that a homogeneous submodule N
of a graded module M is itself a graded module, and that the difference
module M— N is also a graded module. The proof is the same as that
of Lemma 1, part (b), § 2.

Given two graded R-modules M and M' and an integer d, a homo-
morphism 0 of M into M' is said to be homogeneous of degree d if

for every q (i.e., if the image of any homogeneous element
of degree q of M is a homogeneous element of degree d+ q in M').
For example, if ad is a homogeneous element of degree d in R, the
mapping x -÷ adx of M into itself is a homogeneous homomorphism of
degree d.

If 9 is a homogeneous homomorphism of degree d of the graded module
M into the graded module M', then the kernel 91(O) of 0 is a homo-
geneous submodule of M, and the image 9(M) is a homogeneous sub-
module of M'. In fact, if xq) = 0 (Xq E Mq), we have =0.
As the O(xq) are homogeneous elements of distinct degrees, this relation
implies O(xq) = 0 for every q, whence Xq e 0'(O), and the kernel O_1(O)
is homogeneous. Similarly, if y E 9(M), then y = xq) (Xq EMq),
y = O(Xq) is the decomposition of y in homogeneous components, and
these components belong to 9(M). Thus the image 9(M) is homo-
geneous. The difference module M' — 9(M) is called the cokernel of 9;
it is also a graded module.
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THEOREM 40. Let A be a ring and M a graded module over the poly-
nomial ring R = A[X1,.. , Xv]. Let M= he the direct sum decom-
position of M. Then each Mq is an A-module. If, furthermore, M is a
finitely generated R-module, then each Mq is a finitely generated A-module.

PROOF. Since A coincides with the set R0 of elements of degree 0 of
R, the first assertion is clear. If, now, M is finitely generated, M admits
a finite set . of homogeneous generators, since the homogeneous
components of the elements of any basis of M themselves generate M.
This being so, each element y of Mq may be written in the form
y > P3(X) •y3, where P3(X) is a form of degree q —d°(y1) where d°
denotes the degree of a homogeneous element. Then the elements

(ma(X): monomials of degree q — d°(y5)) constitute a finite set
of generators of the A-module Mq.

THEOREM 41 (Hilbert-Serre). Let A be a ring satisfying the descending
chain condition (d.c.c.), M a finitely generated graded module over
R A[X1,. .. , X,,] and M= > Mq the direct sum decomposition of M.
Then Mq, considered as an A-module, has a finite length For
sufficiently large q, the function is a polynomial in q whose degree is
at most n—1.+

PROOF. The fact that the length 'PM(q) of Mq is finite follows im-
mediately from Theorem 40 and from the fact that A is a ring with d.c.c.
In order to prove that q q large enough, we
proceed by induction on the number n of variables.

For n 0, R is reduced to A = R0. Since M admits a finite system of
homogeneous generators {y1,.. . , the non-zero homogeneous
elements of M can only be of degree d°(y1) for some i. Thus, for q>
max (d°(y1)), we have Mq = (0), whence =0. This proves our
assertion for n=0.

In the general case, consider the homomorphism 9: y of M
into M. It is a homogeneous homomorphism, of degree 1. Let
N— O—'(O) be its kernel, and let P= M— 9(M) (the difference module)
be its co-kernel. Both N and P have in their orders (see Vol. I,
Ch. III, § 6). They can therefore be construed as graded modules over
K[X1,.. . (see Vol. 1, Ch. III, § 6) and the induction hypothesis
may be applied to them. We write Nq, P Pq.

Consider the following sequence of modules and homomorphisms:

(1)

For the purposes of this theorem we attach to the zero polynomial the
degree — 1. The proof of the Hubert theorem given below is essentially due to
Serre, at least in its cohomological formulation.
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where all homomorphisms, except the one in the middle, are natural
homomorphisms. (i is the inclusion isomorphism into M,j the canonical
homomorphism of M onto the difference module P.) In this sequence,
the image of each homomorphism is equal to the kernel of the following
one. In the terminology of cohomological algebra this is expressed by
saying that the sequence (1) is exact. If we start from the homo-
geneous elements of degree q of N or M, we get the exact sequence

(2)

We now use the following lemma (a proof of this lemma will be given
immediately after the proof of the theorem):

LEMMA. Let 0 E1 E2 . 0 be an exact sequence of
A-modules, having finite lengths t°(E1). Then the alternating sum 1(E1) —
1(E2) + 1(E3) — ... ± ( — of the lengths of these modules is equal
toO.

In our particular case, and with the notation which has been intro-
duced before, the lemma gives the relation

(3) pM(q+ 1) = 1)

By the induction hypothesis, for q large enough ç'p(q+1) and are
polynomials in q, of degree at most n —2. Hence the first difference

± 1) — is, for q large, a polynomial of degree at most n —2 in
q, and this polynomial takes integral values for all large values of q.

We now observe that since qS = s + a polynomial in q, of degree
s — 1, it follows that every polynomial f(q) in q, of degree less than or
equal than a given integer d, can be written in the form

f(q) + + ... + +

with suitable coefficients c. Now, we assert that if f(q) takes integral
values for all large values of q then the coefficients c are integers. We
prove this by induction with respect to d since the case d= 0 is trivial.
If we make use of the identity

(h+1\(h\ — ( h
I S I —

we find the following expression for the first difference f(q + 1) —f(q):

f(q +1) —f(q) = co(d! 1) + + ... +

Since the first difference also takes integral values for large q and since
it is a polynomial of degree at most d— 1, it follows from our induction
hypothesis that c0, . , are integers. Since the binomial
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coefficients are integers for afl q and S it follows from the above
pression of f(q) that also Cd is an integer, and this proves our assertion.

Applying this result to the first difference cpM(m) — cpM(m — 1), where
m is a sufficiently high integer, say m N, we can write

(5) 1) (m N)

where the a are integers. Let us also write

(6) 1) = ...
m=2,3,...,N—I,

'PM(1) C1,

where we set = 0 if t <s and where C1, C2, . . . , are integers. If
we add relations (4) for h=q— 1, q—2, . . . , s—I we find the identity

... +(si)+1
and using this identity we find, by adding the relations (5) for m =
q— 1, . . . , N and the N—I relations (6):

= ± ... +

a suitable constant, necessarily an integer, since a0,
are integers and since takes integral values for all

large q. This completes the proof of the theorem.
We now give a proof of the lemma. We consider the homomorphism
E. —p- (1=1, 2,.. . , ii) where is the module (0) is the

zero homomorphism. Since f1(E1) is isomorphic with we
have the relation

1(E1) 1(f1(E1)) + 1(f1—1(O)), I = I, 2,. . . , n.

Since the sequence is exact, this relation may also be written as follows:

1(E1) — -L 1(f.—1(0)), I = 1, 2,. .. , n — 1.

Thus the alternating sum 1(E1) — 1(E2) ... + (— is equal to
1(f1—1(O)). Since 11 is an isomorphism, we have 0, and this
completes the proof of the lemma.

REMARK (1). The most important case in which Theorem 41 may be
applied is the one which A is a field k and M is a residue class ring

. . , of kfX1,. . . , X,,1 modulo a homogeneous ideal
Then the function is denoted by q) and is called the
aCteristiC funCtion of the ideal The integer q) is the greatest
number of forms of degree q in k[X1, X2, .. . which are linearly
independent modulo over k.
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REMARK (2). Let E and F be two homogeneous submodules of the
graded modu!e M. Since (E + F)q Eq ± Fq and (E F)q = Eq fl Fq, the
9X-modules (E± F)q/Eq and P'q/(E fl F)q are isomorphic. Therefore we
have for every q, the relation:

+ 'PEn

In the case of two homogeneous ideals in the polynomial ring R,
(7) gives the relation

(8) x(91; q) + q) = + q) + fl q).

REMARK (3). Let E be a homogeneous submodule of a graded
module M. Since Eqc: Mq, we have the relation

(9)

In the case of two homogeneous ideals such that relation (9)
gives:

(10)

REMARK (4). It is often necessary to distinguish the characteristic
function (or q)) from the polynomial which is equal to this
function for q large enough. In such a case we denote this polynomial
by PE (or q)). We call this polynomial the characteristic poly-
nomial of E (or

The degree of the characteristic polynomial of a homogeneous ideal
is closely related to the dimension of More precisely, we have

the following theorem:
THEOREM 42. Let be a homogeneous ideal in k[X1 X2, . . . , Xv].

Then the degree of the characteristic polynomial q) of is equal to
the projective dimension of (see § 4).

PROOF. Theorem 42 is a particular case of:
THEOREM 42'. Let E be a finitely generated graded module over

R = . . . , and F a homogeneous submodule of E. Then the
degree of is equal to the greatest projective dimension of the asso-
ciated prime ideals of the submodule F (see Vol. I, Ch. IV, Appendix).

PROOF. We recall that the radical tt of the submodule F is the set
of all elements a E R for which there exists an exponent s such that
asEc' F (Vol. 1, Ch. IV, Appendix). As in Theorem 8, § 2, it is easily
seen that tt is a homogeneous ideal in R. It follows from Vol. I, Ch. IV,
Appendix, that the isolated prime ideals of F are the (necessarily
isolated) prime ideals of tt. These ideals are therefore homogeneous
(Theorem 9, Corollary, § 2). Let d— 1 be the greatest integer among
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their projective dimensions. By normalization 9, Theorem 31) there
exists a homogeneous system of integrity {G1, . . . , composed of
forms of like degree h in . . . , such that kiG1,. . . =

, Ga). Since is the radical of F, there exists an exponent
h' such that F for j—= d+ 1,. . . , r. Thus, f we set

. , is a homogeneous subring of kIX1,. . . , and, since
. . , is a finite module over k[F1,. . . , FJ, E is also a finite

graded module over . . , F,j. Since E/F is annihilated by the
ideal (Fd+l,. . . , E/F is actually a graded module over k[F1,. . . , Fe].
Then Theorem 41 shows that the degree of is at most d— 1.

On the other hand, no non-zero element of kIF1,. . , is in the
radical of the submodule (0) of E/F. Let (ai, . . . ,;) be a finite basis
of M= E/F over S— k[F1,. . . , Fd], composed of homogeneous ele-
ments. The radical of (0) in Sa1, i.e., the set of elements x E S such
that xea1 =0 for some e, is an ideal in S (and even a homogeneous one).
Since fl9X1 is obviously contained in the radical of (0) in M, we have

(0), and this implies that some say is the ideal (0) (as S is
an integral domain). In particular, we have xa1 0 for every x 0 in S.
Thus 5a1 is afree submodule of M= E/F. If we denote by t the degree
of a1, the vector space contains, as subspace, the set of all
elements f(F1, . . . , where f is a form of degree q (remember that
F3 is a form of degree hh'). Since the space of forms of degree q in d
variables has dimension 1), which is a polynomial of degree
d— 1 in q, and since we have the inequality

for large q,

it follows that the degree of is at least d— 1, and this proves
Theorem 42'.

If is a homogeneous ideal in k[X1, X2,.. . , Xv], of projective
dimension r, have

q) — + ai(r!i) ± . .. ±
where the coefficients a0, , are integers (see Theorem 41).
Here a0 is necessarily a positive integer, since q) is positive for
large positive integers q. This coefficient a0 is called the degree of the
ideal The integer 1) is called the arithmetic genus
of If 9X is a prime ideal, the degree and the arithmetic genus of cor-
respond to well-defined geometric characters of the irreducible r-dimen-
sional variety V = Thus, if k is algebraically closed, then a0 is
the order of the variety V, i.e., the number of intersections of V
with a general (n — r)-dimensional subspace of If V is a curve
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(r = 1) without singular points, then is the ordinary genus of the
curve.

§ 13. Chains of syzygies. In this section A denotes a noetherian
ring, and all the A-modules are tacitly assumed to be unitary and finitely
generated.

Given any finite A-module M, and any finite basis {x1,. . , xj of M,
we may consider M as a difference module F(M) — S(M) of the free
module F(M) = generated over A by q basic elements. (We may take
for the q-fold direct sum . . EI3A.) The submodule S(M)
of is called the module of the relations satisfied by the elements

Xq in fact its elements are the "vectors"t {a1, . . . , aj E Aq

which satisfy a1x1 -'- . . . + 0. One says also that S(M) is the
first module of syzygies of M (with respect to the basis {x1,. . . ,

Since S(M) is a submodule of the finite A-module it is a
finite A-module. Let , Y,J be any finite basis of S(M). We
can then consider S(M) as a difference module F(S(M)) — S(S(M)) of a
free module by the first module of syzygies of S(M). We set F(S(M)) =
F2(M), S(S(M)) S2(M). This procedure can be continued, and we
set, inductively, and Thus:

= 1(M) — The module is called the nth-
module of syzygies of M. Notice that this module depends on the choice
of the bases in M, S1(M), . . . , Here F1(M) and S1(M) stand
respectively for F(M) and S(M).

The situation we have just described may be conveniently described
in terms of an exact sequence

(1) —k F??l(M) .. .
Here is the natural homomorphism of onto and may
be considered as a homomorphism of into Its image
is and, by definition, its kernel is Thus the image of

is equal to the kernel of This proves the exactness of our
sequence, since the homomorphism is onto.

The exact sequence (1) is called a chain of syzygies of the module M.
We say that a chain of syzygies

._÷ —* F1 —÷- 1W —* 0

of an A-module M terminates at the n-th term if the module of syzygies

t For convenience, we shall use in this section the term "vector" in a wider
sense than in Vol. I, Ch. I, § 21, i.e., also if A is not a field.
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S,,_1 is a free module. We can then complete the exact sequence by
setting S,,_1,

0 —* —* —*. . • —* F1 —* LW —* 0.

We now study the influence of the choice of bases upon the structure
of the modules of syzygies. Let {x1, • , x,,},

• , yJ be two bases
of the A-module M, and let M=F— S and M=F' — S' be the repre-
sentations of M as difference module of free modules deduced from these
bases. We may take {x1, . . . , x,,, . . , yj as basis of M and write
M= An+q — T. The syzygy module T is the set of vectors {a2, b5} e
such that a1x1 + = 0. It contains a submodule which can be
identified with S, namely the set of vectors {a2, O} such that a1x1 = 0.
Now, since {x2} is a basis of M, we can write = c32x1, and the vector

= {c31, . . . , c3,,, 0, . . . , 0, — 1, 0, . . . , 0} belongs to T; here the
number of zeros which precede — 1 is equal toj— 1. These q vectors
are obviously linearly independent, over A, mod A", whence a fortiori
mod S. Furthermore, T is generated by S and by the vectors t1: if

we have

b3c32)x2 = 0; thus the vector {a2, b5} + b.t1 = {a2 + bc32, 0} belongs

to S. This proves that T is the direct sum of S and a free module.
Similarly T is also the direct sum of S' and a free module. If we call
equivalent two A-modules S, S' for which there exist free A-modules
L, L' such that the direct sums S'G3L' are isomorphic, then we
have proved:

LEMMA 1. Two first modules of syzygies S, S' of an A-module M with
respect to two bases of M are equivalent.

In order to prove that all the modules of syzygies of M are uniquely
determined up to equivaknce we need only to observe that the notion of
equivalent modules is actually an equivalence relaton and to prove the
following:

LEMMA 2. If M and M' are equivalent modules, and if S and S' are
two first modules of syzygies of M and M', then S and 5' are equivalent.

PROOF. We have, by assumption, MG3L where L and L'
are free modules. If {x1, x2,. . , is a basis of M with respect to
which S is derived and if {z1, z2, . , is a free basis of L, then
{x1, x2,.. , z1, z2,... , z,j is a basis of MEDL. Since any relation

a1x1 + = implies a1x1 = 0 and b3 = 0, it follows that the first
module of syzygies of MG3L, relative to the basis {x1, x2, . . ,

z1, z2,. , zh}, is isomorphic with S. Similarly, 5' is isomorphic with
the first module of syzygies of M'E3L', relative to a suitable basis.
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Since two first modules of syzygies of isomorphic modules and
are equivalent by Lemma 1, it follows that also S and S' are

equivalent. Q.E.D.
In the case of a graded module M over a graded ring A (see § 12) we

shall restrict ourselves to graded modules of syzygies. They are con-
structed in the following way: we take a finite basis {x1,.. , xj of M
composed of homogeneous elements and denote by d2 the degree of x..
Let F be the free A-module generated by q elements X1,.. , X.
being considered as having degree d2 (whence the additive group of
homogeneous elements of degree n of F is The homomor-
phism of F onto M defined by = x2 is homogeneous of degree 0.
Its kernel S, which is the first module of syzygies of M with respect to
{X1," , Xq}, is therefore a graded module. We apply the same pro-
cedure to S, etc. Thus, in the exact sequence

g'n 'p0

—p- _÷... . —p- F1 —p- M —p- 0

all the homomorphisms are now homogeneous, of degree 0.
From now on we make one of the following assumptions

(a) Either A is a graded ring 4, with A0 afield, and M is a graded

A-module, in which case we tacitly limit ourselves to graded modules of
syzygies;

(b) or A is a local ring.

We denote by m the ideal A1 in case (a), the maximal ideal of A

in case (b). In both cases, A/nt is a field. We have stipulated earlier
in this section that, given a chain of syzygies

g'n—l (p0

—÷ ._÷ . . . —* F1 —* ]VI —÷- 0

for the module M, the assertion that it stops at the n-th step means that
the module = = pn2'(O) is free. We prove that, in either
case (a) or (b), this property is independent of the choice of the chain of M.
In fact, in another chain of syzygies, the (n — 1)-th module of
syzygies is equivalent to by Lemma 2. We thus have to show
that a module which is equivalent to a free module is itself a free module.
In view of the definition of equivalence, this assertion will follow from
the following lemma:

LEMMA 3. Under hypotheses (a) or (b), if a module E and a free
module F are such that the direct sum EE9F is a free module G, then E is
free.
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PROOF. It is sufficient to prove the lemma in the case in which F is
generated by a singie element x. Let {g1,. . . , gq} be a linearly inde-
pendent basis of G, the g1 and x being homogeneous in case (a). We set
g1 = e. ± ax (e1 E E, E A, both e. and being uniquely determined).
For any element u of E we can write u c1g1, whence u = ce1 +

c.a1)x. Since E n Ax (0), it follows that =0. Therefore the
module E is generated by the elements e1, . . . , eq.

On the other hand, we may write x (b1 E A), whence
b.a1)x. This implies b.e1=O and b1a1= 1. If A is a

graded ring, the elements a, b. of A are homogeneous, and the relation
1 implies that at least one of the b., say b1, is different from 0 and

is of degree 0. If A is a local ring, 1 implies that at least one of
the b. say b1, is outside the maximal ideal m. In both cases b1 is a unit,
and the relation be1 =0 shows that E is generated by e2, . . . , eq.

We now show that these q — 1 elements e2, e3, . • , eq are linearly in-

dependent. Given any relation c1e1 =0 (c1 E A), we have

o =

whence c. a.cj)bi for every i. Thus every relation satisfied by

e1,•• . , eq is proportional to be1 =0. Since b1 is invertible, only the
trivial relation does not contain e1. Q.E.D.

We now strengthen our assumptions. Namely, we shall assume that

(a)' either the ring A is a polynomial ring in ii variables over a field k, or

(b)' the ring A is a regular local ring of dimension n (see VIII, § 11).

In both cases, there exist n elements . . , of A such that

[1] The ideal m is generated by
. ,

r2] If ni1 denotes the ideal . . . , c.), then (nii rn1) nt3 In

fact, in case (a)' we take for h,.. ., the variables in A (and these
elements are homogeneous). In case (b)' we take for

. . . , a

regular system of parameters of A (VIII, § 11). Then
THEOREM 43 (Hubert). Under hypothesis (a)' or (b)', any chain of

syzygies of any A-module M terminates at the (n ± 1)-st step. If M is a
submodule of a free module, any chain of syzygies of M terminates at the
n-th step.

PROOF. The first assertion follows from the second, since the first
module of syzygies of any module is a submodule of a free module. We
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thus suppose that M is a of a free module F0, we set M= S0,
and we consider a chain of syzygies

Fk_l > F1 M 0

of M; as usual we set Sk = 9k We now prove a
lemma:

LEMMA 4.
For 0 n and k>' we have

(2) Sk mJFk — m.Sk.

If M is a submodule of a free module then the equality (2) holds also for
j=k.

PROOF. The assertion is trivial forj= 0, m0 denoting the zero
We proceed by induction with respect to j. We thus assume that (2)
is true for given 0 for every k>, and for every k if M is a
submodule of a free module, and we proceed to prove that n =

if r >j— 1, and also if r=j+ 1 provided M is a submodule of a
free module. We have only to prove that any element d of n
belongs to Let d= ± + ... + E Fr). Since
d E we have

0 = + + ... +

1 >0, is a free module. Therefore : =
in view of property [2] of the ideals m3, and consequently

(3) E

Now, if r 1, then r— 1 >0. Thus (3) holds unconditionally if
r >j +1. Assume, however, that r =j+ 1 and r —1 0, whence j =0,
r 1. In that case, d== =0. If M is a submodule of a
free module, the relation 0 implies p0(a1) =0, and hence (3)
still holds in this case.

Using (3) we now set = . . . + with v1 E
As E S,1, our induction hypothesis shows that we may assume
that v E We set v = b. E

Consider the elements a + (i= 1, . . . , j), and =
. . of Fr. It is clear that .. . +

+ On the other hand, we have —

—
= 0, whence a'1+1 E If we apply

the induction hypothesis to the element d— = ± . . . +
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of n we see that this &ement b&ongs to Therefore
d be'ongs to

This comp'etes the proof of Lemma 4, and we now continue with the
proof of the theorem. Let us suppose that we have chosen, for con-
structing 5n+1' a basis (u1, . . , of Sn in which no &ement is a 'inear
combination of the others (the u1 being, of course, homogeneous in
case (a)'). Then, in any relation > au1 =0, aLl the e'ements a belong
to m, otherwise one of them wouki be invertibk (in the graded case we
must decompose first > =0 into homogeneous components). In
other words, we have mifn+r By Lemma 4 we know
that 5n+1 mnSn±r Hence 5n+1 mn5'n+l This
same reasoning and Lemma 4 show that if M is a submoduk of a free
moduk, then 5n =

Now, the r&ation (where i is either n or n + 1) imp'ies
5 (0). In the graded case, to see this we need on'y to consider a
homogeneous element a 0 of S., of smaLlest degree. In the
case, we take a finite basis {z1,. . . , of S., write = with

E m, i.e., — 0; this implies 0, where d=
det — pp); and since d is invertibk, whence ; 0
for every v, and (0).

The fact that S. = (0) signifies that is free, and this proves
Theorem 43.

From now on we suppose that hypothesis (a') or (b') holds.
The smaLlest integer d such that any chain of syzygies of the A module

M terminates at the 1)-th step is the cohomological dimension
of M, and is denoted by 8(M). We set 8(0) —1, by convention. For

0 to be free, it is necessary and sufficient that 8(M) = 0. If M is a
factor module F/S of a free module F and is not itself free, then

(4) 8(M) = I + 8(5).

For comparing cohomological dimensions of moduks, and
factor modu'es the following 'emma is usefuL

LEMMA 5. Let M be an A-module, M' a submodule of M, M" the
factor module M/M', 5' a first module of syzygies of M' and 5" a first
module of syzygies of M". Then Mhas afirst module of syzygies S admit-
ting 5' as submodule and 5" as corresponding factor module.

PROOF. Let be systems of generators of M' and M" giving
rise to 5' and 5": 5' is the kern& of the homomorphism of the free
modu'e F' AX1 onto M' defined by and 5" is the kernel
of the homomorphism of the free module F" > A onto M" de-
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fined by =9g. Choose any element of M in the residue class
and define a homomorphism çz of the direct sum F—F'E9F" into

M by setting = x1, Y1) It is easily verified that maps F
onto M. The kernel S of 'p contains all the pairs (s', 0) E F such that
S' E S', and 5' may therefore be identified with a submodule of S. On
the other hand the canonical homomorphism ir of F onto F" maps S
onto 5", and the kernel ir_1(O) n S is exactly 5' (the proofs are straight-
forward, and we leave them to the reader). Q.E.D.

If a module T contains a submodule T' such that T' and the cor-
responding factor module T/T' are both free, then T is also free. It
follows therefore from Lemma 5 that, if M' is a submodule of M, then

(5) 8(M) max (8(M'), 8(M/M')).

Similarly, if 8(M) and 8(M/M') are q, the q-th module of syzygies Sq
of Mis free and admits a submodule 51q (i.e., the q-th module of syzygies
of M') such that 5q/51q is free. From the fact that 5q/51q is free fol-
lows that 51q is a direct summand of 5q' and, by Lemma is free.
Therefore:

(6) 8(M') max (8(M), 8(M/M')).

Finally, if 8(M) and 8(M') are q, then we may assume that the
(q + 1)-th module of syzygies 51q+1 of M' is reduced to 0. Then, since
5q+1 is free, a (q ÷ 1)-th module of syzygks 5q+1151q+1 of M/M' is free.
Therefore

(7) 8(M/M') 1 +max (8(M), 8(M')).

LEMMA 6. Let L be a free module 0, M a submodule of L such that
Mc: mL, and let a be a non-invertible element 0 of the ring A such that
M:Aa=M. Then 8(M+aL)=1+8(M).

PROOF. The hypothesis M== M:Aa is equivalent with the relation
Mn aL = aM. Therefore the module (M+ aL)/aL is isomorphic to
M/(M n aL) = M/aM. Since A is an integral domain, aM is isomorphic
to M, whence 8(M/aM) � 1+8(M) by (7). Since aL is free and 0,
we have 8(aL) = 0, whence, by (5), 8(M+ aL) � max (0, I + 8(M)) �
1+8(M). We now prove, by induction on 8(M), that we have the
equality

(a) 8(M+ aL) = 1+8(M).

This is true for 8(M)= —1, since, then, M=0 and 8(M-+-aL)=0.
We first show that, if 0, then M+ aL is not free. If M+ aL is free,
it admits a linearly independent basis where = m + ax1 with
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m1 E M and E L. For any m EM, we can write m = b1y1(b1 E A),

i.e., m
=

b1m1 ± b1x1), whence EM since M:Aa= M; set-

ting M' = Am1, we thus see that M' ± aM, whence M/M'

m(M/M'), and M/M' = 0 as at the end of proof of Theorem 43; in
other words, the rn generate the module M. Similarly, for any x in L,

we can write ax= b1x1) (b1 E A), whence x—

bx1 E Mc: mL; as above, we deduce that L is by the ele-

ments Since their number n is equal to the maximum number of
linearly independent elements in M± aL, they are linearly independent
(remember that L may be imbedded in a vector space over the quotient

field of A). Now, for every i, we can write ax1
=

ax1)

(b13 E A), whence x — b73x3 E Mc: mL; since (x1) is a linearly inde-

pendent basis of L, this implies (mod m), whence the matrix

is invertible. Hence, from ax1 = we deduce that

rnj + E aL, whence rn1 E aL, and therefore Mc: aL since M is
generated by the elements rn. Taking into account the relation
Mn aL = aM, it follows that M= aMc: mM, and, as above, that M— 0.

This being so, relation (a) is true for 6(M) =0, since we know that
6(M aL) � I and that M± aL is not free. We thus assume that
6(M) � 1. We represent M as a factor moduk F/S of a free module F;
as at the end of the proof of Theorem 43, we may assume that Sc: mF;
since M is not free, we have 6(5) = 6(M) — I (by (4)). Any relation of
the form ax E S (x E F) implies that =0 = image of x in M),
whence =0 and x E 5, since M is a submoduk of a free module and:
since a 0; in other words, we have S : Aa = S. Our induction hypo-
thesis shows that 6(S ± aF) = 1 ± 6(5) = 6(M). Since M/aM is iso-
morphic to F/(S+ aF), it admits 5-'- aF as 4irst module of syzygies.
Now, we have seen that aL)/aL and M/aM are isomorphic; since
aL is free and thus admits 0 as first module of syzygies, Lemma 5 shows
that M aL admits a first module of syzygies isomorphic to S ± aF.
As M + aL is not free, (4) shows that we have 6(M± aL) = I + 6(S aF)
=1+6(M). Q.E.D.
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In particular, if we take k non-invertible elements Yi' , of A
such that, for every i, is outside of all the associated prime ideals of
(Yi' , = (where we set a_0 = (0)), then a1_1 : Ay1 = a1_1, and

successive applications of Lemma 6 show that

8(ak) = k—I.

Our hypothesis is satisfied, for instance, by the ideals ni1 introduced

earlier in this section. In the polynomial case (case (a)') the theorem of
Macaulay shows that every ideal a which is of dimension n — k and is
generated by k elements, satisfies our hypothesis. In general, any
ideal (y1, . . Yk) satisfying the conditions (yr,. : Ay1 =

(Yi' (i= 1, 2, . . . , k) is said to belong to the principal class.
LEMMA 7. Let E be an A-module (0), and a1, ... , non-

invertible elements of A such that, for every q, we have (a1E+ ... +
a1_1E) :Aa1 = a1E+ ... + a1_1E. Then we have 8(E/(a1E+ ... + aqE))
=q+ 8(E).

PROOF. If we set = E/(a1E + ... + it suffices to prove
that = I + We have E1÷1 = and, by hypothesis,
the submodule (0) of E. satisfies the condition (0): = (0) (in other
words: "a1 is not a zero divisor in the module E."). We represent E. as
a factor moduJe L/S of a free module L. We may assume that Sc: mL.
Then is isomorphic with L/(S ± aL), and the relation (0): =
(0) (in implies S:Aa1 = S (in L). Thus Lemma 6 shows that
8(S+ aLL) = I + 8(S), whence = I + since = 1 + 8(S)
and =1+ 8(S+ aL).

COROLLARY. With the hypotheses and notations of Theorem 43, we
have 8(A/m) = n.

THEOREM 44. Under hypothesis (a)' or (b)', let M be an A-module,
(0) = fl N1 a reduced primary representation of the submodule (0) in M,

and the associated prime ideal of the primary submodule N1 (Vol. I,
Ch. IV, Appendix). Then the cohomological dimension 8(M) of M is
greater than or equal to max where denotes the height of the
prime ideal (Vol. I, Ch. IV, § 14, p. 240).

PROOF. Let us denote by h(M) the integer max we have to
prove the inequality h(M) 8(M) for every A-module M. We first
prove it in the case h(M) = n. In that case one of the ideals say

is the ideal m. We take an element y 0 in the intersection fl N1.

There exists then an exponent r such that mry = (0). Taking for r the
smallest exponent such that nVy = (0), and denoting by x any non-zero
element of we have mx= (0). As the submodule M' =Ax is
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annihilated by m, it is, in a natural way, a vector space over A/rn.
Since M' is thedirect sum of a certain number of copies of A/rn, we
have 8(M') = n (corollary to Lemma 7). We have to show that 8(M) n.
Suppose this is not the case, i.e., that 8(M) < n (Theorem 43). We set
M" M/M', and we consider some (n — 1)-st modules of syzygies
S, S', S" of M, M', M"; by repeated applications of Lemma 5, we may
assume that 5' is a submodule of 5, and that 5" is S/S'. The assump-
tion that 8(M) <n means that S is free. Hence 5' is a first module of
syzygies of 5", whence an n-th module of syzygies of M", and is there-
fore free (Theorem 43). This implies 8(M') n — I, in contradiction
with 8(M') = n.

We now prove the inequality h(M) 8(M) by induction on n — h(M).
If h(M) < n, none of the ideals is equal to rn, whence, since these ideas
are prime, there exists an element a of m such that a for every 1;
this element may be assumed to be homogeneous in case (a)'. Then
the submodule (0) of M satisfies the relation (0): Aa = (0) (Vol. 1, Ch. IV,
Appendix), and we therefore have 8(M/aM) =1 + 8(M) (Lemma 7).
If we show that h(M/aM) h(M) -'- 1, our proof will be complete, since,
by the induction hypothesis, we have the inequality h(M/aM)

We thus show that h(M/aM) h(M) + 1. Let be an associated
prime ideal of (0) in M such that = h(M), .e., let be one of the
prime ideals having the greatest possible height. Since a it is
sufficient to show the existence of an associated prime ideal of (0) in
M/aM such that Aa. Suppose this is not so. Then the union
U of the associated prime ideals of (0) in M/aM does not contain

Aa, and there exists an element b in + Aa such that b for all

j (Vol. I, Ch. IV, § 6, Remark, p. 215). Then the submodule (0) of
M/aM satisfies the relation (0): Ab = (0), whence we have aM: Ab = aM.
Ifwe write b=c+da (c E dEA), the relation CXE aM(where XE M)
implies (c + da)x E aM, whence we have x EaM; in other words we have
aM: Ac aM. We shall show that we have (0): Ac (0) (in M), and
this will contradict the fact that c E and terminate the proof. In fact,
the relation cx 0 with x E M implies cx E aM, whence x E aM and
x = ax1 with x1 E M; then cx =0 gives acx1 =0, whence cx1 =0; by re-
peated applications we get x1 ax2 with x2 E M and cx2 0, and so on,
whence x = with E M for every n. This is impossible unless
x =0 in the polynomial case (a)', since a is then a homogeneous element of
positive degree. In the local ring case (b)', this also implies x 0: we

have x E fl and fl (0), by the generalization of Krull's
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theorem (Vol. I, Ch. IV, Appendix), since the element 1 a is invertiMe
in A. Q.E.D.

We terminate this section by showing how Hilbert's theorem on char-
acteristic polynomials may be deduced from Hubert's theorem on syzygies.
We restrict ourselves to the case of a graded module M over a poly-
nomial ring A = KIX1, . . . , over a field K. We consider a chain
of syzygies of M:

(S) . .-÷F1-÷M-÷O,
where the sequence is exact, and where j n 1. Denote by .

dIS(1) the degrees of the generators of the free F.. For
q max1 the vector space F1(q) of elements of degree q in F1

s(i)
n+q—d—1has dimension = ( - ), and this is a polynomial of degree

j=1
n — 1 q. Since the exact sequence (S) induces an exact sequence

÷ —÷ —÷ 0

in the homogeneous components of degree q, then, for q max (d15), we

have:
dimK = — + + ... + (—

by the result about alternating sums of dimensions in an exact sequence
12, Lemma 1). Thus, for q max1,1 (d11), dimK is a poly-

nomial of degree at most n — 1 in q.
Notice that we have only used the fact that a chain of syzygies of M

stops somewhere, and not the more precise inequality] n +1.



VIII. LOCAL ALGEBRA

§ 1. The method of associated graded rings. Let A be a ring
with element 1, in an ideal in A (in A) and E an The
ideals (where we set in0 = A) form a descending sequence of ideals
in A, and the modules nVtE form a descending sequence of submodules
of E. We consider the direct sums

G(A) = G(E)

These are graded abelian groups, the elements of nv/nvtfl or
being considered as homogeneous elements of degree n.

We are going to define a multiplication between elements of G(A) and
G(E). It is sufficient to define the product of homogeneous elements,
where, say, a belongs to nv/nv+' and belongs to We
fix representatives a and x of a and respectively, where a E nt" and
x E We have ax E and the class of ax mod is
easily seen to depend only on a and We denote by this element
of We have = + where denotes the
degree of a homogeneous element.

Taking E= A we get, in particular, a multiplication in G(A). One
verifies, in a straightforward manner, that this multiplication is
tive, commutative, and distributive with respect to the addition. Thus
G(A) is a graded ring, called the associated graded ring of A with respect
to the ideal in, and sometimes denoted by

On the other hand, a straightforward verification shows that with
respect to the multiplication (a E G(A), E G(E)) defined above,
the group G(E) is a graded This module is called the
associated graded module of E, with respect to the ideal m; it is sometimes
denoted by

Suppose that the ideal in admits a finite basis {m1, . . . , mq}. As the
monomials of degree n in the m1's constitute a basis of the ring G(A)
is generated, over the ring A/in, by the classes of the m3's mod. in2
(this follows from the above definition of multiplication in G(A),

248
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as applied to the elements We can therefore write G(A) =
(A/rn) , If we introduce q indeterminates we
see that the graded ring G(A) is isomorphic to a residue class ring
(A/rn) , of the polynomial ring (A/rn) [x1,. , Xq] modulo a
homogeneous ideal In particular, G(A) is a noetherian graded ring, if
A/rn is noetherian and if rn is finitely generated. Similarly, if E admits
a finite basis {e1, . . . , ej, rn7zE is generated by the products bAe) where the
bA's are the monomials of degree n in . . , Therefore G(E),
considered as a is generated the residue classes e1,..., e

of . , e,. mod mE, and is therefore a finite G(A)-module.
Given any element x of E, we denote by v(x) the largest integer n such

that x E For x E we set v(x) = + oo. Then we have, if

v(x) is finite:

(1) x E rnv(x)E, x rnv(x)+1E.

The function v is called the order function on the module E. This
definition applies also to the particular case E=A. For x, y in E and
a, b in A we obviously have:

(2) v(x +y) mm (v(x), v(y)), v(a + b) mm (v(a), v(b));

(3) v(ax) v(a)±v(x), v(ab) v(a)+v(b).

Note that v is not, in general, a valuation of A.

Given an element x of E which does not belong to fl m7zE, we call

the initial form of x and denote by G(x) the residue class of x in
rnv(x)E/rnv(x)+1E. For x in rn7zE we set G(x) = 0. This definition

applies also to the particular case E=A.
The definition of the multiplication in G(A) shows that the relations

ab E rnv(a)+t'(b)+l, v(ab) > v(a) + v(b) and G(a)G(b) = 0 are equivalent.
Therefore we can state:

THEOREM 1. Let A be a ring and rn an ideal in A. If the associated

graded ring G(A) is a domain, then A' =A/ fl rn7z is also a domain, and the

order function in A' is a valuation of A'.
Let F be a submodule of E. We have = F)/F.

Therefore is canonically isomorphic to (rn7zE+ F)/
+ F), hence also to n (rnlz+1E + F)}. Since (rnlzE) fl
+ F) contains rnlz+1E, the factor module rnlz(E/F)/rnlz+l(E/F)

may be considered as a factor module of (the corresponding
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submodule being 0 -'- It follows that
G(E/F) is canonically isomorphic to a factor module of G(E), the cor-

responding submodule of G(E) being n ±

i.e., the homogeneous submodule of G(E) whkh is generated by the
initial forms of the elements of F. This submodule is called the leading
submodule of F. In the particular case where E A and where F is an
ideal a in A, the leading submodule of a is a homogeneous ideal in
G(A), and is called the leading ideal of a. As was pointed out above,
the group is canonically isomorphic to + a)/

± a); here A/a is viewed as an A-module. Now, if we call fft the
ideal (m + a)/ a which corresponds to m in the residue class ring A/a,
then + a) is canonically isomorphic to If we
now apply Theorem I to the ring A/a and to the ideal fft, we find the
following result:

THEOREM 2. Let A be a ring and let m and a be two ideals in A. If
fft denotes the ideal (m + a)/a in the ring A/a, then the associated graded
module of the A-module A/a, with respect to m, is canonically isomorphic
to the associated graded ring of A/a with respect to fft. Furthermore, if
the leading ideal of a, in the associated graded ring of A with respect to m,

is prime, then the ideal fl (a + is also prime.

We now give a sufficient condition for a ring A to be an integrally
closed domain. A domain R is said to be completely integrally closed if
it satisfies the following condition:

(c) Every element x of the quotient field K of R, for which there exists
an element 0 in R such that E R for every n 0, is an element
of R.

Since every element x of K which is integral over R satisfies the hypo-
thesis of condition (c), a completely integrally closed domain is integrally
closed. The converse is true if R is noetherian since, then, every
element x of K which satisfies the hypothesis in (c) is integral over R
(as R[xl is then contained in the finite R-module d-1R).

THEOREM 3. Let A be a ring, and nt an ideal in A such that

fl (Ac + m7?) Ac for every c in A. If the associated graded ring Gm(A)

is a completely integrally closed domain, then A itself is a completely
integrally closed domain.

PROOF. Our hypothesis implies, in particular, that fl = (0).

Thus, by Theorem 1, A is a domain, and the order function v is a
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valuation of A. Let x be an element of the quotient field K of A for
which there exists an element d 0 in A such that dx's E A for every
n 0. Let us write x a/b (a, b E A). We have to prove that a E Ab.

Since Ab fl (Ab by hypothesis, we are reduced to proving that

a E Ab + for every n 0. This we prove by induction on n, the case
n =0 being trivial (m° being the unit ideal).

Suppose that we have a E Ab ± We have to prove that a E Ab ±
We write a = ub w (u E A, w E mn). Since E A for every

we have d(x — E A for every q, or—since x = a/b = u

E Abe. We can thus write = with wq E A, for every q.
Since the order function in A is a valuation, the passage to initial forms
preserves products, whence for every q. Since

is completely integrally closed, this implies that G(w)/G(b) E G(A).
Setting G(w) = G(b)G(u') with u' in A, the definition of the multiplica-
tion in G(A) shows that w bu' (since w E m?9. Thus a is con-
gruent to b(u + u') mod mn+l, and therefore a belongs to Ab ±
Q.E.D.

§ 2. Some topological notions. Completions. We assume that
the reader is familiar with the elementary notions concerning topological
spaces, metric spaces and completion of metric spaces.

A ring A in which a topology is given, is said to be a topological ring
(with respect to the given topology) if the ring operations in A are con-
tinuous, i.e., if the mappings (a, b) a — b and (a, b) ab of the topo-
logical space A x A into the topological space A are continuous.

Let A be a topological ring. An A-module E, in which a topology
is given, is said to be a topologicalA-module, if the mapping (x, y) x —y
of E x E into E and the mapping (a, x) ax (a EA, x E E) of A x E into
E are both continuous. Thus, a topological A-module is first of all a
topological (additive) group, and, furthermore, the multiplication of
elements of A by elements of E is continuous. In particular, a topo-
logical ring A is also a topological A-module.

Let E be a topological A-module and L'(E) a system of open sets in
E which contain the zero 0 of E and satisfy the following condition:
(1) Any open set in E containing 0 contains a set of the system L'(E) (in
other words: L'(E) is a local open basis at 0). Then we have: (2) The
system of sets of the form x+ U, where x E E and U E L'(E), is an open
basis of E. Such a set L'(E) is called a basis of neighborhoods of 0 for the
topological module E.

Let A be a topological ring and let L'(A) be a basis of neighborhoods
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of the zero of A, in the sense of the above definition. It is easily verified
that the system 2J(A) enjoys the following properties:

(a) The intersection of any two sets of the system contains a
third set of that system.

(b) If U is any set in the system then there exists a set Win
such that W— W and W2 denote respec-
tively the sets of all elements a — b and ab, where a and b are in W).

(c) If U is any set in the system a any element of U and b any
element of A, then there exists a set Win such that W+ U and
Wbc: U.

It can be shown that if A is a ring and 2J(A) is a system of subsets of
A satisfying conditions (a), (b) and (c), then there exists one and only one
topology in A such that A is a topological ring with respect to that topo-
logy and 2'(A) is a basis of neighborhoods of 0 of the topological ring A.

Let A be a topological ring and E a topological A-module. Let
be a basis of neighborhoods of the zero of A and let 2'(E) be a basis of
neighborhoods of the zero of E. It is easily verified that the system
L'(E) enjoys the following properties (similar to the above properties
(a), (b) and (c)):

(a') The intersection of any two sets in the system contains a
third set of that system.

(b') If U' is any set in L'(E) then there exists a set W' in 2'(E) and a
set W in such that W'— W'c: U' and U'.

(c') If U' is any set in 2'(E), x any element of U', y any element of E,
and b any element of A, then there exists a set W' in and a set W
in such that W'±xc: U', bW'c: U' and U'.

It can be shown that if is a basis of neighborhoods of the zero of
a topological ring A and if is a system of subsets of an A-module E
such that conditions (a'), (b') and (c') are satisfied, then there exists one
and only one topology in E such that with respect to that topology E is a
topological A-module and L'(E) is a basis of neighborhoods of the zero
of the topological module E.

The proofs of the preceding assertions are similar to the proofs of the
similar assertions concerning topological groups, and for these proofs
the reader is referred to "Topological Groups."

According to the above definitions, a topological ring or a topological
module need not be a Hausdorif space. It is well known that if the zero
of a topological module E is a closed set then E is a Hausdorff space.
(Proof: If x, y are distinct elements of E, let V be a neighborhood of
y — x which does not contain the zero of E, and let U= x —y + V. Then
U is a neighborhood of zero such that x—y U. Let W be another
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neighborhood of zero such that W— Wc' U; then x+ W and y± W are
disjoint neighborhoods of x and y.) The above proof gives also the
following result: if 2.(E) is a basis of of the zero of a topo-
logical A-module, then E is a Hausdorff space if and only if the intersection
of the sets of the system 2.(E) consists only of the zero of E.

We shall be concerned primarily with topologies in A which can be
defined by using powers of ideals in A, in the following fashion:

If in is an ideal in A, the powers inlz (r =0, 1, 2,. •) form a system
1(A) satisfying the conditions (a), (b) and (c). We have in fact:
(a) inlz fl 1n7z' = if n n'; (b) inlz — = inlz and (1n7z)2c: inlz since the
powers in's are ideals; (c) + a and b E A.
We define the rn-topology of A as being the one in which the ideals
constitute a basis of neighborhoods of the zero of A. In a similar
fashion, if E is an A-module we define the rn-topology of E as being the
one in which the submodules rn7zE constitute a basis of neighborhoods of
the zero of E (these submodules are easily seen to satisfy the conditions
(a'), (b') and (c'), the system �(A) being the system of ideals in7z). With
respect to this in-topology, the module E is a Hausdorif space if and

only if fl = (0).

LEMMA 1. The closure g of a subset S of E is equal to fl (S +

PROOF. If x E there exists, for every n, a point of S such that
E x ± rn7zE. Hence x E 5,, + S + for every n. Conversely,

if x E fl (S+ rn7zE), there exists, for every n, a point 5,, of S such that

X E 5,, + rn7zE, whence 5,, x + and x E
In particular, the closure of a submodule F is the submodule

fl (F+ A closed submodule F is a submodule such that F=

fl
If a submodule F of E is open, it contains some basic neighborhood

msE. Conversely, if a submodule F contains some rnsE, we have
x + rnsEc: F for every x in F, whence F contains a neighborhood of each
of its points, and is therefore open. Since the relation rnsEc F implies

+ F = F for every n s, it follows from Lemma I that every open
submodule of E is closed.

Denoting by v the order function in E (see § 1), the rn-topology of E
can be defined by the distance
(1) d(x, y) = e(xy), e—real, e > 1.
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By formula (2) 1) this distance satisfies the "strong triangle in-
equality":

d(x, z) max {d(x, y), d(y, z)}.

Naturally, this distance function does not define a metric in E, in the
usual sense, unless E is a Hausdorif space; we have namely d(x, y) =0 if

and only if x — y E
n=O

rntzE. Nevertheless we can speak of Cauchy

sequences {Xn} in E: they are the sequences such that —

for all 0, where N(n) —* + oo as n —* + oo. In view of the strong
triangle inequality (2) it is seen at once that {Xn} is a Cauchy sequence if
and only if d(Xn, Xn+i) 0. A null sequence {Xn} is one for which
d(Xn, 0) —p- 0. A limit of a sequence {Xn} is any element y of E such that
{Xn — y} is a null sequence. If {Xn} has a limit y, then y' is also a limit of

{Xn} if and only if y' —y E fl nvzE. The module E is complete if every

Cauchy sequence in E converges in E (i.e., has a limit in E). In view
of the strong triangle inequality, if E is complete then the convergent

series Zn are those whose general term Zn tends to zero.

Let F now be a submodule of E. The factor A-module E/F admits a
unique topology such that the canonical mapping f: E ElF is both
open and continuous: it is the topology defined by taking as basis of
neighborhoods of the zero of E/F the f-images of the basic neighbor-
hoods m7zE of the zero of E. The basic neighborhoods of the zero in
E/F are therefore the submodules rn7z(E/F) = (rnnE+ F)/F; in other
words: the natural topology of the factor module ElF (regarded as an A-
module) is again the rn-topology of E/F. We note that since both f and
f' are open, it follows that the topological space E/F is obtained from
E by topological identification.

A submodule F of E admits two topologies: the induced topology
defined by the neighborhoods n F, and its own rn-topology defined
by the neighborhoods As rnnE n mnF, the latter is stronger
than the former (i.e., it has more open sets; or, equivalently, the
natural mapping of F in E is continuous for the rn-topologies). These
two topologies coincide in one important case:

THEOREM 4. If A is a noetherian ring and E a finite A-module, then,
for every submodule F of E, the rn-topology of F is induced by the in-
topology of E.

PROOF. In the appendix to Chapter IV (Vol. I) we have proved that,
given any ideal b in A, there exists an integer s and a submodule F'
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of E containing !'SE such that tF= F F'; thus F In
particular, any basic neighborhood rn"F for the rn-topology contains
some basic neighborhood F of the induced topology. Q.E.D.

Another proof of Theorem 4 may be deduced from the following
result, due to E. Artin and D. Rees:

THEOREM 4'. Let A be a noetherian ring, E a finite A-module, F a
submodule of A, and rn an ideal in A. There exists an integer k, depending
only on A, E, F and rn, such that rn"E n F= rnnk(rnkE n F) for every
n�k.

PROOF. The fact that Theorem 4' implies Theorem 4 is clear. For
proving Theorem 4' we introduce an indeterminate X, and consider the
set A' of polynomials with E rn1; this set is clearly a subring

of A[X], and even a noetherian ring, for, if {a1, . . . , aq} is a finite basis
of the ideal rn, we have A' A[a1X, . . . , aIX]. We consider also the
set E' of formal sums z0 + z1X + ... + where E rn1E; it is an
additive group for coefficientwise addition, and even an A'-module if
we set = and extend this multiplication by
linearity (it may be observed that E' is isomorphic with the tensor
product A' 0 E (Vol. I, Ch. III, § 14), but we shall not use this).
If we make the convention that an element uX of A', or E', is homo-
geneous of degree j, then E' becomes a graded module over the
graded ring A'. Finally E' is a finite A'-module, for, if {y1, . . . ,

is a basis of the A-module E, then it is clearly also a basis of the A'-
module E'.

This being so, we notice that the set F' of formal sums
z0 + z1X+ + such that E n F is a homogeneous sub-
module of the graded A'-module E'. Thus F' is generated, as an A'-
module, by a finite number of homogeneous elements, say

n F). Let k be the greatest of the integers n(i).
We consider an element z of n n k. The element zX"
of F' may thus be written in the form zX" =
where a E Since n — n(i) n — k, we have E

whence E rnn—k(rnkE n F), for is contained in

n F)c' n F.

Therefore we have z E n F) and we have proved the
inclusion n n

n F is obvious, Theorem 4' is proved. Q.E.D.
An important case in which Theorem 4 may be applied is the one in

which we are given a noetherian ring A, an ideal rn in A, and an overring
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B of A which is a finite A-module. Then, since m"B is the ideal (ntB)"
of B, the nt-topology of B (B being considered as an A-module) coin-
cides with the (mB)-topology of the ring B. Thus A, with its m-
topology, is a topological subspace of B, when B is considered with its
(ntB)-topology.

It may be noticed that, if in and in' are two ideals of a ring A for
which there exist exponents a and b such that and
(i.e., two ideals with the same radical, in the noetherian case), then the
nt-topology and the in'-topology coincide on every A-module.

Let A be a ring, in an ideal in A, and E an
A and E are Hausdorif spaces for their nt-topologies, i.e., that

fl in" (0) and that fl in"E = (0). As metric spaces, A and E may be

completed; call A and E their completions. The uniformly continuous
mappings (a,b)—*ab, (a,x)—*ax from
A x A, E x E, A x A, A x E into A, E, A, E, respectively, may be ex-
tended in a unique way, by continuity, to uniformly continuous
mappings from A x A, E x E, A x A and A x E into A, E, A, E. We
write these extended mappings additively and multiplicatively, as the old
ones. Since algebraic identities are preserved by passage to the limit,
these mappings define in A and E the structure of a topological ring and a
topological respectively. We shall often say that A (or E)
is the in-adic completion of A (or E).

We emphasize that we have defined the completions A (or E) only if
A and E are Hausdorff spaces (in their nt-topologies).

THEOREM 5. Let A be a ring, in an ideal in A and E afinite A-module.
If A and E are Hausdorff spaces for their nt-topologies, then the completion
E of E is, as an A-module, generated by E, i.e., we have E =AE.

PROOF. Let {x1,.. , xJ be an A-basis of E. Any element y of E
is the limit of a Cauchy sequence of elements of E. We have that
yn+i belongs to where s(n) 00 as n —3- 00. We can

fore write: with E nts(n). We set y1 =

with E A, and define inductively as beiflg ± a,1j. Then we

have, by induction,
=

and, furthermore, the q sequences

{b13, b23,. . } are Cauchy sequences in A. Let b3 denote the limit of
the sequence in A. In the equality

y =
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the right-hand side tends to 0 as n tends to infinity. Hence y =

and our assertion is proved.
COROLLARY 1. If, in addition to the assumptions made in Theorem 5, we

also assume that the ideal in admits a finite basis, then the closures of rn"E
in E and of in" in A are Am"E= (Arn)"E and Am" = (Am)" respectively.
We have m"E = (Am)"E n E and m" = (Am)" n A. The topologies of E
and A considered as completions of E and A are their (Am)-topologies.

In fact, since msmnE= mfl+sE n m"E for every s, the rn-topology of
niNE is induced by the rn-topology of E. Thus the closure of m"E in
E may be identified, as a topological A-module, with the m-adic com-
pletion of m"E. Since our hypotheses imply that m"E is a finite A-
module, Theorem 5 shows that this completion is Am"E= (Am)"E.
In particular, the closure of m" in A is (Am)". Taking into account the
fact that the module rn"E is closed in E (as it is an open submodule), the
second part of the corollary follows from the well-known topological
fact that, given a metric space S and a subset T of S, the intersection of
S and of the closure of T in is the closure of T in S. The last part
of the corollary follows from the well-known topological fact that, given
a metric space S and a point x of S, a basis of neighborhoods of x in is
formed by the closures in of the neighborhoods of x in S. Q.E.D.

COROLLARY 2. Let F be a submodule of E. If, in addition to the assump-
tions made in Theorem 5, we also assume that A is noetherian, then the
closure of F in E is AF, and the closure of F in E is AF fl E. If F is closed
mE, then F=AFnE.

For, A being noetherian, F is a finite A-module, and hence, by
Theorem 4, the closure of F in E coincides with the m-adic completion
of F. The first assertion of the corollary follows then from Theorem 5.
The remaining assertions are topologically trivial.

THEOREM 6. Let A be a noetherian ring, m an ideal in A, E a finite
A-module, and F a submodule of E which is closed with respect to the m-
topology of E. If A and E are Hausdorff spaces in their rn-topologies,
then E/AF and the completion of E/F are canonically isomorphic as topo-
logical A-modules.

PROOF. By Corollary 2 to Theorem 5 we have F= AF fl E, whence
the group E/F may be algebraically identified with a subgroup of E/AF.
The identification topology of E/AF admits the subgroups

as basic neighborhoods and hence induces on E/F
the rn-topology, since (AF± Arn"E) fl E = A(F+ m"E) n E = F+ m"E,
by Corollary 2 to Theorem 5 (this corollary is applicable since F+ m"E
is open and therefore closed). Hence the topological space E/F is a
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subspace of E/AF. Since E/AF is a factor group of a complete metric
group, topology shows that it is complete. For completing the proof
it remains to be observed that E/F is dense in E/AF, and this is obvious
since E is dense E. Q.E.D.

COROLLARY 1. Let A be a noetherian ring, m an ideal in A and E a
finite A-module. If A and E are Hausdorff spaces with respect to their
rn-topologies, then the associated graded rings of A with respect to m and
of A with respect to Am are canonically isomorphic. More generally, the
associated graded modules of E with respect to m and of E with respect to
Am are canonically isomorphic.

In fact, is closed, since it is open, and mn+lE is an open and closed
submodule of m"E. Thus muiE/mn+lE is discrete for its rn-topology.
Therefore it is identical to its completion, which is isomorphic to
AmhlE/Amn+1E by Theorem 6. This proves our assertion.

COROLLARY 2. Let A be a noetherian ring, m and a two ideals of A
such that a is closed in the rn-topology. Then the completion of A/a (for
its (m + a)/a-topology) is canonically isomorphic to A/Aa.

In fact the (in + a)/a-topology of A/a coincides with the rn-topology
of A/a considered as an A-module, and we thus have a special case of
Theorem 6, with E=A and F=a.

We terminate this section by introducing a useful notation. Let A
be a ring which is a complete Hausdorif space for its nt-topology, let
{x1,. , xj be a finite system of elements of m, and let F(X1,. , Xq)
be a formal power series with coefficients in a subring B of A. We write

F as an infinite sum of forms F— F,,, F,, being a form of degree n.

Then, since F,,(x1,. , E the series F,,(x1,. , converges

in A as A is complete. The sum of that series, which is uniquely deter-
mined since A is a 1-lausdorif space, is denoted by F(x1,.. , xi). The
mapping F —* F(x1,. , is obviously a homomorphism of
B[1X1,. , Xi]] into A (cf. Chapter VII, § 1), and is continuous if one
takes with its natural topology (i.e., with its (X1,. . , Xe)-
topology). The image of this homomorphism cp is a subring of A, which
is denoted by B11x1, • , xe]]. If is one to one, we say that x1, • ,

are analytically independent over B, and in that case , Xql] is
isomorphic to the power series ring in q variables over B.

§ 3. Elementary properties of complete modules. In this sec-
tion we study some finiteness properties of complete rings and of
modules over complete rings.
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THEOREM 7. Let A be a ring, in an ideal in A, E an A-module and F a
submodule of E. Suppose that A is a complete Hausdorff space for its
rn-topology, and that E is a Hausdorff space for its rn-topology. Let
{x1, . . , Xq} be a finite system of elements of F such that their initial
forms G(x1) generate (over the leading submodule of F in Gm(E).
Then the elements {x1, . . , generate F.

PROOF. Let y be any element of F. We are going to show induc-
tively the existence, for every n 0, of elements of A such that

(1) y mod

This is obvious for n 0. Suppose (1) holds for a given integer n and

for suitable elements in A. If the element y — is in

we take = If not, then the initial form G(y
—

is an

element of degree n in the leading submodule F' of F. As F' is
generated by the homogeneous elements G(x1) we can write

G (y
—

anixi) G(c711)G(x1), where the are elements of A such

that = n — By the definition of initial forms, we have

y
—

(mod We take, in this case, =

The choice of the elements shows that is a Cauchy sequence
for every i. Since A is complete, this sequence admits a limit E A.
In the equality

y— ax1 = y—

the right-hand side tends to 0 as n —p- oo. Since E is a Hausdorif space,

this implies y = ax1. Q.E.D.

COROLLARY 1. A, rn and E being as in Theorem 7, suppose that Gm(E)
is a finite Gm(A)-module. Then E is a finite A-module.

We apply Theorem 7 to the case F= E.
COROLLARY 2. A, in and E being as in Theorem 7, suppose that E/rnE

is a finite (A/rn)-module. Then E is a finite A-module. If the classes of
X1, . . , mod rnE generate E/rnE, the elements x1 generate E.

In fact, the G(A)-module G(E) is generated by E/mE since every
element of may be written as a sum of elements of the form

(m1 E rn, x E E), and since, if such an element is not in
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its initial form is G(m1).. . with G(m1) E rn/rn2 and
G(x) E E/rnE. It follows that G(E) is a finite G(A)-module. Thus
Corollary 2 follows from Corollary I and Theorem 7.

COROLLARY 3. A, rn and E being as in Theorem 7, suppose that G(E)
is a noetherian G(A)-module. Then E is a noetherian A-module.

In fact, for every submodule F of E, the leading submodule of F is
finitely generated. By Theorem 7, F itself is then finitely generated.

COROLLARY 4. Let A be a ring, and rn an ideal in A such that A is a
complete Hausdorff space for its rn-topology. . If in is finitely generated
and if A/rn is noetherian, then A is noetherian.

In fact, we have seen in § I that, under these conditions, G(A) is a
noetherian ring. Thus Corollary 4 follows from Corollary 3.

COROLLARY 5. Let A be a noetherian ring, and m an ideal in A. If
A is a Hausdorff space in its rn-topology, then A is a noetherian ring.

In fact, we have seen in § 1 that G(A) is a noetherian ring. Since
G(A) and G(A) are isomorphic 2, Corollary I to Theorem 6), G(A)
is noetherian. Thus Corollary 5 follows from Corollary 3.

EXAMPLES:
(I) We give a second proof of the fact that, if R is a noetherian ring,

then the power series ring A = is noetherian. If we
denote by the ideal (X1, . . . , Xv), it is easily seen (see Chapter VII,
§ 1) that is a complete Hausdorif space for its
topology. Since 9)1 is finitely generated, and since = R is
noetherian, Corollary 4 shows that A is noetherian.

It may be observed that is the completion of the
polynomial ring R[X1,. . . , for the (X1,. .. , of this
latter ring. Thus our assertion follows also from Corollary 5.

Notice also that the associated graded ring of R[1X1, . . . , is the
polynomial ring R[X1,. . . , Xv]. Thus, by Theorem 3, § 1, if R is a
noetherian integrally closed ring, then is also integrally

t Here we use the fact that, if R is integrally closed then so is RrX1,. . . , Xc].
This may be proved as follows. By induction on n, we are reduced to proving
that R[X] is integrally closed. Let K be the quotient field of R. If z e K(X)
is integrally dependent on R[X] then z e K[X], as K[X] is integrally closed.

q
We write z = aIX' with aj e K. We consider an equation of integral de-

1=0
pendence for z over R[X] and substitute for X, in that relation, q + 1 distinct
elements u of an algebraic closure of the prime subfield of K which are integral
over R. This shows that the a1 are integral over R, whence z e R[X]. An-
other proof is implicitly contained in the proof of Theorem 11 of VII, § 2, where
we replace R by R[X] (whence K0 by K): it follows from that proof that each
term aIX' is integrally dependent on R[X] and this easily leads to the desired
conclusion. [See also VI, § 13, Theorem 29, for a proof using valuations.]
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(2) W e now give a second proof of the "existence" part in the
Weierst rass preparation theorem (Chapter VII, § 1, Theorem 5). We are
given a power series F in R = which is regular in
more precisely the coefficient of in F is an invertible element of
R' = and is not invertible for j< s. We have to
prove that every element G of R may be written in the form G= UF+
s—I

where U E R and E R'. The hypothesis about F implies
1=0
that the ring R/(X1, . . . , F) = . , 0, is iso-
morphic to whence this ring admits {1, . . . , as
a linear basis over K denoting the residue class of Xv). Therefore,
by Theorem 7, Corollary 2 (applied with A, rn and E being replaced
by F]], (X1, .. . , F) and X,j1)
{ 1, Xv,.. , is a basis of R, R being considered as a module
over F]]. In other words, we can write

. .. ,

By putting in evidence the term 51(X1, ... , X,,1) of which does not
contain F, and by factoring out F in the other terms, we see that we

can write G = UF+ 51(X1, ... , as asserted.

§ 4. Zariski rings.t We are going to study the pairs (A, rn), formed
by a noetherian ring A and an ideal rn in A, such that every submodule
F of every finite A-module E is closed for the rn-topology of E.

THEOREM 8. Let A be a noetherian ring, rn an ideal in A, E a finite
A-module, and F a submodule of E. For F to be closed in the rn-topology
of E, it is necessary and sufficient that + rn A for every associated prime
ideal of F.

PROOF. The assertion that F is closed is equivalent to the relation

fl (F+ rn"E) = F (Lemma 1, § 2). By Krull's theorem (Vol. I, Ch. IV,

Appendix) applied to ElF this relation is equivalent to the following
property of F: for every a= 1 (mod rn) and for every x E E, x F, we
have ax F. This means that every element a 1 (mod rn) is outside
all the associated prime ideals of F (Vol. 1, Ch. IV, Appendix), i.e.,

t These rings, have been first studied by the senior author in his paper
"Generalized semi-local rings" (Summa Brasiliensis Mathematicae), have been
so designated by the junior author in his monograph "Algèbre locale" (Memorial
des Sciences Mathématiques, fasc. CXXIII, 11953).
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that for every i, no element of is congruent to I mod in. This is
obviously equivalent to the necessary and sufficient condition given in
the theorem.

COROLLARY. Let A be a noetherian ring, in an ideal in A, E a finite
A-module and F a submodule of E. Let F= fl F. be a primary representa-

tion of F, and the radical of the primary module F.. Then the closure
of F in Efor the rn-topology is the intersection fl of those primary

ponents F, of Ffor which + in A.
In fact, each F1 is closed by Theorem 8, and hence also fl is closed.

It remains to be proved that F is dense in fl Let x be any element

of fl F1. For every index v such that + in = A we choose an exponent

s(v)such that Since and in are comaximal, and
are comaximal for every n, and there exist elements p,, of and

of in'7 such that + =1. The element y = (II is in every

F,, since F,,, whence y is in F since x E fl F1. On the other hand,

we have y x(mod since [1(1— m,,) Thus every

borhood of x has points in common with F, and this proves our assertion.
THEOREM 9. Let A be a noetherian ring, and in an ideal in A. The

following conditions are equivalent:
(a) For every finite A-module E and every submodule F of E, F is closed

for the of E (i.e., F = fl (F+ nt7lE)).

(a') A is a Hausdorff space in its in-topology, and for every finite A-
module E and every submodule F of E we have F= AF n E.

(b) Every finite A itself) is a Hausdorff
space in its

in in the in-topology of A.
(d) The ideal in is contained in the intersection of all the maximal

ideals of A.
(e) Every element of 1+ m is invertible in A.
(f) For every finite A-module E the relation E = inE implies E = (0).
PROOF. We shall give a cyclic proof (a) (b) (c) (d) (e)

(f) (a), and in the course of the proof we shall also establish the

equivalence of (a) and (a'). For F= (0), (a) implies fl (0), i.e.,

(a) implies (b). Therefore, (a) also implies (a'), for if both A and E are
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Hausdorif spaces in their nt-topologies, then, by Corollary 2 to Theorem
5 2), AF n E is the closure of F in E.

Assume (b), and let a be any ideal in A. The A-module A/a is finite

(it has the a-residue of 1 as a basis), and hence fl = (0). This

signifies that
nOO

± a) a and thus (b) implies (c). If (c) holds

and if is maximal ideal in A, we cannot have + nt's = A for every n
(otherwise would not be closed). Since + in = A implies + = A
for every n, we conclude that + in A. Hence in since is maxi-
mal, and therefore (d) holds.

If (d) holds and if 1 +m (mE in) is an element of 1 + in, we have
1+ m for every maximal ideal since m E Thus the
principal ideal (1 + m) must be the unit ideal, and 1 + m is invertible
mA.

If (e) holds and if {x1,. . , Xq} is a finite basis of a module E such that
E = mE, we have relations x2 = with E in. If we set
d= det — m.d) (where the are the Kronecker symbols), this im-
plies dx2 = 0 for every i. Since d belongs to 1+ in, it is invertible,
whence x2=0 and E=(0).

Suppose that (f) holds. If a is an ideal such that a + in = A, and if we
set E = A/a, we have mE = (a + inA)/a = (a + in)/a = A/a = E, whence
E = (0) and a = A. In particular, we have + in A for every prime
ideal of A distinct from A. Thus Theorem 8 proves that (a) holds.
Q.E.D.

Finally, if (a') holds, then, in the special case E =A, it follows from
Corollary 2 to Theorem 5 2) that every ideal in A is a closed set in the
nt-topology of A, and hence (a') implies (c).

COROLLARY. Let A noetherian ring and in an ideal in A such that
every element of 1+ in is invertible in A. Then, if E is a finite A-module
and F a submodule of E whose leading submodule 1, p. 250) is equal to
Gm(E), then E=F.

In fact the associated graded module of E/F is G(E)/G(F) = (0)
1, p. 250). Therefore we have in(E/F) =E/F, whence E/F= (0) since

(e) implies (f).
DEFINITIoN. A noetherian ring A is said to be a Zariski ring with

respect to an ideal in in A if A and in satisfy the equivalent conditions listed
in Theorem 9.

We shall often simply say "A is a Zariski ring" when the nature of the
ideal in is clear from the context. Notice that itt may be replaced by
any ideal having the same radical as in.
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Examples of Zariski rings:
(1) A noetherian local ring, with respect to its maximal ideal (by (d)).
(2) A noetherian ring A admitting only a finite number of maximal

ideals rn, with respect to their intersection rn = fl rn (by (d)). Such a

ring is said to be semi-local.
(3) A noetherian ring A which is a, complete Hausdorff space in its

rn-topology. In fact, every element I — m (m E rn) of I rn is invertible,
since it admits 1 + m ± m2 ± . . -4- ± • as an inverse. In parti-
cular, if A is a noetherian ring and rn an ideal in A such that A is a
Hausdorif space in its rn-topology, then A is a Zariski ring, since A is
noetherian (Corollary 5 to Theorem 7, § 3).

(4) A factor ring A/ct of a Zariski ring, with respect to the ideal
(rn+a)/a.

THEOREM 10. Let A be a Zariski ring with respect to the ideal rn. In
order that A be a semi-local (local) ring, it is necessary and sufficient that
A/rn be a ring satisfying the descending chain condition (a ring satisfying
the d.c.c., with only one prime ideal).

PROOF. Suppose that A is semi-local. Then the radical of rn is the
intersection of the maximal ideals of A. Hence A/rn is a noetherian
ring in which every prime ideal different from (1) is maximal, i.e., A/rn
is a ring satisfying the d.c.c. (Vol. 1, Ch. IV, § 2, Theorem 2). Similarly
if A is local. Conversely, if A/rn satisfies the d.c.c., there is only a finite
number of prime ideals p1/rn in A/rn, and they are maximal (Vol. 1,
Ch. IV, § 2, Theorem 2). Since all the maximal ideals in A contain rn
(Theorem 9, (d)), A has only a finite number of maximal ideals, whence
A is semi-local. Similarly, if A/rn has only one prime ideal different
from (1), A has only one maximal ideal, and is a local ring. Q.E.D.

COROLLARY. The completion A of a semi-local (local) ring A is a semi-
local (local) ring.

In fact, we have seen that A is a Zariski ring with respect to Arn.
Since A/Arn is isomorphic to A/rn 2, Theorem 6, Corollary 1), our
assertion follows from Theorem 10.

Let A be a ring with respect to the ideal rn. 1ff is a linear
mapping of an A- module E into an A-module F,f is uniformly continuous
for the rn-topologies, since f(iw'E)c: m"F. Thus f can be extended by
continuity, and in a unique way, to a mapping/of E into P. By passage
to the limit it is easily seen thatf is A-linear.

THEOREM ii. Let A be a Zariski ring, and E F G be an exact
sequence offinite A-modules and of A-linear mappings. Then the sequence

I
E —p- P C is exact.
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PROOF. Our hypothesis signifies that f(E) =g-1(O) and implies that
g(f(x)) = 0 for every x in E. Hence, by continuity, we have = 0

for every in E. Thus the kernel g-1(O) of contains the image f(E)
of f. We have to prove that these two submodules of F are equal, i.e.,
that every element ij of F such that = 0 is in 7(E).

The submodule G' =g(F) of G has the rn-topology as induced
logy 2, Theorem 4). Thus its completion G' is identical with its
closure in G. By continuity g maps F into G', and, since g(F) is a closed
submodule of G' (as A is a Zariski ring) which contains g(F) = G', we
have g(P) =

Consider now an element ij of F such that = 0. We approximate

Ti
by an element of F such that rj E rn"P. Then,

since = 0, we have E rn"g(F) n g(F) = n G' = rn"G' (by
Theorem 9, (a')) = In other words, there exists an
element of such that Since = 0, the
fact that f(E) =g-1(O) implies that Ef(E). 'Hence Ef(E) +

and ij Ef(E) + rn"F. Since this holds for every n, it follows that ij
is in the closure of f(E) in F. Since the submodulef(E) of E is closed
and contains f(E), we conclude that ij Ef(E). Q.E.D.

REMARK. We have seen, in the course of the proof, that g(F) is the
closure of g(F). For the same reason J(E) is the closure of f(E).

COROLLARY 1. Let A be a Zariski ring, E a finite A-module, and
{x1,.. , a finite family of elements of E. Then every linear relation

a in A, satisfied the x1 in E, is a linear

combination (with coefficients in A) of relations = 0 with coefficients

mA.

Consider the free module F= AX1 with q generators over A, and

the homomorphism g of F into E defined by = Let R be the
kernel of g, i.e., let R be the module of relations satisfied by the x over
A. The sequence

is exact (i denoting the natural mapping of R into F). By Theorem 11,
we get an exact sequence

g
0 —* R —k r

which shows that P is isomorphic to the kernel of g. Since P is ob-
viously the free module AX1, this means that is isomorphic to the
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module of relations satisfied by the over A. As 1? = AR 2,
Theorem 5), our assertion is proved.

We point out that Corollary 1 together with Theorem 5, § 2, imply
that the completion E is isomorphic to the tensor product A ØA E.
The preservation of exactness proved in Theorem 11 is not a general
property of tensor products; the fact that exactness is preserved in the
present case means that the torsion functor (A, E) is 0 for
every finite

A be a Zariski ring, and let F and G be two sub-
modules of a finite E. Then A(F n G) AF fl AG.

We consider the mapping g of the direct sum F G into E defined
by g(x, y) = x —y (x E F, y E G). The kernel K of g is the set of elements
(x, x) with x E F and x E G, and is therefore isomorphic to F n G. From
the exact sequence

we deduce, by Theorem 11, the exact sequence

where g is defined by rj) = — E P, -rj E U). Thus may be
identified with P n O, i.e., with AF n AG. Since R= AK= A(F n G),
the corollary follows.

In particular, if a and b are ideals in A, we have A(a fl 5) = Au n As.
COROLLARY 3. Let A be a Zariski ring, E and F two finite A-modules,

fa linear mapping of E into F, and F' a submodule ofF. Then Af_1(F') =

We denote by g the linear mapping of E into F/F' defined by g(x)
residue class of f(x) mod F'. We have the exact sequence

0 E F/F',

from which we deduce

If is any element of E, then is the residue class of mod AF'
(g being the composition of f and the canonical mapping of P onto
P/AF', since g is the composition off and the canonical mapping of F
onto F/F'). Thus the kernel Af'(F') of g is f-'(AF').

COROLLARY 4. Let A be a Zariski ring, a an element of A, E a finite
A-module, and G a submodule of E. Then A(G: Aa) AG :Aa.
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In fact, G:Aa is the submodule of all elements x in E such that
ax E G. To obtain the corollary, it suffices to apply Corollary 3
to the case F= E, F' = G and to take for f the mapping x ax of E
into E.

COROLLARY 5. Let A be a Zariski ring, E a finite A-module, E' a
submodule of E and z an element of E. Then A(E' : Az) AE' : Az.

We recall that E' : Az is the ideal of all elements a in A such that
az E E'. We apply Corollary 3 to the case E== A, F= E, F' E', and
take for f the mapping a az.

In particular, if b is an ideal in A and a an element of A, we have

A be a Zariski ring. If an element c of A is not
a zero divisor in A, it is not a zero divisor in the completion A.

In fact (0) : Ac = A((0) : Ac) = (0) by Corollary 4 (or 5).
COROLLARY 7. Let A be a Zariski ring, E a finite A-module, F a sub-

module of E and a an ideal in A. Then A(F: a) = AF:Aa.

Let {a1,. . . , a finite basis of a. We have F: a fl (F: Aa5).

Thus Corollary 7 follows from Corollaries 2 and 4.
COROLLARY 8. Let A be a Zariski ring, E afinite A-module, F and G

two submodules of E. Then A(F: G) = AF:AG.
We take a finite basis {z1, . , Zq} of G, we observe that F: G==

('i (F:Az3), and apply Corollaries 2 and 5.

In particular, if a and are two ideals in A, we have A(a:b)==Aa:Ab.
Let us now study more closely the relations between a noetherian

ring A (not necessarily a Zariski ring) and its completion A with respect
to the nt-topology. It will be convenient to include in this study (at
least at the initial stage) also those rings A which are not Hausdorif
spaces. However, we have not yet defined the completion A of a ring
A, with respect to its nt-topology, if A is not a Hausdorif space. We

shall do so now. It is clear that if we set A' = A/fl iW and in'

m/ fi nv, then A' is a Hausdorif space in its nt'-topology. We define

A tobe the completion A' of A', with respect to the in'-topology of A'. If

11
(0), then A is not any more a subring of A, but we have the

canonical homomorphism A A' A' A of A into A, and this
homomorphism is a continuous mapping.

As A is a Zariski ring, every element of 1 + Am, and in particular
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the image of every element of 1+ rn, is invertible in A. Since S= 1+ in
is a multiplicatively closed set in A, we are led to study the quotient
ring A5.

The kernel it of the canonical homomorphism : A A5 is (Vol. I,
Ch. IV, § 9) the set of all elements b in A for which there exists an ele-
ment s = 1 — m in S(m E rn) such that bs = 0. This last relation implies

b = bm = bm2 = •.. = hence it is contained in fl Conversely,

if b is an element of fl rn's, then there exists .an integer q such that the

ideal rnb contains n Ab (Vol. I, Ch. IV, § 7, Lemma 1) and therefore
is equal to Ab (since b E all q); we thus have b E tub, i.e., b = mb for
some m in m, whence b(1 — m) = 0 and b belongs to n. Since the ideal

rn's, which is the closure of 0 in A, is also the kernel of the homomor-

phism of A into its completion A, it follows that the quotient ring A5
may be identzjied with a subring of the completion A.

From now on we simplify matters by replacing A by A', i.e., by
assuming that A is a Hausdorif space in its rn-topology. In that case

we have fl = (0) and hence no element of S is a zero-divisor in A.

Therefore A is a subring of A5. We consider the rn-topology on A5
(considered as an A-module), i.e., the topology defined by the powers
of the ideal ntA5. It is clear (since

A the topology induced in A by the rn-topology of
A5. On the other hand, if an element a of A belongs to we have
a(1 + m) E for some m in in, whence a E am; this implies
a E + + arn)rn = + am2, whence, by successive applications,
a E arn'1 = We have therefore shown that = fl A,
and hence the rn-topology of A is induced by the (rnA5)-topology
of As.

It follows that A is also the completion of A5. We now remark that

A5 is a Zariski ring, i.e., that every elementy= 1 +
1

(m, m' E rn) of

1+m+m'1 + rnA5 is invertible. In fact, we have y
= 1 + m'

and, since

1+ m + m' (e I ± in) has an inverse x in A5, the element x(1 m') is the
inverse of y.

Since the passage from a Zariski ring to its completion has been ex-
tensi vely described by Theorem 11 and its corollaries, and since the
passage from A to has been described in detail in Vol. I, Ch. IV, § 11,
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we have now a certain amount of information about the passage from A
to A. As an illustration we prove

THEoREM 12. Let in be an ideal in a noetherian ring A, such that A is

a Hausdorff space in its rn-topology (i.e., such that nOO = (0)). Let a

be a closed ideal in A, let Aa= LI fl '12 fl . fl q* be an irredundant
primary representation of Act, and let be the prime ideal which is the
radical of Then a = fl (q2* fl A) is a primary representation of a

and fl A is the associated prime ideal of q2* n A and is contained in an
associated prime ideal of a.

PROOF. Consider the quotient ring where S =1+ in. As a is
closed, we have Aa fl A = a (Corollary 2 to Theorem 5, § 2), whence

n A = a. By using properties of quotient rings, we see that it
would be sufficient to prove Theorem 12 for

A and a respectively. In other words, we may assume that
A is a Zariski ring.

Any element x of is a zero divisor mod Aa. Since any regular
element in A/a is also regular in A/Aa (Corollary 6 to Theorem 11),
every element of n A is a zero divisor mod a and therefore belongs
to some associated prime ideal of a. On the other hand, n A is
obviously a primary ideal admitting n A as radical. Therefore,
from Aa= fl and from Aa n A=a, we deduce that a= fl (q* n A).

This is a (not necessarily irredundant) primary representation of a.
Q.E.D.

COROLLARY 1. If, furthermore, a is a prime ideal, we have a = n A
nAfor every i.

In fact n A is contained in an associated prime ideal of a, i.e.,
n A is contained in a.

COROLLARY 2. With the same assumptions on A and in as in Theorem
12, assume furthermore that the closed ideal a admits an irredundant

primary representation a= n such that none of the prime
ideals = is embedded. Then Aa = n ...

As in Theorem 12, let Aa= q1* fl q2*
. . . fl be an irredundant

primary prepresentation of Aa and let q2 = q2* fl A, = fl A =
It is clear that , are among the prime ideals . .

and that each contains one of the prime ideals On
the other hand, by Theorem 12, each is contained in one of the prime
ideals 2' Since no is embedded, it follows that the
set coincides with the set , (the n prime
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ideals are, however, not necessarily distinct). Hence each of the
ideals is the intersection of those for which = If, say,

= fl q2 ... q5 then Ao1 n Aq2 .. . Aq5, and
Ii n n

for the ideals Hence fl fl Aq1c' fl a.*=Aa, and since
j=i 1=1 1=1

h

the opposite inclusions Aac: is obvious, the corollary is

proved.

§ 5. Comparison of topologies in a noetherian ring. Let A be
a noetherian ring. One is led to consider on A, not only the rn-topo-
logies (where rn is an ideal in A), but also topologies of a more general
type. For example, if is a prime ideal in A, one may construct the
local ring consider its natural topology (defined by the powers of
the maximal ideal and the induced topology on A. In this topo-
logy, the symbolic powers (

Qpn)ec; Vol. 1, Ch. IV, § 12) constitute
a basis of neighborhoods of 0; notice that we have
(Vol. I, Ch. IV, § 12, Theorem 23).

More generally, given a noetherian ring A and a descending sequence
(an) of ideals of A such that

(1)

we define the of A as being the topology in which the
ideals constitute a basis of neighborhoods of 0, the basic neighbor-
hoods of any other element a of A being the cosets a + With
respect to this topology, A is a topological ring, and as in § 2, this topo-
logy is induced in A by a metric, satisfying the strong triangular in-

equality. This space is Hausdorif if and only if

a complete ring A, the next theorem gives an
"extremal" property of the natural topology of A.

THEOREM 13 (CHEVALLEY). Let A be a complete ring, rn
the intersection of its maximal ideals, and (an) a descending sequence of

ideals of A such that
nOO

= (0). Then there exists an integral valued

function s(n) which tends to infinity with n, such that
PROOF. We shall use an indirect argument. Suppose that there

exists an integer s such that rns for every n. Since the ring A/mt
satisfies the d.c.c. 4, Theorem 10), and since in this ring the ideals

+ rnt)/rnt form a descending sequence of ideals (0), their inter-
section is (0), and there exists an element rn such that E + rn
for every n.
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We now define, by induction on t � s, a Cauc/zy sequence of elements;
of A such that

(2) (mod nis)

(3) ; E + mt for every

We suppose that; is already constructed, and proceed to construct

The relation ; E + nit implies that the ideal a
empty intersection with coset nit. We pass to the ring A/nit+l and
we denote by the coset + nit+l. By (3), the set +
has a intersection with each one of the ideals +

As satisfies the d.c.c., the intersection fl nit+l)/nit+l

coincides with one of the ideals + and hence there exists
an element of the set ± which lies in all the ideals

+ We take for xH1 a representative of in A. We
have then E + nit+l for every n, and (mod nit). The
latter consequence, together with (2), implies that (mod ni:).
Thus satisfies conditions (2) and (3). On the other hand, the
relation mt) implies that (xe) is a Cauchy sequence.

Since A is complete, the Cauchy sequence (xe) has a limit X E A.
From (2) we deduce, since ni: is closed, that x (mod nis), whence
x ms (since ni:). The relations (mod mt) imply that
x (mod nit), whence, by using (3), it follows that x belongs to

+ nit for every n and every t. From x E nit), and from the

fact that ideals in A are closed sets, we deduce that x E for every n.

Since fl = (0) by hypothesis, we deduce that x = 0, in contradiction

with Q.E.D.
In topological terms, Theorem 13 signifies that the natural topology

of the complete semi-local ring A is weaker than any other
of A for which A is a Hausdorif space. This resembles a classical
property of compact spaces whereby a compact space possesses no
Hausdorff topologies which are strictly weaker than the given topology
of the compact space. As a matter of fact, the complete semi4ocal
ring A, without being in general compact in its (we have
compactness if and only if A/ni is a ring with a finite number of
ments), is however linearly compactt in the sense that, given a family;

t See S. Lefshetz, "Algebraic Topology", p. 78 (Amer. Math. Soc. Coil.
Pubi., vol. 27, 1942) for the theory of linearly compact vector spaces. The
theory of linearly compact modules is analogous, without any significant changes.
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of ideals in A and a family of cosets Ca = + with the finite intersection
property (i.e., such that fl 0 for every finite family a1, , of

indices), then fl is For verifying this property one first

proves, by using the d.c.c. in A/mtz, that fl (Ca + is 0; this being

established, one constructs a Cauchy sequence such that
E fl (Ca + for every n, and it is easily seen that x = is an

element of fl In more sophisticated terms this amounts to proving

that each A is the inverse limit of the
factor rings

A be a noetherian ring and nt an ideal in A such
that A is a Hausdorff space in its If c E A is not a zero
divisor, then c is not a zero divisor in the completion A, and we have

Acc: where s(n) oo with n.
PROOF. We first consider the case in which A is a ring

and nt the intersection of the maximal ideals of A. Since c is not a
zero divisor in A 4, Corollary 6 to Theorem 11), we have

fl Ac) = Ac= (0) :Ac = (0). Hence, by Theorem 13,

we have Amiz :Acc: where s(n) —p- oo with n, and from this we
deduce that mlz Acc: 4, Corollary 4 to Theorem 11).

Let now be a prime ideal in A. By applying what has just been
proved to the local ring and denoting by ë the image of c in we
see that provided ë is not a zero divisor in If
we denote by n the kernel of the homomorphism A (i.e., the set
of all elements x of A for which there exists an element s such that
sx = 0), then ë is not a zero divisor if and only if cx n for any x n.
Now, if x n, we have xs 0 for all s and since c is not a zero
divisor, it follows that cxs 0 for all s whence cx n. We have
therefore shown that ë is indeed a regular element. Coming back from

to A, we deduce from that Ac"
We consider now an arbitrary power m and a primary

sentation = n If denotes the radical of q1, there is an exponent
t(i) such that and consequently also q1 since q1 is
primary for By what has been proved above, there exists an expo-
nent r(i) such that Acc We will have then

:Ac" q1. Denoting by r the greatest of the exponents r(i), we
deduce that Ac" and therefore that Ac" nt-'. Now, since
nt1 is contained in we have ntfrc whence mjT:Acc' nt1. This
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proves that m's: Ac is contained n large enough. In other words
(since j may be taken to be arbitrarily large), we have : Acc:
where s(n) 00 with n.

Finally, suppose that a is an element of A such that ca = 0. We
approximate a by an in A : a — an E Am's. Then can belongs to

A = rn'7 2, Corollary I to Theorem 5). We thus have an E mm')
with s(n) —* oo. This proves that the limit a of the sequence {an} is
necessarily 0. Q.E.D.

REMARKS:

(a) Notice that the hypothesis fl = (0) has only been used in the

last part of the proof. The relation ms(n) holds without this
hypothesis.

(b) A part of Corollary 1 may be strengthened by using the Theorem
of Artin and Rees (Theorem 4', § 2). Let A be a noetherian ring, m
any ideal in A, and c an element of A. Then there exists an integer k
such that, for n � k, we have

(4) : Acc: + ((0): Ac).

In fact Theorem 4' 2) proves the existence of an integer k such that
rn'7 n Ac = n Ac) for every n � k. Thus, if x E rn'7 : Ac, we have
xc E n Ac, whence xc E n Ac) Hence we can write
xc = x'c with x' E Therefore x belongs to + ((0): Ac) since
x = x' + (x — x'). This proves formula (4). If c is not a zero divisor in
A, we have (0): Ac = (0), whence

(5) for every n�k.

COROLLARY 2. Let A be a complete ring, B an overring of

A and 9)1 an ideal in B such that fl 9)1" =(0). If the ideal 9)1 n A admits

the intersection m of the maximal ideals of A as radical, then the m-
topology of A is induced by the W1-topology of B.

In fact, the induced topology of A is defined by the ideals

fl A. Since
flO

(0), we have ms(n) (Theorem 13). On the

other hand, since there exists an exponent q such that 9)1 fl A, we
have A = Thus the ideals and rn" define the same
topology on A.

REMARK. The conclusion of Corollary 2 does not necessarily hold if A
is a ring. However, in that case, it is still true
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that i.e., that the identity mapping of A into B is uniformiy
continuous for the rn-topology of A and the of B. Thus 'p
may be extended, by continuity, to a homomorphism of A into E.
If is one to one then A is a topological subspace of B: in fact, Corollary 2
shows then that A is a topological subspace of E. (The converse is also
true: If A is a topological subspace of B, then the identity mapping
of A into B admits as extension the identity mapping of A into E.)
In some important cases, the dimension theory of local rings permits to
prove that is a one to one mapping.f

COROLLARY 3. Let A be a noetherian ring, m a maximal ideal in A, and
q a prime ideal in A which is contained in in. Then, if the rn-adic com-
pletion of A is an integral domain, the of A is stronger than
its rn-topology.

It is clear that the (cr')-topology of A (with ordinary powers instead
of symbolic ones) is stronger than its rn-topology, since nV'. Let
A be the rn-adic completion of A. Since A/rn is a field, A is a local ring

(Theorem 10, § 4). We first prove that fl = (0). Let q* be

any isolated prime ideal of Aa. Since q is closed 4, Theorem 8),
Corollary I to Theorem 12 4) may be applied, and we have n A = q.

By definition of symbolic powers there exists, for every n, an element
of A, q, such that q". Therefore (A cf)nc q*n, and,
since q and q* n A = q, it follows that Now, since A
is a domain, the intersection of the symbolic powers of any prime ideal

in A is (0) (Vol. 1, Ch. IV, § 12). Thus fl q*(n) = (0), whence, a

fortiori,
nOO

= (0).

This being so, Theorem 13 shows that the of A is
stronger than its natural local ring topology. Since q(") is closed in A

4, Theorem 8), we have A = 2, Corollary 2 to Theorem
5), whence the of A is induced by the
of A. Thus the of A is stronger than its rn-topology.

COROLLARY 4. Let R be a noetherian domain, and q two prime ideals
in A such that q. If the of A has no zero divisors,
then the of A is stronger than its Further-
more, if for each prime ideal rn containing it is true that the (rn("))-com-
pletion of A has no zero divisors, then the of A is stronger
than its p-topology.

1' See 0. Zariski, "A simple analytical proof of a fundamental property of
birational transformations," Proc. Nat. Acad. Sci. USA, v.35 (1949), pp. 62—66.
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We set A' = = q' = Since the of A'
induces the of A, the hypotheses of Corollary 3 are
satisfied by A', ci'. Therefore the (q'("))-topology of A' is stronger
than its Since the former induces the (q("))-topology on
A (as A = by Vol. I, Ch. IV, § 11, Theorem 19), and the latter
induces the our first assertion is proved. As to the
second assertion, we decompose into primary components:

= ... where a1 is primary for a prime ideal in1>
Then there exists an exponent u such that in1(tu,) c a1, whence, by the
first part of the corollary there exists an exponent i(j, n) such that

a. Setting i(n) = max (n, i(1, n), . . . , i(s, n)), we there-
fore have c Hence, again by the first part of the corollary,
there exists an exponent t(n) such that q(t(71)) This proves
our second assertion.

In the course of the proof of Corollary 4, we have proved:
COROLLARY 5. Let A be a noetherian integral domain, a prime ideal

in A such that for every prime ideal in> the (rn("))-completion of A is a
domain. Then the of A coincides with its

In fact, we have seen that under these assumptions high symbolic
powers of are contained in high ordinary powers of The converse
being obvious, our assertion is proved.

COROLLARY 6. Let A be a complete semi-local ring, in the intersection
of its maximal ideals, B a commutative ring, (ba) a descending sequence of

ideals in B such that bpbqc bq = (0), and a continuous homo-

morphism of A (considered with its in-topology) into B (considered with its
Then p(A) is a closed subring of B.

In fact, we have two topologies on (p(A): the topology T induced by
that of B, and the topology T' obtained by identifying 9<A) to the factor
ring of A. The fact that is continuous signifies that T' is
stronger than T. By Theorem 6, § 2, 9<A) is complete for the topology
T', and is obviously a semi-local ring. Since p(A) is a Hausdorif space
for T, it follows from Theorem 13 that T' = T. Therefore tp(A), con-
sidered as a subspace of B, is complete, hence closed.

This, again, is a property which may be compared to a well-known
property of compact spaces: a continuous image of a compact space A
in a Hausdorif space B is a closed subset of B.

THEOREM 14. Let A be a noetherian ring, a and b two ideals in A such
that b c a and such that A is complete and Hausdorff in its a-topology.
Then A is complete in its b-topology.

PROOF. Let (ba) be a Cauchy-sequence for the b-topology of A.
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Since a, (ba) is also a Cauchy-sequence for the a-topology, whence it
admits a limit b E A. We have then b (mod as(n)) (s(n) oo with
n). We now use more explicitly the fact that (ha) is a Cauchy-sequence
in the b-topology. For every index j � n, we have b1 — E where
t(n) —p- oo with n. From this and from b. — b E we deduce that

b E for every j � n. Since A is Hausdorif and is com-
plete in its a-topology, it is a Zariski ring, whence bt(n) is closed in the

a-topology. This means that fl ± a5(i)), and hence

b b is also the limit of the sequence (ba)
for the b-topology. Q.E.D.

COROLLARY. Let A be a noetherian ring, a and b two ideals of A such
that b c a. Denote by A' (A") the ring A considered with its b-topology
(with its a-topology). Then the identity mapping A' A" is uniformly
continuous, and if A" is a Zariski ring then the extension p :A' —p- A" of
to A' is one to one.

The fact that is uniformly continuous follows immediately from the
relation b a. Theorem 14 shows that A" is complete for its (BA")-
topology. If A" is a Zariski ring, then we have bAA" 11 A whence
the of A" induces on A its Thus the com-
pletion A' of A (for its b-topology) is canonically isomorphic to the
closure of A in A" considered with its In other words,
A' is canonically isomorphic to a subring of A". This proves our
assertion.

REMARK. It follows from the corollary that, if a Cauchy sequence of
elements of A' tends to zero in A", then it also tends to zero in A'.

§ 6. Finite extensions. THEOREM 15. Let A be a noetherian ring,
itt an ideal in A, and B a ring containing A which is a finite A-module.
Then the rn-topology of the A-module B is identical with the (rnB)-topology
of the ring B and induces on A the rn-topology. Furthermore

(a) For B to be a Hausdorff space, it is necessary and sufficient that no
element of 1 + in be a zero divisor in B.

(b) If A is a Zariski ring, so is B.
(c) If A is complete, so is B.
(d) If A is semi-local, and if Vrn is the intersection of the maximal

ideals of A, then B is semi-local and is the intersection of the maximal
ideals of B.

PROOF. The two parts of the first assertion follow respectively from
the relation and from Theorem 4 2). Assertion (a) is a
restatement of Krull's theorem for modules (Vol. 1, Ch. IV, Appendix).
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Concerning (b) we notice that every finite B-module E is a finite A-
module and hence is a Hausdorif space for its rn-topology, since A is a
Zariski ring (see § 4, Theorem 9, property (b)). Since the nt-topology of
E coincides with its (ntB)-topology (in view of it follows
that every finite B-module E is a Hausdorif space for its (ntB)-topology.
Hence B is a Zariski ring, by Theorem 9, property (b).

If A is complete, then Theorem 5, § 2 shows thatB=A•B=B. This
proves (c). If A is semi-local, then it is a Zariski ring, whence B is also
a Zariski ring, by (b). We have that B/niB is a finite module over
A/(rnB fl A). On the other hand, since niB n in, the ring A/(ntB n A)
is a homomorphic image of A/nt and therefore satisfies the d.c.c.
(Theorem 10, § 4). Consequently B/niB also satisfies the d.c.c., and
Theorem 10, § 4 shows that B is semi-local. Q.E.D.

REMARK. Assertion (b) proves that, if every element of I + in is in-
vertible in A, then every element of 1 + niB is invertible in B.

THEOREM 16. Let A be a noetherian ring, in an ideal in A, and B a
ring containing A. Suppose that B is a finite A-module and that A is a
Zariski ring. Then:

(a) The closure of A in E is the completion A of A, E is a finite A-
module, isomorphic to A ØA B (here E is defined by considering the
in-topology of B).

(b) If no element 0 in A is a zero divisor in B, then every element a of
A which is a zero divisor in E is already a zero divisor in A.

PROOF. Assertion (a) has already been proved; the stronger
ment about A ®A B may be found in the remark following Corollary 1
to Theorem 11, §4.

Assume now that no element of A, different from zero, is a
divisor in B. There exists an element 0 in A and a finite family
{b,} of elements of B which are linearly independent over A such that
dBc Ab,. By completion we have Ab1, and the elements

are still linearly independent over A (Corollary 1 to Theorem 11, § 4).
If a is an element of A such that afi =0 for some fi 0 in B, we write
d/3 = E A). The relation afi 0 yields 0,

whence 0 for every j. It is impossible that all the a1's be equal
to 0, since this would imply dfl 0 in contradiction with the fact that
the element d of A is not a zero divisor in B, whence also in E
(Corollary 6 to Theorem 11, § 4). Therefore a is a zero divisor in A.

It follows from the proof that the conclusion of (b) continues to hold
if, instead of assuming that all the elements 0 of A are regular elements
in B, we only assume that there exists an element 0 in A, which is not
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a zero divisor in B, and a finite family, {b1} of linearly independent ele-.
ments of B over A, such that dBc: Ab1. In particular, the conclusion
of (b) is true if B is a free since we can take d= 1 in this case.

§ 7. Hensel's lemma and applications. Let A be a ring which
is complete for its where rn is an ideal in A. We intend to
show how certain relations occurring in the ring A/rn (i.e., congruences
mod in) may be "lifted" to analogous relations (not congruences)
occurring in the ring A itself. The completeness of A is essential for
this purpose. Historically, the completion of the ring J of integers
with respect to its (Jp)-topology (p, a prime number), which is called
the ring of p-adic integers, was the first striking example of the theories
developed in this section. The p-adic integers have been introduced
by Hensel with the explicit purpose of deducing from congruences
modulo p actual equalities holding in some ring containing J.

For technical reasons it will be convenient to prove first a lemma
which is in a sense a generalization to modules of the classical Hensel's
lemma:

LEMMA ("BILINEAR LEMMA"). Let A be a ring, rn an ideal in A, E,
E', F three finite We suppose that F is a Hausdorff space
for its rn-topology and that A is complete. Let f be a bilinear mapping
of E x E' into F; denote byf the bilinear mapping of (E/ntE) x (E'/rnE')
into F/rnF canonically deduced from f. Suppose we are given elements
y E F, a E E/mE, a' E E'/mE' such that

(1) The class 9 of y mod mF is equal tof(a, a').
(2) F/mF=f(a, E'/rnE') +f(E/mE, a').

Then there exist elements a and a' in E and E' respectively, such that a is
the residue classes of a mod rnE, a' is the residue class of a' mod rnE', and
such that y —_f(a, a').

PROOF. We prove, by induction on n, the existence of elements
and a and and
such that y (mod This is true in the case n = 1, by
assumption (1). We flow go from n to n 1. Since y E

we may write y = m1z1 with m1 E UV1, E F. By assump-

tion (2) there exists an element w1 in E and an element in E' such
that z1 w'1) ±f(w1, (mod mF). Thus the element

y m1w1, + m1w'1) — y — m1z1

+ m,{z3 —f( w'1) —f(w1, — m1m1f (w1, w'1)
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belongs to m2"F= (since n � 1). We can thus take

This choice shows that a,,+1 thus (a,,), and similarly
(a'j, is a Cauchy sequence. Since E and E' are finite modules over a
complete ring A, they are complete for their (the proof of
this assertion is similar to that of Theorem 5, § 2). Thus the
sequences (a,,), (a',,) admit limits a E E, a' E E'. Their residue classes
mod mE and mE' are obviously a and a'. Since y —f(a,,, a',,) tends
to 0, we have y =f(a, a') since f is continuous and since F is a
Hausdorif space. Q.E.D.

THEOREM 17 (Hensel's lemma). Let A be a complete local ring, rn its
maximal ideal, f(X) E A[X] a monic polynomial of degree n over A. For
every polynomial h(X) E A[X], we denote by the polynomial over
A/rn obtained from h(X) on replacing its coefficients by their rn-residues.
If a(X) and a'(X) are relatively prime monic polynomials over A/rn of
degrees r and n — r such that f(X) = a(X)a'(X), then there exist two monic
polynomials g(X), g'(X) over A, of degrees r and n — r, such that
g(X) = a(X), g'(X) = a'(X) andf(X) =g(X)g'(X).

PROOF. We apply the "bilinear lemma," taking for E, E', F the
modules of polynomials over A, of degrees respectively r, n — r and

n, and for the bilinear mapping f the multiplication of polynomials.
We take a(X) for a, a'(X) for a', and f(X) for y. Assumption (1) in
the "bilinear lemma" is verified. As to assumption (2), we note that,
since a(X) and a'(X) are relatively prme, every polynomial fl(X) over
A/rn may be written as a linear combination

fl(X) A'(X) E (A/rn)IX]);
furthermore, if � n, we may choose A and A' in such a way that

� n — r, and � r (this follows easily from the euclidean
algorithm in (A/rn)[X1). Thus the bilinear lemma proves that there
exist polynomials h(X), h'(X) of degrees r and n — r, such that h(X) =
a(X), 11i'(X) = a'(X), h(X)h'(X) =f(X).

For completing the proof, it suffices to show that h(X) and h'(X) may
be replaced by monic polynomials. The highest degree terms of these
polynomials are of the form (1 + m)XT,(1 + m)_lXn_T with m E m (since
h(X) and h(X)h'(X) are monic). It is thus sufficient to divide h(X) by
1 +m, and to multiply h(X) by I -4-m. Q.E.D.

COROLLARY 1. Let A be a complete local ring, nt its maximal ideal,
and f(X) a monic polynomial over A. Suppose that f(X) admits a
simple root a E A/rn. Then there exists an element a of A, having a as
rn-residue, and such that f(a) = 0; furthermore the root a of f(X) is simple.
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In fact we can write f(X) = (X— where is prime to

X— a. Theorem 17 shows the existence of a monic polynomial X— a
which divides f(X) and such that a = a. If a were a multiple root of
f(X), a would be a multiple root of f(X), in contradiction with our
assumption.

EXAMPLES:

(1) The polynomial X2± I has two simple roots in the prime field
GF(5), namely the classes of 2 and 3. Thus it admits two roots the
ring of 5—adic integers. Similarly for X2_2 in the ring of 7-adic
integers.

(2) Let A be a complete local domain whose residue field A/rn is the
finite field GF(q). Since the equation q — I simple
roots in GF(q), the ring A contains all the (q— 1)—th roots of unity.
These roots form a multiplicative subgroup V of A. If A has char-
acteristic p 0 (where q =pb), V is even the multiplicative group of a
subfield of A, since the 1)-th roots of unity, in a field of
characteristic p, constitute the set of non-zero elements of a subfield.
This subfield is canonically isomorphic to A/rn GF(q).

(3) Theorem of implicit functions. Let A be the power series ring
in m variables over a field K, and let

P(z) — ±

a monic polynomial over A. Suppose that the polynomial

a simple root a E K. Then there exists a power series g(x) such
that g(O) = a and such that P(g(x)) 0. In particular, if d an integer
which is prime to the characteristic of K, and if f(x) is a power series
whose constant term is 0 and is a d-th power in K, f(x) itself is a d-th
power in (use the polynomial P(z) = z' —f(x)).

COROLLARY 2. Let A be a complete local ring having the same char-
acteristic p as its residue field A/rn. Then there exists a subfield L of A
such that A/nt is purely inseparable over the image of L in A/ni.

Let us denote by the canonical mapping of A into A/rn. We first
prove that A contains at least one field. In the first place, the ring A
contains the "prime ring" R0 formed by the integral multiples n.1 of
I (n 0, ± 1, ± 2,...). If p 0, R0 is a field. If p = 0, R0 is the ring
of integers, and, since A/rn has characteristic 0, every integer 0 is
outside of rn, and is therefore a unit in A, thus proving that A contains
the field of rational numbers. This so, the famfly of all sub-
fields of A, ordered by inclusion, admits, by Zorn's lemma, a maximal
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element L. If were transcendental over cp(L), we could find an
element x of A such that transcendental over then all the
non-zero elements of the polynomial ring L[x] would be outside of rn,
therefore units, and A would then contain the quotient field of LIxl, in
contradiction with the maximality of L. Thus A/rn is algebraic over

Suppose that A/rn contains an element ij which is separable
algebraic over Let be the
minimal polynomial of 7) over and let b3 be the representative of
lying in L. The polynomial f( Y) yn bn_j yn_1 •.. b1 Y+ b0
over A is such that ij is a simple root off( Y); thus, by Corollary 1, f( Y)
admits a simple root y E A such that ij. Since cp induces an
isomorphism of L onto which carriesf( Y) tof( Y), the polynomial
f( Y) is irreducible over L, and the ring L[y] is isomorphic to
which is a field. In view of the maximality of L, this implies that
y E L, whence 7) E Therefore A/rn is purely inseparable over

REMARK. If A/rn is a field of characteristic 0, then A itself has char-
acteristic 0, and Corollary 2 shows the existence of a subfield L of A
which is afield of representatives for the residue classes mod rn. It can
be proved that such a field of representatives exists whenever A is com-
plete and has the same characteristic as A/rn (see § 12, Theorem 27).
However, already from the proof of Corollary 2 it follows that such a
field of representatives exists under the additional assumption that A/rn
admits a separating transcendence basis over its prime field (in parti-
cular if A/rn is a finitely generated extension of its prime

The bilinear lemma may also be used for showing that a complete
semi-local ring is isomorphic to a direct product of complete local rings.
We prove a slightly more general result.

THEOREM 18. (Decomposition theorem). Let A be a ring, and rn
an ideal in A such that A is a complete Hausdorff space for its rn-topology.
If A/rn is the direct sum of two ideals u/rn and then A is the direct

sum of the ideals n=fl and n'=fl The rn-topology of n

(considered as an A-module), its (rnn)-topology, and the topology induced
on n by the rn-topology of A are all identical, and n is a complete Hausdorff
space for this topology. Similarly for n'. The rings n/rnn, A/t' and t/rn
(or n'/mn', and are isomorphic.

PROOF. Let e and e' (e E t/rn, e' E t'/rn) be the orthogonal idempo-
tents corresponding to the decomposition A/nt (Vol. I,
Ch. III, § 13): we have e + e' 1, ee' 0. We apply the bilinear lemma
to the case in which E= E' F= A, f is the multiplication in A, and
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a = e, a' = e', y = 0. Conditions (1) and (2) are satisfied. There thus
exist elements a, a' of A, admitting e and e' respectively as rn-residues,
and such that aa' =0. We have a -'- a' I (mod itt), whence a ± a' is an
invertible element of A since A is complete (use formal expansion of
1/(I — T)). Then the elements e = a/(a ± a'), e' = a'/(a a') satisfy the
relations ee' =0, e ± e' = 1, and are therefore two orthogonal ;dempo-
tents. We therefore have a direct sum decomposition A Ae Ae'
(Vol. I, Ch. III, § 13).

We now proceed to prove the assertions about the ideals and
Since e admits e as rn-residue, it belongs to whence to every power

since e is an idempotent. We therefore have Ae n = fl and

similarly Ae' n'
= nOO

Since and are comaximal, and

are comaximal, and we have n = = = q = rn'7

(Vol. 1, Ch. III, § 13, Theorem 31). Since
nOO

rn's— (0), this implies

that n fl n' = (0). From Aec: n, Ae' n' and Ae -'-Ae' = A, we deduce
that n' =A, whence A is the direct sum of the ideals n, n'. The
relation n = n(Ae + Ae') Ae ± (0) (since ne' c nn' = (0)) proves that
n= Ae; similarly n' = Ae'. Both the rn-topology and the (rnn)-topology
of n admit the ideals rn'7n as basic neighborhoods of 0, since, on the one
hand, we have rn'7n = m'7n'7 (as n is an idempotent ideal), and on the
other hand, we have rn's = rn'7e and hence rn'7 n n rn'7 n Ae
Aern'7 = This shows that the (mn)-topology of n is induced by the
rn-topology of A. If {x1} is a Cauchy sequence of elements of it and if
x is the limit of that sequence in A, then we observe that xe is the limit
of the sequence {x1e}, i.e., of {x1}. Since A is a Hausdorif space it
follows that x = xe E n, showing that also n is a complete (Hausdorff)
space. Finally, since we have proved above that tn n n, it follows
that the ring n/mn is isomorphic to n/(rn n n)=(m ± n)/m= (m ± Ae)/m=

(A/rn) = A/u'. This completes the proof of Theorem 18.
COROLLARY 1. Let A be a ring, rn an ideal in A such that A is a com-

plete Hausdorff space for its rn-topology. If A/rn is a direct sum of q

ideals then A is the direct sum of the ideals n. We have

rn'7n3 — rn'7 n n, and the (rnn3)-topology of the ring coincides with the
topology induced on n3 by the rn-topology of A. The rings n3/mn3,
and A/ n are isomorphic.

We proceed by induction on the number q of the ideals n, the case
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q 2 being covered by Theorem 18. We notice that A/rn is the direct
sum of and of and we app'y Theorem 18 and the induc-

tion hypothesis. Further details are left to the reader.
COROLLARY 2. A complete semi-local ring A is a direct sum of com-

plete local rings. In particular, A is a domain, it is a local ring.
Let rn be the intersection of the maximal ideals of A. Then A/rn

is the direct sum of the ideals where II fl Since

is maximal, is a field. Thus the direct summand

fl of A which is such that = is a field and which is

a complete Zariski ring for its (rnn1)-topology 4, Example 3), is a loca!.
ring (Theorem 10, § 4). The second assertion follows from the fact
that a direct sum of h ideals, h> 1, is always a ring with zero-divisors.

REMARK. Let A be a (not necessarily complete) semi-local ring, and
m the intersection of its maximal ideals We consider A; the idea!

is maximal, and A is the direct sum of the ideals n fl (n
n=O

Denote by the "projection" of A onto there exists an idempotent e

such that cD.(x) ex for any x in A and such that 1— e E

sider the restriction of to A. For every elementy E A, y is
invertible, since it does not belong to the maximal ideal Am n of n3.

On the other hand, the kernel of is fl whence the kernel of its

restriction to A is A q fl !J0
(A n fl p17' (Theorem 9,

§ 4). We notice that
nOO

is also the kernel of the canonical

morphism of A into the quotient ring (Vol. I, Ch. IV, Theorems 19
and 20). Therefore the subring of n3 is isomorphic to
This subring is a local ring, its local ring topology is obviously induced
by the toDology of it1, and the ring is dense in n1 since A is dense in A,
and since therefore (p1(A) is also dense in n. Therefore the direct
mand n1 is isomorphic with the completion of the quotient ring

A be a semi-local ring, in the
intersection of its maximal ideals. We recall (see § 2) that an ideal of
A is open if and only if it contains some power of rn. For any integer
n 1, the of A is identical with the of A.



284 LOCAL ALGEBRA Ch. VIII

Since A is a semi-local, it follows from Theorem 10, § 4 (where we
replace m by me') that the ring A/me' satisfies the d.c.c. If t contains a
power of m, then afortiori also the ring A/t satisfies the d.c.c., since
this ring is a homomorphic image of A/mn. Conversely, if A/t satisfies
the d.c.c., we must have + t = t for all large n, and therefore

if n is large, since t is a closed set and &nce therefore t' is the
intersection of the ideals ÷ Thus, the condition that t is open is
equivalent to the condition that the ring A/t satisfies the d.c.c.

Let be the set of maximal ideals of A. Then the primary
sentation of is

(1)

where q1 is either primary for or is equal to A. The ideal t" is equal
to 1J qç= fl qç since the ideals are pairwise comaximal. The

length of the ideal is therefore finite (Vol. I, Ch. IV, § 13, Theorem
24). We call characteristic function of the ideal t and denote by
the length A(t,71). Since the ideals qf are pairwise comaximal, and since

fl the riflg A/ta is isomorphic to the direct sum of the rings

A/qç. Hence

(2) = A(

Since the ideal is primary for the length A( q/') is equal to the
length of the ideal in the local ring in other words, (2) may
be written as

(2') = (n) (n).
_i

p1 p1

We now prove that the characteristic function is a polynomial
for n large enough. More gerkerally:

THEOREM 19. Let A be a semi-local ring, t an open ideal in A, and E
a finite A-module. Then the length of the A-module is finite, and
is a polynomial n for n large enough. In particular, the characteristic
function is a polynomial in n for n large enough.

PROOF. We consider the associated graded module G(E)

It is a finite module over the associated ring G(A)

1), and G(A) is a factor ring , of the

polynomial ring R (A/u) [X1,.. , modulo a homogefleous ideal
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Hence G(E) is a finite graded module over R. Since Aft is a ring
which satisfies the d.c.c., we may apply Hilbert's theorem (VII, § 12,
Theorem 41), which tells us that the length of is a polynomial
in n, for n large enough. From this it follows also that the length

is a polynomial for n large enough.

Q.E.D.
The polynomial to which is equal for large values of n is called

the characteristic polynomial of the ideal t'. We shall denote it by
and sometimes by when we are dealing with large values

of n. As in Chapter VII, § 12 (see p. 233), we find also here that, if
is a polynomial of degree d, its coefficients are integral of

1/d!.
We first prove some simple results about characteristic functions.
LEMMA 1. Let t' be an open ideal in a semi-local ring A. Then

=

PROOF. In fact, and are isomorphic 2, Theorem 6).
LEMMA 2. If t' and t' are open ideals in a semi-local ring A and if

then � for all n.

PROOF. Obvious.
LEMMA 3. Let t' be an open ideal in a semi-local ring A and let x be an

element of Then

PD,AX(n) =

PROOF. In fact, is isomorphic to + Ax),
whence

— PD,AX(n) = — + Ax)) = +
— n Ax)) = f(Axf(Ax. : Ax))) = : Ax)) = : Ax).

(Notice that the kernel of y —kyx is contained in t"1: Ax.)
Lemma 3 is useful in the following way. Let s be the greatest ex-

ponent such that x E (whence x It is clear that : Ax
If we can prove that : Ax is "not too different" from we can deduce
from Lemma 3 that PD,AX(n) is not very different from — — s),

a circumstance which is useful for devising proofs by induction (see
below). We thus introduce the following notion: an element x of A
is said to be superficial of order s for if x E and if there exists an
integer c such that

(3) n
=

for every large enough n. It follows from Lemma 3 that:
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LEMMA 4. Let be an open ideal in a semi—local ring A, and x be an
element of A which is superficial of order s for t'. Then there exists an
integer c such that

P0(n)—P0(n—s) � � P0(n)—P0(n—s)±P0(c),

for n large enough.
PROOF. In fact, (3) implies that we have

Ax) q bc))� =

whence 0 � P0(n — s) — : Ax) � P0(c). Using now Lemma 3, we
easily get the double inequality in Lemma 4.

It follows from Lemma 4 that the characteristic polynomial PDIAX(n)
differs from the polynomial P0(n) —P0(n —s) only by its constant term.

We are now led to the question whether, given an open ideal in a
semi-local ring A, there exist superficial elements for The following
result gives a partial answer:

LEMMA 5. Let be an open ideal in a semi-local ring A. There exist
an integer s and an element x of A such that x is superficial of order sfor

PROOF. Let s be an integer and x an element of such that x
The relation : Ax = is valid if the initial form of x in the asso-

ciated graded ring G(A)
=

bn/bn+l is not a zero divsor in G(A)

1, p. 249). The relation n tin—s is true if every homo-
geneous element a E G(A) such that a degree <c. This
being so, we consider in G(A) the associated prime ideals of (0).
We assume that, for 1 h, does not contain the ideal

of elements of po&tive degree in G(A), and that for

h +1 k. It is easily seen that there exists a homogeneous element of
positive degree, say s, such that for 1 h.+ To prove this, we
may replace the set 1 h, by the set of maximal elements in
that set. Since there exsts a homogeneous element of
such that On the other hand, for there exists a homo-
geneous element in which does not belong to We set

the exponents n(p) being chosen in such a way
jf

that the elements have the same degree. We then have and
E for Hence the element satisfies the condi-

tions for I
t This result generalizes to homogeneous ideals and homogeneous elements,

a result proved in Vol. I, Ch. IV, § 6 (Remark, p. 215).
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Let be a component of (0) corresponding to For
h 1 �j � k, contains some power of Let c be an exponent such

k

that fl Suppose now that a is a homogeneous element of
j=h--1

G(A) such that =0. From for 1 h, we deduce that
a E for 1 h. If, furthermore, the degree of a is c, we deduce

k

from fl that a belongs to all the primary components of (0),
j=h+ I

whence that a =0. Therefore, a is different from 0, degree <c,
and has the required property.

REMARKS ABOUT LEMMA 5.

(1) The proof of Lemma 5 shows that, given a finite family (em) of
homogeneous of G(A) such that no contains any power of
the homogeneous element may be chosen as to satisfy the condition
x for every m: fact, for every m, we add to (1 h)
of homogeneous prime ideals, an assodated prime ideal of which
does not contain It follows that, given a finite family {bm} of ideals of
A, none of which is open, there exists an integer s and an element x which is
superfi€ial of order sfor and which does not belong to any bm. In fact, we
take for the leading ideal of bm 1), and notice that does not con-

any power of for if, say, then + and therefore

+ for every n; since bm closed, i.e., since fl ±

this would imply bm, with the fact that bm not
open.

(2) Superfidal elements of a given order do not necessarily exist (for
example, the maximal ideal of K is a
field with two elements, has no superfidal elements of order 1). How-
ever, such a circumstance is due to the finiteness of the residue field.
In fact, we now prove that, given a local ring A whose residue field A/rn
is infinite and given an open ideal of A (i.e., an ideal which is primary for
the maximal ideal rn), then for any finite family bm of non-open ideals of
A and any integer s>0, there exists an element x of A which is superficial
of order s for t and which does not belong to any bm. In order to prove
this assertion we denote by the leading of bm, and by the
prime of (0) in G(A) whkh do not contain ; then, as Remark 1,
none of the ideals contains any power of Since gener-
ated by none of the ideals contains Thus, in the

E= we have a finite number of submodules F2
distinct from E (namely, the intersections of E with the ideals and

and we have to find an element of E which does not belong to any
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F.. We first notice that, if we denote by rn' the maximal ideal rn/b of
A/b, we have if m'E)
= F1 rn'2E= = F1 ± m' a nil-
potent ideal) a contradiction. Therefore, in E/m'E, which is a
vector space over the infinite field A/rn, the subspaces ± rn'E)/rn'E
are distinct from the entire space, whence there exists an element of
E/nt'E such that (F1 -'- rn'E)/nt'E, for every i. If we take for a
representative of in E, we have for every i, and we may take
for x any element of bS having as initial form.

§ 9. Dimension theory. Systems of parameters. Let A be a
semi-local ring, nt the intersection of its maximal ideals, b and two
ideals in A admitting in as radical. Then b and b' are open sets, and
the characteristic functions and are defined 8). Further-
more, there exist integers a and b such that

and b'Dbb.

Thus it follows from Lemma 2, § 8, that

� �
These inequalities imply that the polynomials and have the
same degree d. This degree is called the dimension of the semi-local ring
A, and denoted by dim (A). If we denote by the maximal ideals of
A, formula (2') in § 8 (p. 284) shows that

(1) dim (A) = max1 (dim (Ar.)).

Since is a local ring, expression (1) of A allows, in many
dimension-theoretic questions, a reduction to the case of local rings.
It follows from Lemma 1, § 8, that the completion A of A has the same
dimension as A. If a is an ideal in a semi-local ring A, the dimension
of the semi-local ring A/a is called the dimension of the ideal a.

THEOREM 20. Let A be a local ring, rn its maximal ideal. The
following integers are equal:

(a) The dimension d of A.
(b) The height h of the prime ideal rn (Vol. 1, Ch. IV, § 14).
(c) The smallest integer r for which there exist r elements of A which

generate an ideal which is primary for rn.
PROOF. The equality of the integers defined by (b) and (c) has been

proved in Vol. 1, Ch. IV, § 14, Theorems 30 and 31. We prove that
d= r. More generally we prove that, given a semi-local ring A, its dimen-
sion d is equal to the smallest integer r for which there exist r elements of A
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which generate an ideal having as radical the intersection m of the maximal
ideals of A.

We first prove that, if an ideal has m as radical then it cannot be
generated by less than d (= dim A) elements. In fact, suppose that
may be generated by s elements. Then the associated graded ring

is isomorphic to a factor ring of the polynomial ring

, by a homgeneous ideal Since the module of
polynomials of degree � n in . . , has a length equal to

it follows that the length of i.e., is

� s)• As S) is a polynomial of degree s in n, it follows that
the degree d of is �s.

It remains to be proved that there exists an ideal generated by d
elements and admitting m as radical. For the proof we proceed by
induction on d. If d =0, remains constant for n � n0, whence

= (0) since fl =0; we may then take = (0), since we agree that

(0) is generated by the empty set of elements of A. Suppose now that
A has dimension d >0, and that our assertion has been proved for every
semi-local ring of dimension d— 1. By Lemma 5, § 8, there exists an
integer q and an element Xd of m which is superficial of order q for m.
Then (Lemma 4, § 8) the characteristic polynomial Pm,Axd(n) differs
from Pm(n) — Pm(n — q) only by its constant term. It follows that
Pm,Axd(n) is a polynomial of degree d — I (note that we have assumed
that d> 0), i.e., that A/Axd has dimension d— 1. By our induction
hypothesis there exist elements of 4= A/Axd such that

the radical of is the intersection m/Axd of the maximal ideals of

A = A/Axd. Taking representatives . , of , in

A, we see immediately that m is the radical of This com-

pletes the proof.
In the above proof of Theorem 20 we have used from Vol. 1, Ch. IV,

§ 14, Theorem 31 which is quite elementary, but we have also used
Theorem 30 which is rather difficult and uses the "Principal ideal
theorem" (Theorem 29, Vol. 1, Ch. IV, § 14). We shall give here a
second proof of Theorem 20 which is independent of the cited Theorem
30 but uses the lemma of Artin-Rees 2, Theorem 4'; more specifically
formula (5) of § 5) and the properties of characteristic polynomials. In
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this second proof we shall establish the inequalitks r < h and h <d (the
inequality has already been established in the first part of the pre-
ceding proof).

The nequality r � h follows from VoL I, Ch. IV, § 14, Theorem 31.
In fact1 if h is the height of m, there exists an ideal q generated by h
elements and admitting in as an isolated prime ideal. As m is the maxi-
mal ideal of a local ring A, this implies that q is primary for m. We
therefore have h.

We finally prove the inequality h <d. We proceed by induction on
d. The case d= 0 is easy, since Pm(fl) is then constant for n � n0, whence

= (0), and A is a primary ring with m as unique prime ideal. Now
we suppose that A has dimension d, and we consider a maximal chain

= m of prime ideals in A. Since the length of
is not greater than the length of A/mn1 we have Pm,p0(fl) <

Pm(fl)i whence the dimension d' of A' = is � d. We choose an ele-
ment x' 0 in the ideal of A', and denote by nt' the maximal ideal

of the local ring A'. By formula (5) of § 5 there exists an integer k
such that A'x' for every n � k. Since : A'x' obviously
contains we have the double inequality Pm'(fl — k) � A'x') �
Pm'(fll). Thus, by Lemma 3 we have
Pm'/A'x'(fl) � — Pm'(fl — k), from which it follows that the degree
of i.e.1 the dimension of A'/A'x'1 is equai to d' — 1. Since

— 1 � d— the induction hypothesis shows that the length of any
chain of prime ideals in A'/A'x' is <d— In particular the chain
p Ax) < ... Ax) (x: element of admitting x' as
residue) has at most d terms. Therefore h � d, and our assertion
proved. Q.E.D.

REMARKS:

(1) We can even easily deduce Theorem 30 of Vol. I, Ch. IV, § 14
from the present Theorem 20. In fact, if R is a noetheriari ring1 a an
ideal in R admitting a basis of r elements and an isolated prime ideal
of a, then the dmension of the local ring R0 is � r by Theorem 20 (c),
whence the height of the maximal ideal (i.e.1 the height of see
Vol. 1, Ch. IV, § 11, Theorem 19) is at most r and this proves the cited
Theorem 30. Furthermore1 the principal ideal theorem (vol. I, Ch. Iv,
§ 14, Theorem 29), which is a particular case of Theorem 30 (vol. I,
Ch. Iv, § 14), is also an easy consequence of Theorem 20. We have
therefore sketched an alternative treatment of the theory of prime ideals
in noetherian rings, which is smoother than the one given in vol. I,
Ch. Iv, § 14, but which is less elementary since it essentially uses the
theory of characteristic polynomials.
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(2) Concerning the existence of an ideal t" generated by d elements
arid admitting ut as radical, we give now another proof which makes
use of properties of polynomial ideals established in the preceding
chapter.

Let X2, . . . , where k—_A/rn and a is a

homogeneous ideal. The length of is given by Pm(n -4-1)—
Pm(n), for large n, and is therefore equal to a polynomial of degree d— 1.
On the other hand, that length is also equal to n), where is the
characteristic function of the ideal a. Hence the projective dimen-
sion of a is equal to d— 1 (VII, § 12, Theorem 42). Let be a
set of d forms in kIXl such that the ideal generated by a and the forms

is irrelevant. For each i fix an element in A whose initial form
is the a-residue of and denote by 3 the ideal generated in A by the
d elements Then the leading ideal of 3 contains a power of the
leading ideal of rn, say the q-th power. From this follows in the usual
way that is contained in the intersection of the ideals 3± i.e.,
is contained in 3, and hence the generate an ideal having rn as radical.

COROLLARY 1. Let A be a semi-local ring and x an element which is
superficial for some ideal t' admitting in as radical. Then

dim (A/Ax) = dim(A)—1.

This has already been established in the course of the proof of Theorem
20.

COROLLARY 2. Let A be a local ring and x an element of A which is
not a zero divisor in A. Then

dim (A/Ax) = dim (A) —1.

In fact, it follows from relation (1) and from Theorem 20 that dim (A)
is the height h(rn) of the maximal ideal rn of A and that dim (A/Ax) =
h(m/Ax). Since a maximal chain of prime ideals in A/Ax corresponds
to a chain 2< ... in in A in which is an isolated
prime ideal of Ax and therefore (Vol. I, Ch. IV, § 14, Corollary 2 to
Theorem 29) a prime ideal of height 1, we have q = dim (A/Ax)
dim A — 1. On the other hand, let , be a system of
parameters in A/Ax and let z1 be a representative of in A. Then the
elements z1, z2,•• , zq, x generate in A an ideal which is primary for iii.
Hence q±l

COROLLARY 3. Let A be a semi-local ring, and B an overring of A
which is a finite A-module. Then dim (A) — dim (B).
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If is a chain of distinct prime ideals of B, then the ideals A n
are distinct, since B is integral over A (Vol. 1, Ch. V, § 2, Compiement 1
to Theorem 3), and therefore dim B � dim A. If b2 ... is a
chain of prime ideals of A, then the corollary to Theorem 3 of § 2, Vol. 1,
Ch. V, shows successively the existence of prime ideals ¶43k

B such that q A— n and fl and
Since the ideals are obviously distinct, we have

dim A � dim B. Q.E.D.
Given a local ring A of dimension d, a system {x1, . . . , of d &e-

ments of A which generates a primary ideal for the ideal rn of non-units
of A is called a system of parameters of A. Theorem 20 shows the
existence of systems of parameters in any local ring. It is clear that
{ x1,. , is also a system of parameters of the completion A of A.
Notice that if {x1, . . . , is a system of parameters of A, then the
dimension of A/(Ax1—'- ... + Ax1) is d—j. In fact, more generally,
given any] elements Yi' , of a local ring A, we have

d' dim (A/(Ay1 + ... + Ay1)) � dim (A) —j,

since, given a system of parameters , in Ay1), the
elements {y1, .. , y1, z1, . , zf} (zr: a representative of in A)
generate an open ideal in A, whence d' dim (A). Furthermore, if
{ x1,.. . , xj is a subset of a system of parameters {x1,. . . , the ideal
generated by the residue classes of x1+1, . . . , xd mod (Ax1 ± . . . ±
is open, whence dim (A/(Ax1 + ... -a-- Ax1)) � d—j, and this proves our
assertion.

We intend to study the "relations" between the elements of a system
of parameters:

THEOREM 21. Let A be a local ring, {x1, . . . , a system of para-
meters of A, rn the maximal ideal of A, and F(X1, . . . , Xd) a homogeneous

polynomial of degree s over A. Let q be the primary ideal Ax1. If
xd) E rnqs, then all the coefficients ofF are in rn.

PROOF. Consider the direct sum ce/rn q" k[X1, . . . ,

where k = A/rn and a is a homogeneous ideal in We have to show
that a is the zero ideal.Suppose the contrary is true. Then the dimen-
sion theory of polynomial rings tells us that we can choose d— I forms
p.(X), of positive degrees, such that the ideal generated by a and the
forms is irrelevant. The ct-residues of the will therefore be a
homogeneous system of integrity in the ring kIXl/a (see the Lemma in
VII, § 7). We may assume that the are of like degree t >0. We
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choose elements z1, z2, . . . , of whose rnqt_residues are precisely
the a-residues of the forms (p., and we denote by the ideal generated
by the z,. Expressing the fact that the in q-re& due of each x3 satisfies
an equation of integral dependence over the ring generated over k by
the a-residues of the one finds at once that there exists an integer h
such that E j 1, 2, . . . , d. From this it follows easily that

qfl for all large n, whence for large n; a contradiction,
since b is generated by only d— I elements.

COROLLARY 1. Let A be a local ring, K a subfield of A, and
{x1,.. . , a system of parameters of A. Then the elements ,

are algebraically independent over K.
Let G(X1,. . . , Xd) be a non-zero polynomial over K such that

G(x1, . . . , =0. Denote by F(X1, . . , Xd) the lowest degree form
of G, and by s the degree of F. From G(x1,. . . , =0, we deduce
that F(x1, . . . , E qS+l, where q = Ax1, whence F(x1, . . . , E rnqs.
Then Theorem 21 shows that all the coefficients of F are in rn. Since
they are all in the subfield K of A, this implies that they are 0, in
contradiction with the fact that F is the lowest degree form of a non-zero
polynomial.

COROLLARY 2. Let A be a complete local ring, K a subfield of A, and
{x1,. . . , a system of parameters of A. Then the elements . ,

are analytically independent over K (cf. § 2, p. 258).
As in Corollary 1, we consider a non-zero power series G(X1, . . . ,

over K such that G(x1,. . . , =0, and we write G = F1 where F1

is a form of degree j and where 0. The relation . . . , =

— F5(x1,. . . , E qs+l (where q = Ax,) implies, as in Corollary
i=1

1, that all the coefficients of are equal to 0, in contradiction with

REMARK. Let A be a complete local ring containing a field K such
that A/rn (rn: maximal ideal of A) is a finite algebraic extension of the
canonical image of K in A/rn. Then, {x1,. . . , is a system of para-
meters of A, A is a finite module over B = Krrx1, . . . , In fact, A is
a module over B, and, if we denote by the ideal (x1, . . . , of
B, the natural topology of A is its a-topology (since is primary
for in). Furthermore A/Ar is a finite dimensional vector space over
K, since contains a power of rn and &rtce A/rn, rn/rn2, rn2/rn3,
etc., are finite-dimensional vector spaces over K. Since K== B/a,
and since B is complete, our assertion follows from Corollary 2 to
Theorem 7 3).
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§ 10. Theory of multiplicities. Let A be a semi-local ring of
dimension d, and q an open ideal of A, admitting the intersection m of
the maximal ideals of A as radical. Then the characteristic poly-
nomial Pq(n) is of degree d, by the definition of the dimension of A

9). Its leading term has the form

e(q)n'/d!,

where e(q) is an integer (cf. VII, § 12). The integer e(q) is called the
multiplicity of the ideal q. The integer e(rn) is called the multiplicity
of the semi-local ring A.

If all the quotient rings have dimension d, then it is clear that

(1) e(q) =

Denoting by q relative to we deduce
from (1) that we have also

(2) e(q) =

In an important case it is possible to reduce the study of multiplicities
to the case of ideals generated by systems of parameters.

THEOREM 22. Let A be a local ring, m its maximal ideal, q an ideal
which is primary for in. If A/rn is an infinite field, there exists an ideal

q, generated by a system of parameters and such that = e(q).
PROOF. We proceed by induction on the dimension d of A. For

d= 0, every proper ideal a of A is nilpotent, whence all the characteristic
polynomials Pq(n) are equal to the constant 1(A) (=: length of the A-
module A) ; we may thus take q' = (0), since we agree that (0) is generated
by the empty set, which is thus the only system of parameters of A.

We now pass to the case d= 1. Note that, if d= 1, then in is the only
prime ideal in A which is not an isolated prme ideal of (0). We take
an element x of q which s superficial of order 1 for q and which lies
outside all isolated prime ideals of (0) (Remark 2 to Lemma 5, § 8).
Everything is quite simple if x is not a zero divisor in A (or, equivalently,
if in is not a prime ideal, necessarily imbedded, of (0)). In fact the
relations n qC= 8, relation (3), p. 285) and qs(n)

with s(n) oo 5, Corollary 1 to Theorem 13; here is where we use the
assumption that x is not a zero divisor) show that cr77: Ax = for n
large enough, whence = — — 1) (Lemma 3, § 8).
Since is of degree 1, the right-hand side is e( q). On the other
hand, since x is not contained in any of the isolated prime ideals of (0),
Ax is primary for in, in/Ax is the only prime ideal of A/Ax, whence the
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local ring A/Ax has dimension 0. Consequently, for n large,
is the length of A/Ax. This is also the length of since A/Ax
and are isomorphic under the mapping z + Ax +
(x not being a zero divisor). We therefore have e( q) = e(Ax) in this case.

Still in case d= 1, we now assume that m is an imbedded prime ideal
of (0) (i.e., that all the elements of itt are zero-divisors in A). Then the
annihilator a of x is an ideal which, if considered as an A-module, has a
finite length s (since it is annihilated by Ax and since, by
Corollary 1 of Theorem 20, § 9, A/Ax has dimension zero). We con-
sider the factor ring A* = A/a. For every open ideal of A, we have

n a= (0) for n large since n a) = (0) and since a is an A-module

of finite length. Thus, if we set = + a)/a, we have P0*(n) =
= f(A/(a + v')) = — f((a + n un))

= — s for n large enough, since n a = (0) for large n. In other
words, we have Po*(n) = P0(n) — s, whence = since P0 is a poly-
nomial of degree 1. In particular, we have e(q) =e(q*) and e(Ax) =
e(A*x*) (q* = (q -'- a)/a, x* = a-residue of x; note that the ideal Ax is
primary, with itt as associated prime ideal). Since x* is superficial of
order I for and is not a zero-divisor in A*, the first part of the proof
shows that e( q*) = e(A*x*). Therefore e(q) = e(Ax).

Now, in the passage from d— 1 to d for d� 2 no complications will be
caused any more by zero-divisors. Let d be the dimension of A. We
take again an element x which is superficial of order 1 for (Remark 2
to Lemma 5, § 8), and set A* = A/Ax, q* = q/Ax. Then the polynomials
Pg*(n) and Pq(n) — Pq(n —1) differ only by their constant term (Lemma 4,
§ 8). Since they are of degree d— 1 � 1, they have the same leading
term, whence e(q*)n(l_l/(d_ 1) !=e( 1)! (since n"—(n— 1)"
has as leading term) and therefore e(q*) =e(q). By the induction
hypothesis there exists a system of parameters {x*1, . . . ,

(x*1 E q*) of A* such that e(q*) = e( A*x*j). Then if x5 denotes a

representative of x*3 in q, {x1,.. . , x} is obviously a system of para-
meters in A; let q' be the ideal generated by this system in A. By
Lemma 3, § 8, we have = — A( q'fl : Ax) � Pq'(n) — 1)

since Therefore e( q'/Ax) = e( a'). From

this inequality and from the relation e(q*) = e( A*x*j) we deduce
\

that e(q) = e(q*) � e(q'). Since q' q, we have also e(q) � e(q'). There-
fore e(q') = e(q), and our theorem is proved.
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REMARK. If the ideal q is generated by a system of parameters
it is also generated by a system of parameters {x1,. • ,

such that

e(q) e(ci/Ax1) • • e(q/(Ax1± • •

In fact, there exists, by a reasoning similar to the one given in Remark 2
to Lemma 5 8), an element x1 of q which is superficial of order 1 for
q and which may be written in the form x1 = uy1 a2y2 -'- ••• ±
with u nt. (Observe that [my1 + (y2' , Yd) + q21/q2 is a proper
submodule of q/q2.) Then, by the last part of the proof of Theorem 22,
we have e( q) e( i/Ax1), and q is also generated by {x1, Y2'
We operate in the same way in A/Ax1, A/(Ax1 + Ax2), etc., up to Xd_1.
We take Xd to be Now we consider the one-dimensional local ring
B =A/(Ax1 ... + Axd and the residue class of Xd in B. We
have e(q) e(Bx*) by relation (3), and is a parameter in B. If is
not a zero-divisor in B (i.e., if the maximal ideal of B is not entirely com-
posed of zero divisors) then the modules B/Bx* and are
isomorphic (under the mapping z ± Bx* ± Then
e(Bx*) which is equal to the length of (since B has dimen-
sion 1), is equal to e(B/Bx*), i.e., to t'(A/q). Therefore, if x* is not a zero
divisor in B, the multiplicity of q is equal to its length. The condition
that x* is not a zero-divisor in B is fulfilled if m is not an imbedded
prime ideal of Ax1 + . . . ± and, in particular, if this ideal is un-
mixed; this is the case if A is a regular local ring (see Cohen's extension
of Macaulay's theorem in § 12, Theorem 29).

In general, we have the following relation between lengths and
multiplicities:

THEOREM 23. Let A be a local ring, {x1,. .. , a system of para-

meters of A, q the ideal Ax1. Then e(q)�f(A/q). If e(q)=f(A/q),

then the associated graded ring Gq(A)
=

qn/qn+l is isomorphic to the

polynomial ring B = (A/q) X1,. . . , and conversely.
PROOF. In fact Gq(A) is isomorphic to B/a, where is a homo-

geneous ideal 1). Denoting by the ideal BX1, we have

+ � Since is a
polynomial of degree d in n for n large, this implies the inequality
e(q) �f(A/q).

If the ideal is (0) then it contains a form F(X) 0, say of degree q,
whence also all the products of F(X) by the monomials of degree
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— q. These products generate an whose length is at
least Then the formula implies that� — whence e(q) <((A/n). This proves
our second assertion. The converse is obvious.

Notice that, if e( ((A/ a), the function Pq(n) is a polynomial in n
for all values of n (and not only for the large ones). Furthermore,
since the initial form X. of x1 is not a zero divisor in Gq(A) B, we have

x1 for every n and every i. As noticed in the remark
following Theorem 22, this always happens if A is a regular local
ring.

We conclude this section with the proof of a theorem which not only
can be used in certain cases for the computation of multiplicities, but
also gives information on the behavior of multiplicities under finite
integral extensions. This theorem is the algebraic counterpart of the
projection formula for intersection cycles in Geometry:

THEOREM 24. Let A be a local ring, rn its maximal ideal, q an ideal in
A which is primary for rn, and B an overring of A which is a finite A—
module. Then B is a semi-local ring, and Bq is an open ideal in B. Let

be the set of maximal ideals of B let be the primary component
of B q relative to If no element 0 in A is a zero divisor in B, then
the polynomials [B: and : have the same degree

and the same leading term.1-
PROOF. The assertions that Bq is an open ideal and that B is semi-

local follow from Theorem 15, part (d), § 6. For n large enough the
integer is the length of considered as a B-module. We first
prove that is the length of considered as an A—

module. In fact, since q1 is primary for there exists a chain of ideals

B > — >

such that d1 _—Pq.(n) and such that is a one—dimensional vector

space over (Vol. I, Ch. IV, § 13, Theorem 28, Corollary 2). There-
fore is, in a natural way, a :A/rn]—dimensional vector space
over A/rn and is therefore an A—module of length [B/p1 :A/rn]. By
addition we see that : is the length of considered
as an A-module.

Furthermore, since fl and since the ideals are pairwise

We denote by [B :A] the maximum number of elements of B which are
linearly independent over A. It is equal to the dimension of the totai quotient
ring of B considered as a vector space over the quotient field of A.
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comaximal, B/q" is isomorphic to the direct sum of the rings Thus
is, for n large, the length of the A-module B/Bq".

From now on we use the notation 1(E) for denoting the length of an
A-module E. We have to compare A11(A/a") and 1(B/B q"). Snce
B is a finite A-module, we can find in B a maximal system {b1,.. ,
(r = 'B: A]) of elements which are linearly independent over A. Then
there exists an element a 0 in A such that

(4) =

The kernel of the canonical mapping of E onto (E q"B)/q"B ob-
viously contains q"E. We thus have a canonical mapping of E/ q"E onto
(E + q"B)/n"B, whence the length of the latter module is at most equal
to the length of the former. Since E is a free A-module with r gener-
ators it follows that

(5) rl(A/ qn) _ 1(E/ q"E) � 1((E + q"B)/ q"B) � 1((aB + q"B)/ q"B),

i.e.,

(5') rl(A/q") � 1(B/q"B)—l(B/(aB + q"B)).

On the other hand, the kernel of the canonical mapping of aB onto
(aB + q"E)/ q"E obviously contains q"aB. We therefore have a canonical
mapping of aB/q"aB onto (aB q"E)/q"E. Since, by assumption, a is
not a zero divisor in B, the modules and B/o"B are isomorphic.
Thus we deduce, as above, the inequality

� 1((aB ± q"E)/q"E) = 1(E/q"E) — 1(E/(aB + q"E)),

and since E is a free A-module with r generators, this yields the in-
equalities

(6) rl(A/q") � 1(B/q"B) + 1(E/(aB + q"E)) � 1(B/q"B) ± 1(E/(aE+ q"E)).

Again, since E is a free A-module with r generators, it follows from (6)
that we have
(6') rl(A/ q") � 1(B/ ± rl(A/(aA ± q"A)).

We set B' = B/Ba. Then B' is an A-module and we have B' q
(B + Ba)/Ba. With this notation, inequalities (5') and (6') yield (for
n large)

(7) 1(B/B qn) — 1(B'/B' cr) � � 4B/B q") +

where is the ideal (q Aa)/Aa in the ring A' = A/Aa: in fact the
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length of A'/q'71=A/(aA + is the same whether we regard this ring
as an A-module or as an A'-module. Since a is a regular element in A,
the polynomial is of degree d— 1 (Corollary 2 to Theorem 20, § 9).
On the other hand and /'(B/Bq71) = (for n

large) are polynomials of degree d, since A is a local ring of dimension d
and since B is a finite A-module. (Corollary 3 to Theorem 20, § 9.)
It remains to study the term /'(B'/B' q7t) in (7). Since B' is a finite A-
module which is annihilated by Aa, it is also a finite A'-module
(A' = A/Aa). The length of B'/B' q't is the same whether we regard
this ring as an A-module or as an A'-module. Thus, since A' is a local
ring of dimension d— 1, t'(B'/B'c17?) is, as above, a polynomial of degree
d— I for n large.

This being so, inequalities (7) prove that the degree of is
exactly d, and that the polynomials t'(B/B q7?) and rPq(n) have the same
leading term. In view of what was shown in the earlier part of the
proof, the length t'(B/B q71) of the A-module B/B q't is equal to the poly-
nomial : for n large. This proves our assertion.

COROLLARY 1. The hypothesis and notations being as in Theorem 24,
suppose furthermore that all the local rings have the same dimension as
A. Then

(8) =

In fact, all the polynomials = have then the same
degree dr— dim (A).

The hypothesis that all the local rings have the same dimension
as A is verified in the following cases:

(1) B is a local ring.
(2) In most semi-local rings which occur in algebraic geometry.
(3) A is an integrally closed local ring. In fact, since no element 0

of A is a zero divisor in B, we may apply the "going down" theorem
proved in Vol. I, Ch. V, § 3, Theorem 6. Let m > . >
be a maximal chain of prime ideals in A. Given any maximal ideal
of B, we have n A = m, and the "going down" theorem provides us
with a prime ideal of B such that and n A By re-
peated applications, we get a chain > > of prime ideals
of B beginning with We thus have a chain of I prime ideals in

whence (Br) � d, and therefore dim (Br) d since a chain of
d± 2 prime ideals in would induce a chain of d± 2 prime ideals in A
(cf. Corollary 3 to Theorem 20, § 9).



300 LOCAL ALGEBRA Ch. VIII

(4) A is a local domain of dimension 1 and also B is a domain. In that
case it is clear that all the rings are 1-dimensional. Let us further-
more assume that B is integrally closed. In this case each ring is a
discrete valuation ring of the quotient field of B, since each of these
rings is noetherian, integrally closed and has only one proper prime
ideal (see VI, § 10, Theorem 16, Corollary 1). If v1 is the valuation
defined by Br., then v1 is non-negative on A and has center in (VI, § 5),
and the give all the valuations of the quotient field of B which are non-
negative on A and have center nt, for any such valuation must be non-
negative on B, and its center must be one of the The integer IB: A] is
in this case the relative degree of the quotient field of B over the quotient
field of A, and B/p1 is the residue field of Since in every ideal is
a power of the maximal ideal it follows at once that e( q) = v.( q1) =
v1( q), where we denote by v1( q) the minimum of the integers v1(w) as cv
ranges over q. In the special case = rn, if we set e( q1) v(nt) e,
lB/p1 : A/rn] n1, [B: A] = n, formula (8) takes the form

(8') ne(rn) = en1,

and in this form it is an analogue of a formula derived for the extension
of a valuation (VI, § 11, formula (13)). In fact, the two formulas over-
lap when A is a discrete valuation ring. We note finally the special
case in which B is the integral closure of A in its quotient field. In this
case we have

(8") e(nt) > en1, (e1 =

always provided B is a finite module over A.
COROLLARY 2. Let A be a complete local ring, m its maximal ideal, K

a subfield of A over which A/nt is finite, {x1, , a system of parameters
of A, the ideal generated by x1, , Then A is a finite module over

xe]]. If no element of is a zero-divisor in A,
then we have

(9) e(q). 1(A/nt):K1.

That A is a finite module over K[1x1, , has been seen in § 9

(Remark, p. 293). On the other hand, K[1x1, , is a power series
ring in d variables (Corollary 2 to Theorem 21, § 9), whence the ideal X
generated by x1, x2,. , Xd in this ring has multiplicity one, since

(n+dd_ 1). Thus, since q our formula follows immediately
from Corollary 1.
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REMARK. Corollary 2 to Theorem 7 shows that if A/a, considered
as a vector space over K, is generated by the residue classes mod q of
certain elements Yi' of A, then A, regarded as a

is generated by these elements
We may take q [(A/a): K], whence [A: .. , [(A/q) : K],
and formula (9) shows that e(ci)[A/m:K] 1(A/q): K]. This shows
again that the multiplicity of the ideal q is at most equal to its length.

§ 11. Regular local rings. Let A be a local ring of dimension d, m
its maximal ideal. We say that A is a regular local ring if m may be
generated by d elements. Then any system of d elements of A which
generates m is obviously a system of parameters and is called a regular
system of parameters of A.

EXAMPLE. A power series ring Xv]] in n variables over
a field K is a regular local ring of dimension n.

If A is a regular local ring, then its completion A is regular, since the
maximal ideal of A is generated by m and since A has the same
sion as A. Conversely if A is regular, and if , is a regular
system of parameters of A, we can find d elements x1, . . , Xd of m such
that x7 (mod Am2). Then x1,. .. , Xd generate mA by Theorem 7,

§ 3. Therefore, by Theorem 9, (a'), § 4, we have A

A n A
A be a local ring of dimension d; m its maximal

ideal. Then the following statements are equivalent:

(a) A is a regular local ring.

(b) The associated graded ring is a polynomial

ring in d variables over the field Aim.
(c) m/m2 is a vector space of dimension d over A/rn.

PROOF. We give a cyclic proof: (a) (b) (c) (a). That (a)
plies (b) follows directly from Theorem 21, § 9, if we take for
{x1, , xd} a regular system of parameters. Another proof can be
obtained by using multiplicities. Namely, the ideal m is generated by a
system of parameters. Since the length of m is equal to 1, its
plicity must also be I 10, Theorem 23), whence G111(A) is a
nomial ring in d variables over A/rn 10, Theorem 23). Therefore (a)
implies (b).

The fact that (-b) implies (c) is evident. Finally, if rn/nt2 has
d over A/tn, let x1,• . , xd be elements of m whose residue classes
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mod rn2 form a basis of rn/rn2 over A/rn. Then, if q denotes the
Ax1, we have in = rn2 = -'- ± in2) q rn3, whence m = a

for every n, by induction. Since is closed, this implies

rn = fl (q rn's) = q, and in is generated by the d elements x1, . .. ,

Therefore (c) implies (a).
COROLLARY 1. A regular local ring A is an integrally closed integral

domain. The passage from elements of A to their initial forms preserves
products. The order function v relative to m (see § I; v(x) is defined
x E rnv(x), x is a valuation of the quotient field of A. The com-
pletion A of A is an integrally closed domain.

All these assertions, except the last, follow from (b) and from
Theorems 1 and 3 1). The last assertion follows from the fact that A
is also a regular local ring.

COROLLARY 2. Let A be a regular local ring of dimension d, nt its
maximal ideal. In order that a system {x1,. . . , xd} of elements of rn be
a regular system of parameters of A, it is necessary and sufficient that the
residue classes of the x mod rn2 generate rn/rn2 over A/rn, or equivalently,
that these residue classes be linearly independent over A/rn.

Since the dimension of rn/rn2 over A/rn is d, the two conditions about
the nt2-residues of x1, . . . , xd are equivalent. The necessity of our
condition is obvious. For the sufficiency we notice that if the condition

is satisfied, then we have rn = Ax1 + in2, whence rn = Ax1 as at

the end of the proof of Theorem 25.
REMARK. We noticed, in the proof of Theorem 25, that, if A is a

regular local ring, then the multiplicity of its maximal ideal m is equal
to 1. For any other open ideal q of A, we have e( q)> 1. In fact,
,( q + rn2)/rn2 is then a proper subspace of rn/rn2 (otherwise rn q -'- in2,

whence m q as above). Taking a suitable basis of the vector space
rn/nt2, we see that there exists a regular system of parameters
{x1, x2, .. , such that ± m2c Ax2 + ... ± Axd± rn2. As this
latter ideal is ct'=Ax12±Ax2+ .. and since q' implies
e( q) � e(q'), we have to prove that e( q')> 1. But this follows from the
fact that is a polynomial ring in d variables over A/i', whence
e(q')=t(A/q')=2, by Theorem 23, § 10.

It may be proved (by using the structure theorems for complete local
rings) that if a local ring A of the type encountered Algebraic Geo-
metry admits an ideal q of multiplicity I (i.e., if e( q) 1), then A is a
regular local ring (and, necessarily, q = rn).
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We shall give later a partial proof of the fact that every quotient ring
prime ideal) of a regu1ar locai ring A is a regular local ring. We

now describe those factor rings A/b of a regular local ring which are
regular.

THEOREM 26. Let A be a regular local ring and b an ideal in A. For
A'b to be regular, it is necessary and sufficient that b be generated by a sub-
set of a regular system of parameters of A (i.e., by a system of elements of itt
which are linearly independent mod in2).

PROOF. The equivalence of the notions "subset of a regular system
of parameters," "system of elements of in which are linearly inde-
pendent mod m2" follows immediately from Corollary 2 to Theorem
25. Suppose now that {x1,. . . is a regular system of parameters in
A, and that b is generated by x1,.. . ,x3. By a formula proved in § 9
(p. 292) we have dim (A/b) = d—j. On the other hand the maximal
ideal nt/b of A/b is generated by d—j elements, namely the b-residues of

, Xd. Hence A/b is a regular local ring.
Conversely, assume that A/b is a regular local ring, say of dimension 8.

We consider the canonical mapping cp of nt/nt2 onto iTt/iTt2 = nt/(nt2 + b),
where = nt/b. Both are vector spaces over A/in (= (A/b)/th), of
dimension d and 8 respectively, and it is obvious that is (A/ nt)-linear.
Therefore the of has dimension d— 8, whence b contains
d— elements, say x1, x2, . . , whose nt2-residues are linearly
independent over A/in. By Theorem 25, Corollary 2, these d— 8

elements form a subset of a regular system of parameters. By the

preceding half of the proof, the ideal b' = has the property

that A/b' is a regular local ring of dimension 8. Now the ring A/b is a
homomorphic image of A/b', since b' b, and has the same dimension 8
as A/b'. Since A/b' is an integral domain (Theorem 25, Corollary 1),
it follows from Theorem 20, Corollary 2 9) that the canonical
homomorphism of A/b' onto A/b is an isomorphism. Hence b = b', and
this completes the proof of the theorem.

REMARKS:

(1) In the last part of the proof it is not necessary to fall back on
Corollary 2 of Theorem 20 9). It is to observe that
G(A/b') is a polynomial ring in 8 independent variables over A/nt and
that, were a proper subset of b, the ring G(A/b) (=
would be a proper homomorphic image of the polynomial ring G(A/b'),
and this contradicts the fact that G(A/b) is itself a polynomial ring in 8
independent variables over A/rn.

(2) The proof that b' b is based essentially on two facts: (1) b' b;



304 LOCAL ALGEBRA Ch. VIII

(2) and have the same leading in G(A). In this connection,
it is proper to call attention to a general lemma on Zariski rings which
covers the case under

LEMMA. Let A be a Zariski ring, in an ideal defining the topology of
A, a and a' two ideals in A such that a' a. If a and a' have the same

leading ideal in G(A)= then a=a'.

In fact the associated graded module G(E) of the A-module E— a/a'
is reduced to (0) since G(E) is isomorphic to G(a)/G(a'). This implies
that E/rnE_— (0), whence E— mE. Thus Theorem 9, (f) 4) shows
that E (0), whence a a'.

§ 12. Structure of complete local rings and applications. In
this section we restrict ourselves to equicharacteristic local rings, i.e., to
local rings A which have the same characteristic (zero or a prime
number p) as their residue field A/rn. Most of the theorems we are
going to prove admit analogues in the unequal characteristic case, i.e.,
the case in which A is a ring of characteristic 0 or (p: prime number,
n> 1) and A/rn a field of characteristicp.t It is easily seen (cf. proof of
Corollary 2 to Theorem 17, § 7) that a local ring is equicharacteristic if
and only if it contains a field.

We recall (cf. p. 281, § 7) the notion of a field of representatives (or
representative field) for a iocal ring A with maxima1 ideal m: it is a
subfield L of A which is mapped onto A/rn by the canonical mapping 92
of A onto A/rn. Then, since L is a field, the restriction of to L is an
isomorphism of L onto A/rn.

THEOREM 27 (1. S. COHEN). An equicharacteristic complete local ring
A admits a field of representatives.

In the case in which A and A/rn have characteristic 0 the
theorem has already been proved as a consequence of HensePs lemma
(Corollary 2 to Theorem 17, § 7). We may therefore restrict ourselves
to the case in which A and A/rn have characteristic p 0.

We first prove our assertion under the assumption rn2 = (0). The
proof in this case will make no use of the noetherian character of A nor
of the completeness of A, and will in fact be valid for any ring A in which
rn is the only maximal ideal, provided A and A/nt have the same char-

For these extensions we refer the reader to the paper of I. S. Cohen "On
the structure and ideal theory of local rings11' Trans. Amer. Math.
Soc., 59, 54—106, (1946), or to P. Samuel "Algèbre Locale," Mem. Sci. Math.
No. 123, Paris, 1953.

The method of proof given in the text is due to A. Geddes.
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acteristic p 0 and provided that (0). Let be the set of all
elements where x ranges over A. The set is obviously a
of A. Furthermore, if 0, then x rn, x admits an inverse y E A,
and admits yP as an inverse in AP. Therefore is a subfield of
A. Among the subfields of A which contain Zorn's lemma pro-
vides us with a maximal subfield L. Let be the canonical homomor-
phism of A onto A/rn; we prove that = A/rn. in fact, assuming the
contrary, take an element a E A/rn, a Since a" E cp(AP)
the minimal polynomial of a over is XP — a repre-
sentative a of a in A = a). Then the polynomial XP — is
irreducible over L, since otherwise we would have (a — a1)P =0 for
some a1 in L, and a would belong to Thus LIa] is a subfield of A,
in contradiction with the maximal character of L.

We now come back to the general case. Since p � 2, the maximal
ideal fft = rn/rn2 of the local ring A/rn2 satisfies the condition fftP = (0)
and hence A/rn2 admits a representative field K2. We now construct,
by induction on n, a representative field of such that, if we
denote by the canonical homomorphism of onto A/rn's,
induces an isomorphism of onto Suppose that has already
been constructed. The inverse image is a subring R of

which contains the kernel = of Any element
of R which is not in has as

a a unit in A/rnul, and therefore Hence
(since the maximal ideal in is the full in-

verse image of the maximal ideal rn/rnhl of A/rnhl), and is a unit in
Let = 1, 'q E Then ij' E and therefore

E R, since R is the full inverse image of Thus is invertible in R,
and we have therefore proved that is the only maximal ideal of R.
Since we obviously have (0) (as = rnn/rnn+l and the
first part of the proof shows the existence of a representative field
of R. Since the canonical homomorphism A/rn is the pro-
duct of by the canonical homomorphism A/rn and since
is a representative field of A/rnhl, it follows that and that

is a representative field of
We now conclude the proof by using the fact that, since A is complete,

it is the projective limit of the residue class rings A/rnhl. In fact, given
any sequence of elements E A/rnhl such that = for all n,
there exists one and only one element y of A admitting as

for all n. To see this, we take, for every n, an element of A admitting
as Since = we have (mod

whence the sequence is a Cauchy sequence. If y is the limit of



306 LOCAL ALGEBRA Ch. V11

this sequence then y E and hence y admits as ma-residue for
every n. The uniqueness of y follows easily from the fact that

= (0). Now, for every element of K1( = A/rn) we consider the

elements = E K2, •, 71n-4-1 = E , and we
denote by u(-q) the above constructed element y of A. It is readily
verified that u('q = u('q'), and that = U('q)U('q') (con-
servation of sums and products by passage to the limit), whence u(K1)
is a subring of A. Furthermore, for every 0 in K1, there exists an
element 'q' in K1 such that 7p7' = 1, whence u('q') is the inverse of u(-q)
(note that from the uniqueness of the element y, established above,
follows that u(1) is the element I of A). Therefore u(K1) is a subfield
of A. Since its image p(u(K1)) in A/rn = K1 is obviously A/rn itself,
we have found a representative field of A.

A somewhat shorter proof of Cohen's Theorem, due to M. Narita,
may be given; it uses properties of p-bases in fields of characteristic p,
(see Vol. 1, Ch. II, § 17, pp. 129—131). We again restrict ourselves to
the case in which A and A/rn have characteristic p 0. Let {Xa} be a
family of elements of A such that their rn-residues form a p-basis of
A/rn. For every integer k, we consider the subring Rk =Apkrxi of R.

We first notice that Rk n In fact, since e AP", every
element of Rk may be written in the form a5m5(x) where a5 E An" and

where the m5(x) are monomials in the Xa with exponents — 1. If
a5m5(x) E rn, we have, by taking rn-residues, =0. Since

the monomials are linearly independent over (A/rn)P" (this is a
property of p-bases), this imples =0, i.e., a5 E rn. Since a5 E AP", we
may write a5 = whence b5 E rn since n'. is a prime ideal. Therefore
a5 E rnPk, and the inclusion Rk fl rnc is proved.

Now let y be any element of A. We are going to construct a Cauchy
sequence {Yk} such that Yk E Rk for every k and that y (mod rn).
We take Yo =y, and we suppose that Yk is already constructed. We
write Yk = atm5(x), where a5 E A and where the m5(x) are monomials

in the xawith exponents 1. Since A/rn we can write
a5 (mod rn), where E A and where the are mono-

mials with exponents �p — 1. Setting

Yk E rnpk,

whence {Yk} is the Cauchy sequence we were looking for. Since A is
complete, the Cauchy sequence {Yk} admits a limit y' E A, and we ob-
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viously have y —=y' (mod in). Furthermore, since the subrings Rk
form a decreasing sequence, we have y1 E Rk for every j � k, whence y'

belongs to the closure Rk of Rk. Therefore y' belongs to R
= JJ0

which is a subring of A.
The relation Rk n implies Rk since the ideal mt"

is closed. Therefore we have

R n m
= (kOO

fl = fl n m)c:
JJO

rnPk = (0),

whence the restriction to R of the natural homomorphism cp of A onto
A/rn is one to one. On the other hand, since we have seen that every
element y of A is congruent mod in to an element y' of R, cp maps R
onto A/rn. Therefore R is a field of representatives of A, and Cohen's
Theorem is proved.

COROLLARY. An equicharacteristic complete regular local ring A is iso-
morphic to a formal power series ring over a field.

Let rn be the maximal ideal of A, K a representative field of A,
{x1,... , a regular system of parameters. Then the subring
B of A is a power series ring in d variables (Corol-
lary 2 to Theorem 21, § 9). Let be its maximal ideal. Since
{x1,... , generate m in A, we have rn = Since B/(rn n B)
is identical to A/rn, and since B is complete, Theorem 7 3) shows that
A B (identify in that theorem the ring A with the present ring B,
and both modules E and F with the present ring A).

We prove now an algebraic result whose geometric counterpart is the
fact that, if a subvariety W of a variety V carries a point P which is
simple on V, then W is simple on V.

THEOREM 28. If A is an equicharacteristic complete regular local ring
and is a prime ideal in A, then is a regular local ring.+

PROOF. We set d= dim (A), d— r = dim (A/p). The theory of
chains of prime ideals in the power series ring A (VII, § 10, Theorem 34,
Corollary 1) shows that the dimension of is r. We thus have to
prove that may be generated by r elements. We first prove that

t This theorem has been proved by I. S. Cohen also in the unequal character-
istic case, under the assumption that p in2, where p is the characteristic of the
field A/rn (the so-called "unramified case"). The theorem has also been proved
for non-completec regular local rings A in special cases. Thus, Zariski has
proved the theorem in the case in which A is a "geometric" local ring, and
Nagata has proved the theorem in the more general case in which the prime
ideal is "analytically unramified." Recently Serre has proved the theorem
quite generally for arbitrary regular local rings, by using cohomological
methods.
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there exists a regular system of parameters {x1, , in A such that
the idea! , is primary for the maximal ideal m. This is
a particular case of the following sharper result:

LEMMA 1. Let A be a regular local ring of dimension d, itt its maximal
ideal, an ideal in A, q the dimension of A/b, and (I �j � h) a finite
family of non—maximal prime ideals in A. Then there exists a regular
system of parameters {u1, . . . , ud} of A such that the ideal (b, u1, . ,

is primary for m, and that u1 for every j.
PRooF OF THE LEMMA. We proceed by induction on q, the case q =0

being trivial. Let 0. We denote by i== h + I, h ± 2,. . , k, the
isolated prime ideals of b; these prime ideals are distinct from m. From
the family of prime ideals we extract those which are not con-
tained in any other ideal of the family. Let be this reduced
family. For every s, we have m2 whence we can find an element
c5 such that c5 E m2, c5 E for every t s and c5 Now we an
element x of m such that x in2, and we denote by I the set of those
indices s for which x E We set u1 = x ± c5. For every s there is

sel
one and only one of the terms of this sum which is outside of whence
u1 Furthermore, since x m2 and c5 E m2, we have u1 m2.
We may thus begin the required regular system of parameters with u1
(Corollary 2 to Theorem 25, § 1 1).

We now use the inductive hypothesis. Since u1 is not in any isolated
prime ideal of b, the local ring ± Au1) has dimension q — 1 9,
Theorem 20 (b)). This ring is a residue ciass ring A'/b' of the
ring A' = A/Au1, where b' = (b + Au1)/Au1, and ths latter ring A' is a
regular local ring 11, Theorem 26). Applying the induction
hypothesis to A' and we find a regular system of parameters
{u'2, . , of A' such that the ideal (b', u'2, . , is primary for
the maximal ideal of A'. If we take for u1 (1=2, . . . , d) a
tive of u'1 irt A, then the system {u1,. . . , ud} satisfied the conditions of
the lemma.

CONTINUATION OF THE PROOF OF THEOREM 28. Let K be a
sentative field of A. We apply the above to the case b =
q= d— r. We change the notations of the 'emma as follows: the elements

, ud will now be denoted by . , u1,
We set B = .. , In n B), the residue classes

generate the ideal of non units, and, in A/u, these elements
generate an ideal which is primary for the ideal of non units. Since

n B) is contained in and is complete, is a finite modu1e
over n B) (Remark, p. 293, § 9). Thus, by Corollary 3 to Theorem
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20 9), the rings A/ti and n B) have the same dimension. As the
dimension of the former is d—r, B) has also dimension d— r.
Now, B itself has dimension d—r, since is a power series ring in d— r
variables over a field. Since fl B is prime, this implies, by Theorem 20

9), that n B=(O).
We have already seen that is a finite module over n B) = B.

More precisely, is generated by any system of elements whose

residue classes modulo generate over
i=r+1

K (Theorem 7, § 3). An equivalent form of this condition on the
ments y', is the following: the are the u-residues of elements y, of A
whose residue classes modulo . . , generate . . , Ud)

over K. We may thus take for elements y, the element I and a finite
number of suitable monomials in u1,. , Therefore we have

= B[U'1,. . . , Uç] (U'1: p-residue of U1), whence A = + . . . , Ut].
The elements , are not necessarily in However, we shall

now construct r suitable elements a1, . . , of which will belong to
the polynomial ring B[U1,. . . , Ut]. The u-residue U'1 of U1 has been
seen to be integral over B. Let . . . +
b11X+ b0,1 (b11 E B) yield an equation of integral dependence for U'1 over
B. We set a =p1(U1). Then relation =0 shows that a1 E
Furthermore, since the are monic polynomials, the elements U1
are integral over . . , and therefore also over

Ui]]. Therefore A is a finite module over K1{a1,. . . ,

a finite number of monomials ma in
U1, . . . , A = Ur+i, ., In a representa-

tion z= 'Pa(ai,. . . , . . , of an element z of A, we may

single out the terms of which are independent of a1, . . . , these
terms are in B = . . . , Ui]]; and the other terms are in the ideal

Aa1. We therefore have

A = a±B[U1,. . . , Ut].

We are now in good position for studying the quotieht ring
Since n B = (0), contains the quotient field L of B, whence it also
contains the polynomial ring S=L[U1,. . . , Ut]. The above constructed
elements a1 are in S n and S is integral over Lra1, . . . , ar], since U1

is integral over Therefore the ideal Sa1 is of dimension 0

in S. Since S) contains this ideal, it follows afortiori that also the
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ideal S) has dimension zero. Then, since S) thus a maxi-
mal ideal in the polynomial ring L1u1, , u,j in r variables, it may be
generated by exactly r elements (VII, § 7, Theorem 24). Our proof
will thus be complete if we show that is generated by S(p n S).

Now this is immediate. The relations a B1u1,. . .

show that = a ± n . . . , u,J), whence
a is generated by the elements whch

lie in n S, and since B1u1, . .. , is obviously also in S, we
have = and this proves Theorem 28.

REMARK. For every prime ideal in the power series A =
is a regular local ring. The corresponding state-

ment for a polynomial ring A = K1x1, , and a prime idea: of A
is easier to prove. If q is the dimension of we extract from
{x1, , a maximal system of elements which are algebraically
independent mod say {x1,. .. , Then contains the field
L = K(x1,.. , Xq) and therefore also the polynomial ring S =

. . , The ideal is generated in by the ideal
S n since this latter ideal contains Now S n is a prime
ideal of dimension 0 in S, since the of x1 is algebraic over L for
j— q + 1, , d. Therefore this ideal, and hence also the ideal is
generated by d — q elements (VII, § 7, Theorem 24). Since d — q is the
dimension of our assertion is proved.

It may be noticed that the proof of Theorem 28 is essentially based
upon the same idea which runs through the above short proof for poly-
nomial rings.

The following theorem, due to I. S. Cohen, is a generalization of the
theorem of Macaulay for polynomial ring (VII, § 8, Theorem 26):

THEOREM 29. Let A be an equicharacteristic regular local ring of
dimension d, and a = (a1,. .. , an ideal in A such that dim (A/a) = d — r.
Then a is an unmixed ideal (i.e., all the associated prime ideals of a are of
dimension d — r; in particular, a has no imbedded components).

PROOF. We proceed by induction on r, the case r = 0 being trivial.
We first achieve a reduction to the case of a complete ring. Let A be
the completion of A. Then Aa has dimension d — r (i.e., the local ring
A/Aa has dimension d — r) and is generated by r elements. Suppose
our theorem is proved for the ring A (which is a complete equichar-
acteristic regular local ring). Then, every associated prime ideal
of Aa has dimension d— r. Now Theorem 12 4) shows that, for
every associated prime ideal of a, there exists a such that

A = We thus have dim (A/p) = dim � since
Hence dim d— r, and therefore dim (A/p) = d— r
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since We may thus assume that A is a complete ring. We
pose that one of the associated prime ideals of a has dimension <d—r,
and from this we shall derive a contradiction. In the local ring the
ideal admits the maximal ideal as an associated prime ideal.
By Theorem 28 is a regular local ring. The dimension n of is
> r, since we have assumed that has dimension <d—r, and is an

ideal generated by r elements. Furthermore, since every isolated prime
ideal of a has dimension d—r (Vol. I, Ch. IV, § 14, Theorem 30), every
isolated prime ideal of has dimension n — r. Thus, with a change
in notations, we have to prove that the following situation is impossible:
we have a regular local ring A of dimension n, an ideal a = (a1, . . . ,

in A, of dimension n — r, generated by r elements, r < n, and the maximal
ideal rn of A is an associated prime ideal of a.

Since a principal ideal in a local ring of dimension q has either
sion q— 1 or dimension q, the dimensions of the ideals (a1, . . . , ar),
(a1, . , . . . , (a1), (0) form a sequence of integers such that the
difference of two consecutive terms is 0 or 1. Since the dimension of
a is n—r, and since the dimension of (0) is n, this implies that all these
differences are equal to 1. In particular, the ideal b (a1, . . . ,

has dimension n—r+ 1, whence b is unmixed by our induction
thesis. By Lemma 1, there exists therefore a regular system of
meters {u1,. . . , u,1} of A such that u1 does not belong to any associated
prime ideals of b, nor to any isolated prime ideal of a.

We now express the fact that iii is an associated prime ideal of a: we
have a: rn > a (Vol. I, Ch. IV, § 6, Theorem 11), or equivalently, there
exists an element c a such that Then cu1 E a=b
whence we can write E b, where d is a suitable element of A, or
again E b + Au1. Suppose that we have shown that does not
belong to any associated prime ideal of b±Au1. Then the relation
dare b-L-Au1 implies dE b+Au1, and hence d—eu1 E b, with suitable
e in A. Using the relation E b, we find that E b,

whence c — E b since u1 has been chosen outside of all the associated
prime ideals of b. We therefore have c E b ± = a, in contradiction
with the hypothesis

Thus it remains to be proved that does not belong to any associated
prime ideal p of b+Au1. By the induction hypothesis, applied to the
ideal (b+Au1)/Au1 in the regular local ring A/Au1, such an ideal has
dimension n — r. If were to contain a

would an isolated prime ideal of a, in contradiction
with the fact that u1 has been chosen outside of all the isolated prime
ideals of o. This completes the proof of the theorem.
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THEOREM 30. An equicharacteristic regular local ring A is a unique
factorization domain.

PROOF. The completion A of A is a power series ring over a field
(Corollary to Theorem 27), whence A is a unique factorization domain
(Chapter VII, § 1, Theorem 6). It is therefore sufficient to prove the
following lemma:

2. If the completion A of a local domain A is a unique fac-
torization domain, then A itself is a unique factorization domain.f

PROOF. We have to prove that every minimal prime ideal (0)) of
A is For this it is sufficient to prove that is principal,
for, if we have =Aa' (a' e A) and if {b1,... , bj denotes a
basis of we have = a'b'1 E A) and a' = c'1b1 (c'1 e A); thus

a'
=

c'jb'i)a', whence 1 = c'1b'1 since A is a domain; then, since

A is a local ring, at least one of the terms c'1b'1, say c'1b'1, is invertible,
whence b'1 is invertible; since b1 = a'b'1, we have =Aa' = Ab1.
Hence we have = A n A = Ab1

A is a UFD, it is sufficient to prove that all the associated prime
ideals of are minimal (i.e., have height 1). For such an associated
prime ideal we have n A = 4, Corollary 1 to Theorem 12).
Thus, if we denote by S the complement of in A, is an asso-
ciated prime ideal of (Vol. I, Ch. IV, § 10, Theorem 17), and we are
reduced to proving that all the associated prime ideals of have
height I.

Now we notice that A integrally closed. In fact, if we denote by
K the quotient field of A (considered as a subfield of the quotient field
of A) we have A = A n K: for, the element x/y of K (x, y E A) belongs
to A, we have x E Ay n A = Ay 2, Corollary 2 to Theorem 5), whence
x/y belongs to A. Since A is a UFD, it is closed in its
quotient field. It follows that also A is integrally closed in its quotient
field K.

Therefore, since is a prime ideal of height 1, the quotient ring
is an integrally closed local ring of dimension 1, i.e., a discrete

t This lemma and its proof have been communicated to us by M.
That this condition is satisfied if A is a UFD has been pointed out in

Vol. 1, Ch. IV, §14, p. 238. Conversely, assume that this condition is satisfied
and !et b be an irreducible element of A. The ideal Ab is contained in some
minimal prime ideal b (Vol. 1, Ch. IV, § 14, Theorem 29). We have =Ac,
whence b is a multiple of c, and since b is irreducible we must have Ab =Ac, i.e.,
Ab is prime. Therefore A is a UFD by Vol. 1, Ch. 1, §14, Theorem 4. (Note
that UF.1 is satisfied since A is noetherian.)
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valuation ring (Vol. I, Ch. V, § 6, corollary to Theorem 14). Hence
a principal ideal, and, since is also a

principal ideal. Thus, since is integrally closed, all the associated
prime ideals of have height I (Vol. I, Ch. V, § 6, Theorem 14).
This proves lemma 2 and Theorem 30.

REMARK. Lemma 2 reduces the problem of unique factorization in
arbitrary (Le., not necessarily equkharacteristic) regular local rings to
the case of complete regular local rings. The unique factorization
property holds also in an arbitrary complete regular local ring A of
dimension I or 2: is obvious in dimension I since A is then a discrete
valuation ring; in dimension 2 one uses an analogue of Hensel's lemma
for homogeneous polynomials two variables.f It may also be proved
that, if the unique factorization property holds for regular local rings of
dimension three, then holds in any regular local ring. (This has been
proved by 0. Zariski in unpublished notes, in 1947; subsequently this
has been proved by M. ["A general theory of algebraic geometry
over Dedekind domains, II" 5, Proposition II), Amer. J. of Mathe-
matics, v. 80, 1958].) Using these facts and methods of cohomological
algebra, M. Auslander and D. A. Buchsbaum have recently proved the
unique theorem in any regular local ring their paper,
"Unique factorization in regular local rings", PNAS, v. 45 (1959),
pp. 733—734. We present their proof in Appendix 7, reducing the co-
homological prerequisites to the knowledge of the properties of chains
of syzygies given in VII, § 13.

§ 13. Analytical irreducibility and analytical normality of
normal varieties. In this section we intend to study the completions
of the local rings which occur in algebraic geometry. Such local rings
are the local rings o(W; V), where W is an irredudble subvariety of an
irreducible variety V (Ch. VI, § 14, p. 93). In other words, the
local rings which will be considered in this section are quotient rings

of finite integral domains with respect to prime ideals
The results we are going to prove hold in a larger class of local rings,

but not for the class of all local Actually they are consequences
of the following hypothesis, which is of algebraic nature:

t See W. Krull, "Zur Theorie der kommutativen Integritätsbereiche," J.fur
d. reine u. angew. Math., v. 192 (1953), or unpublished notes of 0. Zariski.

See P. Samuel, Algèbre Locale, Ch. V, Paris (Gauthier Villars), 1953.
See M. Nagata: "An example of a normal local ring which is analytically

reducible" (Mem. Coil. Sci. Univ. Kyoto, Ser. A, 31(1958), 83—85) and "An
example of a normal local ring which is analytically ramified" (Nagoya Math. J.,
9 (1955), 111—113).
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(D) The local ring A is a domain, and there exists an element dq= 0 in A
such that, if A denotes the completion of A and (A)' the integral closure of
A in its total quotient ring, then d(A)' c A.

In the first part of this section we shall derive some consequences of
hypothesis (D). In the second part we shall show that the local rings
of algebraic geometry satisfy hypothesis (D), thus proving that the con-
sequences of (D) hold true for these local rings.

We shall say that a local ring A is analytically unramified if its com-
pletion A has no nilpotent elements (other than 0).

LEMMA 1. If a local domain A satisfies condition (D), then it is
analytically unramified.

PROOF. Let a be a nilpotent element of A. For every element
x 0 of A, we have that x is not a zero-divisor in A (Corollary 6 to
Theorem 11, § 4), whence a/x is an element of the total quotient ring of
A. Since we have 0 for some exponent q, a/x is integral over A.
Using condition (D), we/see that da/x E A, d being an element 0 of A
independent of x. Therefore the element da belongs to all the principal
ideals Ax (x E A, x 0). If A is not a field, we fix an element y 0

in the maximal ideal m of A, and we apply the above result to the prin-
cipal ideals n 1, 2,.... We then .have da E for every n,
whence da =0, and therefore a 0 since d is not a zero-divisor in A
(Corollary 6 to Theorem 11, § 4). This proves that A has no nilpotent
elements 0) if A is not a field. If A is a field, then A = A and our
assertion is trivial.

LEMMA 2. Let A be an integrally closed local domain such that A and
all its residue class rings prime ideal) satisfy condition (D). Then
A is an integrally closed domain.

rThe statement that A is a domain is often expressed by saying that
A is analytically irreducible, and the statement that A is integrally closed
is expressed by saying that A is analytically normal.]

PROOF. (1) We first prove that A is integrally closed in its total
quotient ring, i.e., that (A)' A. With the same notations as in
tion (D), let d be an 0 of A such that d(A)'c:A. We may
assume that d is not a unit in A, for, otherwise, our assertion is evident.
Let z be any element of (A)' ; the element dz belongs to A. If we prove
that dz belongs to the ideal Ad, we will have dz dz' with z' E A,
whence z E A since d is not a zero divisor (in A, and therefore also in
(A)').

We thus have to prove that, for every z in (A)', we have dz E Ad.
This will be achieved if we prove that, for every associated prime ideal

of Ad, the quotient ring is a discrete valuation ring. In fact, assume
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this has been proved. Then it will follow that is a prime ideal of
height 1 of A, and that the ideals which are primary for are its
symbolic powers. Hence we will have

(1) Ad = fl
We denote by vj the normalized valuation of

A by the canonical homo-
morphism of A into The function takes the value ± oo on the
kernel of and satisfies the same relations as a valuation does:

(2) ± w1(y), ±y) � mm (w1(x)

Furthermore the symbolic power is the set of all elements x of A
such that � s; it follows that s(j) = This being so, we come
back to the element z of (A)', and write an equation of integral de-
pendence for z over A:

(3) ±a1z+a0 0

The element y dz belongs to A and we have

(4) =

a and fi, (2) shows that

na � 1(ia ± (n — i)fl) = nfl + (i(a — fi)).

If a < fi, then i(i(a — fi)) (n — I )(a — fi), and we get the in-
equality na nfl + (n — 1)(a — fi), i.e., a � fi, in contradiction with a < fi.
We therefore have a � fi, i.e., � for every]. Hencey belongs
to for every], and therefore to Ad, by formula (1).

It remains to be proved that, for every associated prime ideal of Ad,
A is an integrally closed domain,

we have Ad== fl where the are prime ideals of A, of height I

(Vol. I, Ch. V, § 6, Theorem 14). Therefore we have 4, Theorem
11, Corollary 2)

(5) Ad fl

We consider any one of the ideals and we call it Condition (D)
and Lemma 1 applied to show that has no nilpotent elements,
i.e., that is a finite irredundant intersection of prime ideals We
consider one of them, say and study Taking x' E fl

j� 2
x' we have Let a be an element of which is not in
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since is a discrete valuation ring, is an isolated primary component
of Aa, and there exists an element x" of A such that x" and

x" is not a zero divisor mod Ab (Corollary 6 to Theorem 11, § 4),
we have x" whence the element x x'x" does not belong to On
the other hand we have Aa. Denoting by ç the
canonical homomorphism of A into we deduce that

x in and, since a E the last relation
shows that the maximal ideal is the principal ideal generated by

Therefore and similarly every is a discrete valuation ring.
Now we prove that we not only have — fl but also

fl

This we prove by induction on n. The proof of the inclusion
is straightforward (we recall that = A n Conversely, consider
any element y of fl We have y E Ap (since n � 1), whence (using

the same elements a, x" as above) x'(y E Aa; we write x"y ay1 (y1 E A).
Let be the canonical homomorphism of A into the normalized
valuation of and the mapping We have w3(x") 0 (since
x" w3(y) � n, w3(a) I (since generates the maximal ideal of

whence w3(y1) � n — I. Hence y1 E fl and therefore

E by the induction hypothesis. Since a E we have
x"y = ay1 E whence y E since x" This proves (6).

Combining (5) and (6) (applied to each we see that Ad is a finite
intersection of symbolic powers where the are prime ideals
of A such that is a discrete valuation ring. This proves the an-
nounced assertion.

(2) We now know that A is integrally closed in its total quotient ring
S. By Lemma 1, A has no nilpotent elements, whence its zero ideal
is an irredundant intersection of prime ideals The elements of A
which do not belong to IJ are regular in A, and are therefore units in

S. Hence the zero ideal of S is the intersection of the maximal ideals
Therefore S is isomorphic to the direct sum of the fields S/Si

(Vol. I, Ch. III, § 13, Theorem 32). If the number of these fields were
greater than 1, 5 would contain an idempotent e 0, 1. Since e2 — e 0,
e is integral over A, whence it belongs to A, in contradiction with the
fact that a local ring cannot contain any idempotent e distinct from 0

In other words, we have = fl A.
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and 1 (since e and 1— e would then both be non-units). Hence S is a
field, and A has no zero divisors. This completes the proof of Lemma 2.

REMARK. We have only used the hypothesis (D) for A and for the factor
rings A/p, where is a prime ideal of Ad.

In the next lemma we use, for avoiding typographical complications,
the notation c(B) for the completion of a semi-local ring B, and the
notation R' for the integral closure of a ring R in its total quotient ring.

LEMMA 3. Let A be a local domain satisfying condition (D). Then A'
is a semi-local ring. Furthermore, for every maximal ideal m of A',
the local ring A'111 and all its residue class rings prime) satisfy (D),
then the ring c(A') is canonically isomorphic to c(A)'.

PROOF. Condition (D) applied to A, i.e., the existence of an element
0 in A such that dc(A)' c(A), implies that c(A)' is contained in a

finite c(A)-module, whence it is itself a finite c(A)-module since c(A) is
noetherian. Therefore c(A)' is a complete semi-local ring, and c(A) is
a topological subspace of c(A)' (Theorem 15, § 6).

On the other hand, since no element 0 of A is a zero divisor in c(A)
(Corollary 6 to Theorem 11, § 4), the total quotient ring S of c(A) con-
tains the quotient field K of A. We have K n c(A) = A, since, if an
element a/b (a, b E A) of K belongs to c(A), we have a E b . c(A), whence
a E b . c(A) n A Ab, and a/b E A. It follows that the relation
d. c(A)' c(A) (d E A) implies dA' c(A) n K= A. As above, this
shows that A' is a finite A-module, therefore a semi-local ring, and that
A is a topological subspace of A'. Therefore c(A) may be identified
with a subring of c(A'). By Theorem 16 6), an element of c(A) which
is not a zero divisor in c(A) is not a zero divisor in c(A'). Hence the
total quotient ring T of c(A') contains the total quotient ring S of c(A).
Furthermore the relation dA' A gives, by passage to the limit,
d. c(A')c: c(A), thus proving that the elements of c(A') admit d as a com-
mon denominator. Therefore c(A') is a subring of 5, showing that
T— S. The relation d. c(A')c: c(A) proves also that c(A') is a finite
c(A)-module, whence that c(A') is integral over c(A). Therefore c(A')
is a subring of the integral closure c(A)' of c(A) is S.

For completing the proof it remains to be shown that c(A') c(A)',
i.e., that c(A') is integrally closed in its total quotient ring S. We know

7, Corollary 2 to Theorem 18) that c(A') is a direct sum of complete
local rings B1. If we prove that all the rings B. are integrally closed
domains, everything will be proved. For, denote by K1 the quotient
field of B.. The direct sum K1 is then the total quotient ring of
c(A') = B.. Let x (x1,. . . , be an element of K1 that is
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integral over B.. Writing component-wise an equation of integral
dependence for x over B., we see that is integral over B. for every i,
whence that x E

B. an integrally closed domain. We
know 7, remark to Corollary 2 to Theorem 18) that B. is isomorphic
to the completion of m1 denoting one of the maximal ideals of A'.
Since A' is an integrally closed domain, so is A'm,. For completing the
proof it suffices to notice that, by the hypotheses, Lemma 2 may be
applied to A'm1.

In order to be able to apply Lemmas 1, 2, 3 to the local rings of
algebraic geometry (which we call, for short, "algebro-geometric local
rings"), it suffices to make sure that, given an local
ring A, then A itself, all the rings prime) and all the rings
(A' integral closure of A, m maximal ideal in A', prime ideal in A'm)
satisfy condition (D). It is easily seen that all these local rings are
algebro-geometric. In fact

(a) As to A/p, we write A = Bq, where B is a finite integral domain
kIx1, . . . , and q a prime ideal n B. Then B1 = n B) is a finite
integral domain, p fl B is contained in q, and is isomorphic to

where q1 = ii B) (Vol. I, Ch. IV, Formula (1) at the end of § 10).
Thus is algebro-geometric.

(b) As to A'm, we still write A = Bq and observe that the integral
closure B' of B is a finite integral domain (Vol. I, Ch. V, § 4, Theorem 9).
Denoting by S the complement of q in B, the intregral closure A'
of A =-Bq —B8 is (Vol. 1, Ch. V, § 3, Example 2). Thus, by the
transitivity of quotient ring formation (Vol. 1, Ch. IV, § 10), the ring

is equal to B',8 B" whence it is algebro-geometric.
(c) As to we apply (a) and (b).
This being so, it is sufficient to prove the fo1lowing:
LEMMA 4. An algebro-geometric local ring A = kIx1, x2,. , such

that k(x) is separable over k satisfies condition (D).
PROOF. We first prove the following strong variation of the normaliza-

tion theorem: if the prime ideal q is zero-dimensional then it contains a
separating transcendence basis {z1, z2,.. , zj of k(x)/k such that krxi is
integral over k[z]. Passing to the homogeneous ring kI Yo' . ,

and to the one dimensional homogeneous prime ideal (p. 186), it
will be sufficient to prove that contains r homogeneous elements

..., such that {yo' is both a system of integrity of and a
separating transcendence basis of k(y)/k for we can then set z1 =
rn = degree of By Vol. I, Ch. II, §17, Theorems 41 and 43, a
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separating transcendence basis of k(y)/k is the same thing as a p-basis of
k(x) (if the characteristicp of k is 0). By the lemma onp. 198 it is there-
fore sufficient that for eachj= 1, 2,. • , r ± 1 the elements
have the following properties: the ideal ± + + (where

Yo) is of dimension r + 1 —j, contains none of the isolated prime
ideals of this ideal, and are p-independent elements of
k(y). Assume have already been constructed (note, forj =0,
that y0 and is a transcendental over k(x)). Let u and v be homo-
geneous elements of C such that u U u E v E V E fl and
v k(y0, (yP) (the existence of v follows from the fact that
the elements of every non-zero ideal in C generate k(y) over k). Let
pag, pbh, be the degree of u and v respectively (where p-ta, If
a < b we set = + if a b we set It is then
immediate that ,

also satisfy the above conditions. The
existence of a separating transcendence basis {z1, z2, . . , Zp.} which is
also a system of integrity of o = k{x] allows us first to reduce the proof of
the lemma to the case in which q is zero-dimensional, by adjoining to
k a maximal subset of {z1, z2, . . . , Zp.} consisting of elements which are
algebraically independent over k mod q. Assuming now that q is
maximal we choose {z1, z2, . , Zp.} as above, we set

z2, , Zr) = It is clear that {z1, Z2, , Zp.} is a system of
parameters in =

The local ring A is not, in general, a finite module over B=r3. How-
ever, if we denote by S the complement of in r, then the ring 1= is
a finite module over B=r5, and therefore is a semi-local ring. Further-
more A is a quotient ring of I with respect to some maximal ideal.
Then E, which is a power series ring in r variables over k, is a subring of
1. By what has been seen in § 7 (Remark, p. 283), A is a direct sum-
mand of 1. If we denote by the projection of I onto A, maps Z1
(considered as an element of E and 7) on Z1 (considered as an element
of A); in order to avoid confusions, we denote this latter element by

Since the elements . . , of A are analytically inde-
pendent over k (Corollary 2 to Theorem 21, § 9), maps isomorphically

kt[Z1, . , Zpi] onto the subring , of A (subring
over which A is a finite module; see § 3). Furthermore, by Theorem
16 (b) 6), and since E has no zero divisors, no element of E is a
zero divisor in 1. From this it easily follows, by taking into account
the fact that A is a direct summand of 1, that no element 0 of
is a zero divisor in A.

From all this we deduce that the total quotient ring Z of A contains
the quotient field L of and is a finite dimensional vector space over
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L. The integral closure (A)' of A is the integral closure of p(E) in Z,
since A is integral over p(E). Furthermore Z is a direct summand of
the total quotient ring T of 1. Theorem 16 6) shows that T is a
finite dimensional vector space over L, and that, if {a1,. • , aq} is a
basis of the quotient field k(x) of I over the quotient field k(z) of B, then
it is also a basis of T over L. Lemma 4 will be proved if we prove the
existence of an element 0 of B such that d(E)'c: I ((E)' = integral
closure of E in T): for, applying the projection p and noticing that any
element of Z which is integral over (p(B) is the projection of an element
of T which is integral over E, we get p(d) A, i.e., p(d)(A)'c: A,
and we have p(d) EA,

For proving the existence of d, we may assume that the basic elements
belong to I. The trace mapping Tk(X),k(Z) extends in a unique way

to an mapping r of T into L. Since k(x) is separable over k(z),
there exist elements a'1, . . . , a'q of k(x) such that -r(a1a'1) = for all
i,j (Vol. I, Ch. V, § 11, proof of Theorem 30). Now, if y is an element
of T that is integral over E, we see readily that the elements r(a1y)
are integral over E, and hence belong to E since B is integrally closed.

Since y we have y E Ea'1, and therefore (E)' Ea'1.

Taking for d a common denominator in B such that da'1 E I for every 1,
we get d(E)' 7, and Lemma 4 is proved.

We now restate, in geometric language, the results obtained by
bining Lemmas, 1, 2, 3 and 4:

THEOREM 31 (Chevalley). Let V be an algebraic variety, W a
variety of V, both irreducible over a perfect field k. Then V is analytically
unramified at W, i.e., the completion of the local ring o(W; V) has no
nilpotent elements.

In particular the extension of a prime ideal of k[X1,. . . , to
Xv]] is an ideal that is equal to its radical.

THEOREM 32 (Zariski). If, furthermore, V is normal at W, i.e., zf
o( W; V) is integrally closed, then V is analytically irreducible and
analytically normal at W, i.e., the completion of o(W; V) is a domain and
is integrally closed.

THEOREM 33. With the hypothesis of Theorem 31, the integral closure
of o( W; V) is a semi-local ring whose completion is canonically isomorphic
to the integral closure (in its total quotient ring) of the completion of
o(W; V).



APPENDIX I

RELATIONS BETWEEN PRIME IDEALS IN A NOETHERIAN DOMAIN
0 AND IN A SIMPLE RING EXTENSION o[t] OF 0

Let o be a noetherian domain and let o' be a domain containing o
and such that o' o[t], where t is some element of o'. We wish to
investigate the relations between prime ideals in o and in o'. We first
prove the following lemma:

LEMMA 1. Let t be algebraic over the quotient field of o, let be a
prime ideal in o' = o[tl such that the prime ideal n o has height 1
(i.e., is a minimal prime ideal in o). Then the oft is algebraic
over

PROOF. Upon passing to the rings of quotients o, and We
achieve a reduction to the case in which o is a local domain having
as its only proper prime ideal (since is obviously a prime ideal
in whose contraction to o, is We therefore assume that o
is a local domain and that the minimal prime ideal of o is also the
maximal ideal of o (o is then a 1-dimensional local domain).

Let T be an indeterminate, let o[T] and let be the kernel of
the homomorphism of onto o' which is uniquely determined by
the following two conditions: (1) p is the identity on o; (2) ço(T)= t.
Then p is a proper homomorphism, i.e., (0). If we set
then it is immediately seen that n o = and that the of T
can be identified with the of t. So we have to show that the

of T is algebraic over
Since T is an indeterminate, we have n o Hence there is a

homomorphism of onto which sends the of
T into the of T and which reduces to the identity on
Thus, for the proof of the lemma it will be sufficient to show that this
homomorphism is proper, i.e., that <

Assume the contrary: = We fix an element x 0 in In
the local domain o the principal ideal ox is primary and hence contains
a power of Therefore contains a power of and therefore

321
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is contained in every prime ideal of in particular in every
isolated prime ideal of By the principal ideal theorem (Vol. I,
Ch. IV, Theorem 29) it follows then that is a minimal prime ideal in

in contradiction with > >0. Q.E.D.
Before proceeding with the proof of the next proposition we shall

give another proof of the preceding lemma, which does not make use
of the principal ideal theorem.

In the first place, we can achieve a reduction to the case in which t
belongs to the quotient field of o. In fact, there exists an element
a 0 in o such that the element r = at is integral over o. We set
if = O[-r], = n if. It is clear that the of r is algebraic
over (use a relation of integral dependence of r over o) and that

Therefore it is sufficient to prove that the
of t is algebraic over Now, since is minimal in o, is mini-
mal in o" (Vol. 1, p. 259), and since n o"= and t belongs to the
quotient field of if, the desired reduction is achieved.

Assume then that t belongs to the quotient field of o. We may also
maintain our previous reduction to the case in which is the maxima1
ideal of the one-dimensional local domain o. Let t_—y/x, where
x, y E o, and let be the ideal generated by x andy in o. If x is a unit in
o then o' = o, and the lemma is trivial in this case. If x is not a unit and
y is a unit in o, then y=xt E i.e., y E n o, in contradiction
with y Hence we may assume that both x and y are non-units
in o. Then is primary for and thus we know that for large n the
length is a polynomial in n, of degree I (VIII, § 8). Conse-
quently — q = const., for n Iarge.+ Therefore —

q, for all n n0, where n0 is a suitable integer. This implies
that if n max (n0, q) then the n I basis elements x's, . . .

, yn

of are linearly dependent mod over the residue field
is a vector space over of dimension q). We have thus a relation
of the form

a are in o and not all in Dividing through by we
conclude that the of t is algebraic over (the elements

all we shall need in what follows is that is bounded
from above. A direct proof of this is immediate:

Fix an element x 0 in Then ox is primary for whence ox for
large n. Therefore = where = :(x). We have +

where 1 refers to lengths of 0-modules. Since and 0/ox are
isomorphic 0-modules, it follows that and therefore (since

for all large n.
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a1, . . , cannot all belong to for if they do we would have
a0 — (a1t ± • • ± E fl o, i.e., a0 E t, a contradiction).

We shall use the preceding lemma for proving the following:
PRoPosITION 1. Let o be a noetherian domain and let o' = o[t] be a

domain which contains o and is a simple ring extension of o. Let be a
prime ideal in o', different from o'; let n o and let i- be the
of t.

(A) If t is transcendental over o, then (a) = 1 + and r is
algebraic over if and (b) = and -r is transcendental
over if Furthermore, if is any prime ideal in o then
is a prime ideal in o', and we have o =

(B) If t is algebraic over o, then and if, furthermore,
is transcendental over then h(t,') <
PROOF. We first make a remark which will be useful in the proof of

either part of the proposition. Let q' be a prime ideal in o' such that
q' and assume that ñ o = q' n o Let a be the q'-residue of t.

We have = and o'/q' = Thus the natural homo-
morphism of o'/ q' onto sends a into i- and reduces to the identity
on Since this homomorphism is not an isomorphism, it follows
that a is transcendental over while i- is algebraic over From
this it follows also that there exists no prime ideal in o' which is properly
contained in and properly contains q'.

We now begin with the proof of part (A) of the proposition. Since
t is transcendental over o, it is seen immediately that if is any prime
ideal in o then q = and the r of t is transcendental
over Hence (= is an integral domain, and

o' (and contracts to in o). This proves the last asser-
tion of part (A) of the proposition, and, in view of the preceding
"remark," it also establishes the fact that i- is transcendental over
if and only if = It also follows that

(1)

and that, consequently, if is a prime ideal in o' then

(2) =

To complete the proof of part (A) of the proposition it remains to be

shown that =1+ or according as or

Let

(3) • • >(O)
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be a strictly descending chain of prime idea's in o' beginning with
and having maximal length, and let a' n o n. Assertion (A) being
trivial if (0), we use induction with respect to We consider
separately the two cases: (a) or (b)

CASE (a):

If q' o',p, then and h(q') = by the induction hypothess.
Hence 1 +h(q')= I

If ci' then p> q (again by the preceding "remark"), and
hence > h(q). We also have ci' o' q, for in the contrary case we
would have the strictly descending chain > i', contrary to the
maximality of the chain q'> •••. Hence, by our induction
hypothesis, we have h( q') 1 + h( c'). Therefore h(,p') 1 h( c") =
2+h(q) 1+ whence 1+ in view of (2).

CASE(b):
If q' = then n and 1 +h(q')= 1 +h(q) (by the induction

hypothesis). Hence and thus in view of (1).
Now assume that q' > o' q. By the induction hypothesis, we have

h(q') 1 + h(q). Since we have necessarily that t> q and also
that r is transcendental over This property of r can also be
expressed as follows: if a is the q'-residue of t (whence a is algebraic
over of q, since q' > o' q), then the

'f
q '-residue of a is transcendental

over the ring By Lemma 1, this implies that is not a
minimal prime ideal in the ring of q. In other words: 2±h(q).
Hence, 1 and thus in view
of(1).

This completes the proof of Part (A) of the proposition. Note that
we had to use Lemma 1 only in the case q' >o'q.

We now deal with part (B) of the proposition. Let T be trans-
cendental over o and let o[T]. We have a homomorphism of C'
onto o' which sends T into t and reduces to the identity on o. Let
be the kernel of this homomorphism. Since n o = (0) and since
the 9)1'-residue t of T is algebraic over o, it follows from part (A) that
h(W1') 1. Now, let be the prime ideal in C' such that
Then and

(4)

Now, the r of t is also that of T. Hence by
part (A) of the proposition, we have = ± 1 if r is algebraic
over o, and = if r is transcendental over o. Using (4), we
find, in the first case: and in the second case:

1. This completes the proof of the proposition.
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In Proposition I it was assumed that there exists a prime ideal in
o' such that fl o is the given prime ideal of o. We express that
assumption by saying that s not lost in ü'. There arises naturally
the question of whether a given prime ideal in o is or is not lost in o'.
The answer is simple: is not lost and only o = The
condition is obviously necessary for if n o = then o o

n o = The converse has been established in the
course of the proof of Theorem 3 of Vol. I, Ch. V, § 2 (by a reduction
to the case in which o is a local ring and is its maximal ideal).

Another necessary and sufficient condition that be not lost in
o'= o[t], a condition which is valid also if o is not noetherian, is the
following: C' denotes the integral closure of in the quotient field K'
of o', then If t does not belong to the intersection of the proper prime ideals
of C'. For the proof we make use of Theorem 8 in VI, § 5:

v e

where denotes the set of all valuations of K' which have center
in o. Assume that there exists a maximal ideal of such that
1 ft Applying the cited Theorem 8 of VI, § 5, to the integrally
closed local domain we see that there exists a valuation v0 in

such that v0(lft) 0. Hence v0(t) 0 and v0 is non-negative in
o[t], and thus, if is the center of v0 in o[t] then n o = Con-
versely, assume that there exists a prime ideal in o[t] such that

ri o = We fix a valuation v0 of K' which has center in o[t].
Then v0 has center in o, i.e., v0 E and furthermore v0(t) 0,
whence v0(lft) 0. This shows that 1/ t does not belong to the center

of v0 in C'.
We add a few remarks in the special case in which is integrally

closed and t belongs to the quotient field of o. In that case, the second
of the above conditions takes the following simple form: is lost in
o[t] if and only if 1/ t is a non-unit in Thus is not lost in o[t] in the
following (and only in the following) two cases: (1) t E (2) t
1/ t In case (1) we have = and this implies at once that
there is only one prime ideal in o' such that fl o and that

— In case (2), Theorem 10, Corollary, of VI, § 5, yields a good
deal of information. Since the prime ideals in o' which contract to

are in (1, 1) correspondence with the prime ideals in which
contract in o a local
domain and that is its maximal ideal. Under this assumption we
see that, in case (2), is one of the prime ideals in o' which contracts
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to and that the r of t is transcendental over The
other prime ideals in if which contract to are in (1, 1) correspondence
with the maximal ideals of the polynomial ring

of generalization of Proposition I we shall now restate
Proposition 1. The notation being the same as in that proposition,
we denote by dim0 o' the transcendence degree of the quotient field
of if over the quotient field of o. A similar meaning is attached to the
notation Then Proposition I is expressed by the following
inequality:

(5)

o' = I.
A straightforward induction on n yields at once the followirtg

generalization of Proposition 1:
PROPOSITION 2. Let if = o[t1, t2, , t,j, where o and if are noetherian

integral domains, and let be prime ideals in o and o' such that fl o =
R). Then inequality (5) holds, and we certainly have equality in

(5) if dim0 o'=n.
We shall say that the dimension formula holds for a noetherian integral

domain o if for any integral domain o' which is finitely generated over o
and for any pair of prime ideals in o and o' respectively R)
such that fl o = we have

(6) ± dim0 o'.

We say that the chain condition holds for prime ideals in a noetherian
domain o if for any prime ideal in o, R, all maximal chains of
prime ideals in (different from have the same length (therefore
have length equal to the dimension of the local ring or). It is clear
that in order to check whether o satisfies the chain condition for prime
ideals it is sufficient to check whether the above condition concerning

is satisfied for all the maximal ideals in o.
PRoPoSITIoN 3. Let o be a noetherian integral domain and let

T1, T2,..., be transcendentals which are algebraically independent
over o. If for any n the domain oIT1, T2,..., satisfies the chain
condition for prime ideals then the dimension formula holds for o.

PROOF. Let if, have the same meaning as in Proposition 2 and
let £' = o[T1, T2,..., We have if = where is a prime
ideal in Z' such that n o = (0). By the second part of 2
we have

(7) = n.

Let = where is a prime ideal in such that
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Then clearly fl 0= Therefore, again by the last part of Proposi-
tion 2 and in view of = we have

(8) 0'fb' = h(b)+n.
Since the chain condition for prime ideals holds in we have =

+ h(b'), and from this (6) follows in view of (7) and (8). Q.E.D.
By the dimension theory of algebraic varieties we know that the chain

condition for prime ideals holds in the coordinate ring of any affine
variety, i.e., in any finite integral domain over a field k (see VII, § 7,

Theorem 20, Corollary 2). Hence, Proposition 3 implies that the
dimension formula holds for any finite integral domain 0 (and hence
also for any local ring of 0 with respect to a prime ideal <o). How-
ever, this conclusion follows also directly from the dimension theory
of algebraic varieties, without the intermediary of Proposition 3; it is
sufficient to observe that for any prime ideal of a finite integral
domain o (over a field k; o) we have = dimk 0— dimk

of Proposition 3 is its application to the
construction of examples of noetherian integral domains which do not
satisfy the chain condition for prime ideals [compare with the remarks
made in Vol. I, p. To construct such an example we have only
to find a noetherian integral domain o for which the dimension formula
does not hold. We shall construct a local domain o and a semi-local
domain o' = o[t] having the same quotient field as o such that, with the
same notations as in Proposition 1, part (B), we have with

algebraic over where is the maximal ideal of o.f Then, by
Proposition 3, the domain o[T], T-transcendental over o, does not
satisfy the chain condition for prime ideals.

EXAMPLE. We first prove several simple lemmas.
LEMMA 2. Let 0 be an integral domain having only a finite number of maxi-

mal ideals rn1, rn2, . . . , If each ring is local (i.e., noetherian), then 0
is noetherjan (hence semi-local).

PROOF. Let be any ideal in o. We can find elements a1, , in 0
such that for each i—I, 2,. .. , q these elements generate in the ideal

Let b be an arbitrary element of Then for each i we have
bc1 E for some c in o and not in Since the elements c1, .. ,

generate the unit ideal in 0 it follows that b E showing that has a
finite basis. Q.E.D.

LEMMA 3. Let C1, be local domains contained in some field, let
be the maximal ideal of £)j, let 0 = fl 2 fl and let n

t The example of such a pair of rings 0 and 0' (given below) is due to M.
Nagata (see reference in Vol. 1, p. 242, footnote). Our observation that o[T]
provides a counter-example to the chain condition for prime ideals is new.
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If Orn., 1=1, 2,.. . , q, then o is noetherian and its maximal ideals are in
theset{rn1,rn2,. ,rnj.

PROOF. If x E o is a non-unit in o it must be a non-unit in at least one of
the rings Thus x belongs to one of the ideals This proves the lemma,
in view of Lemma 2.

Let R—krx, y] be a polynomial ring in two independent variables x, y over
a field k. We fix a zero-dimensional discrete valuation v, of rank 1, which
is non-negative on R, has k as residue field, and is such that v(x)= I (see VI,
§ 15, Example 2). Furthermore, we assume that the center of v in R is the
maximal ideal (x, y) of R. We set valuation ring of v. We then
consider the point x 1, y 0 in the (x, y)-plane and we denote by 2 the
local ring of that point, i.e., the ring of quotients of k[x, y] with respect to the
maximal ideal (x— 1, y). If and (x— 1, y) denote the
maximal ideals of and C2 respectively, we set o' n C2, rn'1 fl o',

fly.
Since y'D k[x, yl it is clear that O'm' It is also obvious that Orn'c:

We and that consequently we write
A= where numerator and denominator are in k[x, y]. Let v(B)=n�O.

Then v(A) � n and hence A B = with a, b in Since x is a unit
in we have also a, b E C2, whence a, b E o'. Furthermore, since v(b)=O

it follows that b rn'1. Hence E O'm'1, which proves our assertion that

Since C1 and C2 are local rings, the ring o' is noetherian, by Lemma 3.
Since neither one of the two ideals rn'1, rn'2 is contained in the other (x E rn'1,
X rn2, x — I rn'1, x — I E rn' 2)' it follows again by Lemma 3 that o' is a
semi-local ring, with rn'1 and rn'2 as its only (distinct) maximal ideals.
Furthermore, we have o' D k =o'/rn'1 =o'/rn'2.

We now set o k+(rn'1 fl in2). It is immediately seen that o has only one
maximal ideal rn, namely rn rn'1 fl rn'2 (since every element of o which is not
in rn is a unit in o). We assert that o'=o+kx. For, let E o' and let

c1 E rn'1, c2 E where c1, c2 E k. Then c1 + (c1 — c2)x E rn
(since x E rn'1 and x— I E rn'2), and this proves the assertion. Thus o' =o[x].

We now prove that o is (whence o is a local domain). If is
any ideal in o, different from o, the ideal in o' is contained in o since

and Hence is an ideal in o. As an ideal
in o' it has a finite basis {a1, a2, . , a,1j consisting of elements of Then

oa1 ka1xc: This shows that regarded as
a vector space over k (by viewing both and as vector spaces over k), is
finite dimensional. It follows that any strictly ascending chain of v-ideals
between and is necessarily finite. Now, let c

. . be an ascend-
ing chain of ideals in v. Since v' is noetherian we must have

j- The fact that v[x] is noetherian does not automatically imply that v is
noetherian. For instance, if u and v are indeterminates over a field k then
the ring R = k[u, u2v, u3v2, , .] is not noetherian, but the ring

= k[u, v]) is noetherian.
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for some n. Without loss of generality, we may assume that this is so already
for n=1. Then

and this shows, by what we have just proved above, that 91q==91q+1==• for
some q. Hence o is noetherian.

We have h(rn'1)= 1, h(m'2)=2, whence dim (o')=2. By the dimension
theory of semi-local rings we have dim (o)= 2, since o' is integral over o.
Therefore h(m) 2. On the other hand, h(m'1)= I <h(m), and the m'1-residue
of x is algebraic over v/rn (= k; in fact, that residue is equal to 0). There-
fore, the dimension formula (5) does not hold for v, v', with and
Consequently, vrT] does not satisfy the chain condition for prime ideals.



APPENDIX 2
VALUATIONS IN NOETHERIAN DOMAINS

In Chapter VI we have derived a number of results concerning the
dimension, the rank and the rational rank of valuations in algebraic
function fields (see, for instance, VI, § 10, Corollary of Lemma; VI,
§ 14, Theorem 31, Corollary and VI, § 15, Theorem 36). Our purpose
in this appendix is to generalize these results to valuations of quotient
fields of arbitrary noetherian domains (and also of fields which are of
finite transcendence degree, or are finitely generated, over such fields).±

Let R be a noetherian domain, K the quotient field of R and v a
valuation of K which is non-negative on R (VI, § 9, p. 38). Let be
the center of v in R. The following characters of v may be considered:

(1) the rank of v (rank v);
(2) the rational rank of v (r. rank v);
(3) the relative R-dimension of v (dimR v): this is the transcendence

degree of the residue field of v over the field of quotients F of
Then we may also consider the height of If we denote by v the

local domain then v is also non-negative on v, and the center of v in
o is the maximal ideal m of o. The relative dimension of v is not
affected if we replace R by o, since v/rn is the field of quotients of
The height of is now also the dimension of the local domain o. We
shall deal directly with o and discard the domain R altogether. We
set r rank v, p r. rank v, d— dim0 v, s dim (o). To express our
assumption that v is non-negative on o and that the maximal ideal iii
of o is the center of v, we shall say that v dominates o.

PROPOSITION 1. If v is a valuation of the field of quotients K of a
local domain o and if v dominates o, then
(1) rank v -'- dim0 v dim (o) (or, r + d s)

(and hence r and d are finite).
t This generalization is due to S. Abhyankar and is given in his paper "On

the valuations centered in a local domain," Amer. J. Math., 78 (1956), pp. 321—
348. Our proofs differ from those given by Abhyankar. In particular, our
proofs of Propositions 2 and 3 make no use of Cohen's structure theorems for
complete local rings.

330
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PROOF. We first prove that r s. Let > 1> > be a
strictly descending chain of prime ideals in the valuation ring of v,
where is the maximal ideal of (q—an integer 1). For each
i= 1, 2,.. . , q, we fix an element t2 such that t. E t1 =
we consider the ring v' = 0rt1, t2, , tq] and we set = n v',

fl if (1= 1, 2,.. . , q). We have > > whence
h(V) q. On the other hand, we have n v in, since p v = in.
By Proposition 2, Appendix 1, we have therefore the inequality

+ � s, whence

(2) q+ s.

Hence showing that rank
v is finite. Let x1, x2, . , be elements

of whose v-residues are algebraically independent over the field
v/rn. We set now v' = v[x1, x2, .. , and n v'. Then again

n v = and this time we have dimo1m v'/p' = q. Hence, again by
Proposition 2, Appendix 1, we have

showing that q is bounded, whence dim0 v is finite.
From r s follows inequality (1) in the case dim0 v 0. Since we

know now that dim0 v is finite, we may proceed by induction from
d— 1 to d, assuming that d> 0. We fix an element x in whose
v-residue is transcendental over v/rn, we set v' v[x] and = fl v'.
We have now, by Proposition 2, Appendix 1: +1 s. On the
other hand, the dimension of v relative to v' is d— 1, and hence, by our
induction hypothesis, we have r ± d— 1 h(p'), and this yields the
desfred inequality (1).

We note that Proposition 1 remains true if v is a valuation of an
algebraic extension of K, for the rank, rational rank, and the dimension
of v are not affected by an algebraic extension of K. (See VI, § ii.)

The following result is stronger than Proposition 1 (since p r):
PROPOSITION 2. WIth the same assumptions as in Proposition 1, we

have
r. rank v-L-dimo v dim (v) (or, p±d s).

PROOF. We consider separately various cases.
CASE 1. rank v = 1, dim v 0.
In this case the value group 1' of v consists of real numbers. Since

every element of-i' of the form v(a) — v(h), with a, b in in, the set
v{m} (= {v(a)'a E rn}) has the same rational rank as F. The elements
of v{nt} are positive real numbers. If a E v{m} we denote by the
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set of elements x in o such that v(x) � a. Then is an ideal in o
(a valuation ideal; see Appendix 3). If is any ideal in o then
mm (v(y), y E exists since has a finite basis. We denote this
minimum by We may normalize 1' 50 that v(rn) = 1. For any
a in v{rn} we can find an integer n such that n a. Then
showing that is primary, with rn as associated prime ideal. The set
of valuation ideals in o (a E v{rn}) is naturally ordered by set theoretic
inclusion: 9Xa > if a < fi. The fact that each is rn-primary shows
that each valuation ideal is preceded by only a finite number of
valuation ideals Hence the ordered subset v{rn} of 1' (and also the
ordered set of ideals is a simple infinite sequence, say a1 <a2 <

where a1 = I and ± oo. This set v{rn} is closed under
addition.

The length of is clearly i. For any given positive
integer n let 1(n) be the subscript such that = n. Then
and therefore

(3) 1(n).

Let now q be a positive integer such that the rational rank of 1'
(and hence also of v{rn}) is q. We can then find in v{rn} elements
T1, Tq (-'-i = a1 = 1) which are rationally independent. We
assume that <72 < Denote by the number of ordered
q-tuples (j1, , of non-negative integers j1, (not all
zero) such that

(4) +Jq'7q

Since the elements j1-i-1 + . are among the a1's and are
distinct, it is clear that i(n) Hence, by (3):

(5)

We now proceed to find an estimate for Let n' denote the

integral part of If I n' for 1= 1, 2, . . , q thenjçr1 (since
qTq q

Tq), whence j1-r1 ±j2-r2 + +JqTq n. Therefore

(6)

Since — I <n', it follows from (6) that there exists a polynomial
qTq

Pq, of degree q, such that Pq(n) for all n. On the other hand,
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is a polynomial of degree s, for n large (VIII, § 8, Theorem
19). Hence by (5) and (6) we find

(7) Pq(n) < Pm(n),

and hence q s. We therefore have p s in case 1.
CASE 2. rank v = 1, dim0 v >0. The proof in this case is by induc-

tion from d— 1 to d (= dim0 v) and is identical to the inductive argu-
ment given in the last part of the proof of Proposition 1.

CASE 3. rank v> 1. We now use induction with respect to
r (= rank v). Let v = where v1 is a valuation of K, of rank 1,
and i5 is a valuation of the residue field of v1, of rank r — 1. We
denote by the residue feld of v; this is also the residue field of i5.
Let be the center of v1 in o. Then, by the case r = 1, we have

(8) r.rank v1+ dim0 v1

where, if we set F1 = field of quotients of then

(9) dim0 v1 = tr.d.

The valuation 15 dominates the local domain = Let be the
restriction of to F1. Then rank 150 rank 15 r — 1, and hence by
our induction hypothesis we have

(10) r.rank i30+dimo

Adding (8) and (10) we find

(11) r.rank v—(r.rank 15—r.rank dim0 v1+dimo h(m) = s.

We sh all prove in a moment that

(12) r.rank i5 — r.rank � tr.d. —tr.d.

where is the residue field of i50. Note that, by Proposition 1, the
transcendence degrees on the right-hand side of (12) are all finite. In
fact, the right-hand side equal to dim0 v1 — dimo i5 + dimo Note
also that dimo = dim0 v. Hence from (11) and (12) we find

r.rankv±dim0v s,

which completes the proof of the proposition.
As to (12), this relation merely expresses the following general

lemma:
LEMMA 1. Let K be a field, K0 a subfield of K, v a valuation of K

and v0 the restriction of v to K0. If and are the residue fields of v
and v0 respectively, and if tr.d. K/K0 is finite, then

(13) r.rank v — r.rank v0 � tr.d. K/K0— tr.d. zl/z10.
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PROOF. Let tr.d. K/K0 =g and tr.d. = h, so that h Fix
h elements x1, . , in K such that their v-residues are alge-
braically independent over Let K' = K0(x1, x2,. .. , and let
v' be the restriction of v to K'. From the fact that the are
braically independent over follows at once that if f(x1, x2,.. . ,

is any non-zero polynomial in x1, . . , Xh, with coefficients a in
K0, then v'(f(x)) = mm {v0(a1)}. Hence the value group 1" of v' is
the same as that of v0. On the other hand, a simple argument
to the one given in the proof of the lemma in VI, § 10 (p. 50) shows
that if 1' is the value group of v then

r.rank F/I" tr.d. K/K' = g—h,

and this establishes the lemma.
Combining Proposition 2 with the above Lemma 1, we have the

following
COROLLARY. The assumptions being the same as in Proposition 1,

except that we now assume that v is a valuation of an extension field
K' of K such that tr.d. K'/K is finite, we have

(14) r.rank v+dim0 v � s+tr.d. K'/K.

For the proof it is only necessary to apply first Lemma I to v and
the restriction v0 of v to K, and then Proposition 2 to v0 and o.

In either Proposition 1 or Proposition 2 we may have the equality
sign, i.e., either the rank of v or the rational rank of v may have its
maximum value dim (o) — dim0 v. Since r.rank v rank v, it follows by
Proposition 2 that if rank v = dim (o) — dim0 v then also r.rank v =
dim (o) — dim0 v. Therefore, information about valuations v for which
the rational rank takes its maximum value dim (o) — dim0 v will yield
also information about valuations v for which the rank takes that
maximum value. The results proved below deal precisely with the
case in which either r.rank or rank v has its maximum value. First we
give the following definition:

Let 1' be an ordered (additive) abelian group, of finite rank r, and
let (0) = < < . . . be the isolated subgroups of 1'. Then
1' is said to be an integral direct sum if and only if each group F1/F1_1,
I = 1, 2,. . . , r = 1'), is a finite direct sum of cyclic groups. Note
that if 1' is of rank 1, so that 1' is therefore a subgroup of the additive
group of real numbers, then 1' is an integral direct sum if and only if it
is a direct sum of cyclic subgroups, i.e., if and only if there exist real
numbers , in F which are rationally independent and such
that every element of F is a linear combination of the -r's, with integral
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coefficients (in that case the rational rank of I' is p). If r > 1, we
know that the rational rank of I' is the sum of the rational ranks of the
r groups It follows that if I' is an integral direct sum and if,
furthermore, rank F= r.rank I', then each of the groups is
cyclic, hence is discrete, of rank 1, and consequently F is discrete. We
shall make use of this remark in Proposition 3.

We first prove the following complement to Lemma 1.
LEMMA 2. If in (13) of Lemma 1 the equality holds and if furthermore

K is finitely generated over K0, then F/F0 is an integral direct sum and
is finitely generated over (here F0 denotes the value group of v0).
PROOF. We use the notations of the proof of Lemma 1. In the

transition from v0 to v' there is no change in the value group (whence
1" = F0), and the residue field of v' is a purely transcendental extension
of (of transcendence degree h). Since the equality holds in (13),
we have that r.rank F/F0 —g— h. If we set p —g — h and fix p elements
y1, y2, . . , y,, in K such that v(y1), v(y2), . . . are rationally
independent mod F0, then y1, . , are algebraically independent
over K' (VI, § 10, Lemma, p. 50) and it is immediately seen
that the restriction of v to the field K* = K'(y1, , is a valuation

having the following two properties: (a) if F* is the value group of
v* then F*/F0 is an integral direct sum; (b) the residue field of v* coin-
cides with the residue field of v'. Now, K is a finite algebraic exten-
sion of K*. Hence, also F/F0 is an integral direct sum (compare with
proof of Theorem 36 in VI, § 15), and the residue field of v is a
finite algebraic extension of zi'. Q.E.D.

PROPOSITION 3. Let v be a local domain, K its quotient field, K' a
finitely generated extension of K and v a valuation of K' which dominates
v. If r.rank v + dim0 v dim (v) ± tr.d. K'/K, then the value group F of
v is an integral direct sum, and the residue field of v is finitely generated
over the fiel4 of quotients F of v/rn.

PROOF. We first achieve a reduction to valuations of rank 1. Let
r rank v> I and assume that the proposition is true for va'uations of
rank < r. Let v v1o13. With the same notations as in Case 3 of the
proof of Proposition 2 and setting we have, by the corollary of
that proposition:

(15) r.rank v1 + dim0 V1 � dim (or) + tr.d. K'/K;

(15') �
Hence, by addition, and observing that dimo = dim0 v:

r.rank v + dim0 v dim (01) + dim tr.d. K'/K.
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Since dim (01) ± dim (15) dim (0), it follows that in (15) and (15') we
must have the equality signs (and also—incidentally—dim (0k)± dim
(ö)=dim (i,), i.e., Therefore, by our induction
hypothesis, applied to v1, we have: (a) the value group of v1 must be
an integral direct sum, and (b) the residue field is a finitely generated
extension of the quotient field of 15. Since is a valuation of it
follows from (b) and our induction hypothesis, that also the value
group of is an integral direct sum and that the residue field of is
finitely generated over the field of quotients of ö/ffi. Since and v
have the same residue field and since o/m = ö/th, the proposition
follows for the given valuation v.

We assume now that rank v = 1. Next we achieve easily a reduction
to the case K= K'. For let v0 be the restriction of v to K. Using the
assumption of our proposition and applying Lemma 1 and Proposition 2
to the valuations v and v0 respectively, we find that (a) r.rank v—
r.rank v0=tr.d. K'/K—tr.d. Li/LI0, and (b) r.rank v0=s—tr.d. If
we assume the truth of our proposition in the case K' — K, it then follows
from (b) that the value group of v0 is an integral direct sum and that

is finitely generated over F. From (a) it follows, in view of Lemma
2, that is an integral direct sum and that Li is finitely generated
over Li This shows that the proposition holds for the given valua-
tion v.

We can therefore assume that K' = K and that rank v = 1.

Our next preliminary step is a reduction to the case in which dim0 v =
0. For assume that dim0 v> 1. Choose an element t in K such that
the v-residue of t is transcendental over F (where F= quotient field of
o/m) and set R1=o[t]. If is the center of v in R1 and if we set

then 0i dominates o and v dominates 01. Since the
residue of t is transcendental over F, we know (Appendix 1, Propo&tion
1, part B) that dim (0k) dim (o) — 1. Now, r.rank v + dim0 v = dim (o),
and dim0 v =1+ dim01 v. Hence r.rank v + dim01 v dim o—1 dim (or),
and consequently r.rank v + dim01 v dim (or). If we assume that the
proposition is true for v and 0i (note that dim01 v dim0 v — 1) we may
conclude that the value group of v is an integral direct sum and that

is finitely generated over F1 (= quotient field of o1/m1). Since F1
is a simple transcendental extension of F, the truth of the proposition
is established for v and 0.

We may therefore assume that K' = K, rank v = 1 and dim0 v =0.
The assumption of our proposition is now that r.rank v dim (o) (= s).

We shall use the notation of the proof of Case 1 of Proposition 2,
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and as q we now take the integer s. To prove that F is an integral
direct sum we have only to show that the subgroup of F whkh
generated by , has finite index (compare with the proof
of Theorem 36 in VI, § 15). We shall assume the contrary and show
that this leads to a contradiction.

Under the assumption that the index is infinite we can find an
infinite sequence of elements Yi' Y2' •

• in v{m} such that for
each v it is true that does not belong to the group generated by

'vs' Yi' Y2' (note that the elements of v{rn} generate
F). Let be the least positive integer such that E 1;
such an integer exists since every element of F is rationally dependent
on -ri, . Let 8. = [q1y1 + q2y2 + . . . + ([] means "in-
tegral part"). We consider the elements a of F which are of the form
a =j1r1 + + where the f's are non-
negative integers and Js+1 < < q2, . . < These ele-
ments belong to v{nt}, and distinct sets of integers (Jl'J2' give
rise to distinct elements of v{nt}. If + . . . n — then
a n and hence the valuation ideal is contained in where
ai(n) = n. It follows that for any n we have . .

[see (3) and the definition (4) of aj. By (6) there exists a polynomial
of degree s, such that for all n. We therefore have:

(16)

For fixed v, the leading coefficient of — is the same as the leading
coefficient c of Since A(nvl) is itself a polynomial of degree s, for
n large, its leading coefficient c' must therefore satisfy the inequality

. . c'. Since this is true for every v and since
tends to infinity with v, we have a contradiction. Thus F is an integral
direct sum.

There remains to prove that the residue field of v is finitely
generated over the quotient field F of or equivalently (since we are
dealing with case in which is algebraic over F), that < oo.
Assuming the contrary, we shall show that for each integer N there
exists an integer N0 (depending on N) such that

(17) A(nvz)

for all large n, and this again contradicts the fact that, for large n,
itself is a polynomial of degree s in n.

Since : F] = 00, by assumption, given any positive integer N we
can find, in N elements which are linearly indepen-
dent over F. We fix elements w1, w2,.. . , in K whose v-residues
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are respectively. Suppose that the w's are written as
quotients of elements o, with common denominator x0 :w1 = x1/x0, and
let v(x0) = a. Using the notations of the proof of Case 1 of Proposition
2, let be the valuation ideal in o which is the immediate successor
of We assert that

(18) + N.

In fact, is a vector space over F (since rn91ac: and clearly
— = dim Now, we have a, i =1, 2,. . . , N,

whence x2 E If we have a relation of the form a1x1 + ± E

with E o, then v(a1w1 + + >0, and hence, if a1 denotes
the rn-residue of then + + =0. Therefore a1 =

= aN = 0, i.e., a1, . . , E rn, and this shows that the -

residues of x1, x2,. . , are linearly independent vectors of the space
91 at91 This proves (18).

We now fix some element y in v{rn} such that the w's admit a
sentation of the form w = z./z0 with v(z0)= y and all the z's in o. We
now note that this property of y is shared by any element of v{rn} which
is of the form y E v{rn}, for we have only to take an element z
in rn such that v(z) = and write w = Since y + 1 > y +
it follows from (18) (as applied to a = y + that

A(91y+a+i) + N, v = 0, 1,. . ; = 0.

Therefore

(19) A(91y+a) Nv, all v � 1.

Let N0 = [y] + I and let (in the notations of the proof of Case I of
Proposition 2) afl_N0 denote the number of non-negative solutions

of the inequality j1r1 +j2r2 + n — N0. For
any such solution we have +j2r2 ± ••• n — y, i.e., the
element a + ... of v{rn} is such that y + a n. Thus the
number of au's in v{rn} such that y n is at least equal to
and since for each such we have it follows from (19) that

Z\'afl_NO.

This establishes (17) and completes the proof of the proposition.
COROLLARY 1. If the assumption r.rank v dim0 v = dim (o) -'-

tr.d. K'/K of Proposition 3 is replaced by the stronger assumption rank v +
dim0 v = dim (o) + tr.d. K'/K (the other assumptions remaining the same)
then v is discrete and is finitely generated over F.
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This follows from Proposition 3 and from the remark made just
before the statement of Lemma 2.

A valuation v of the quotient field K of o is said to be a prime
o-divisor of K if v dominates o and if dim0 v = dim o — 1.

COROLLARY 2. A prime o-divisor v of K is a discrete, rank I valuation,
and the residue field of v is finitely generated over the field of quotients
Fofo/m.

Obvious.
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VALUATION IDEALS

Let R be an integral domain and K the quotient field of R. The
valuations of K which are non-negative on R lead to a special class of
ideals in R which we shall call valuation ideals. Their definition is as
follows:

DEFINITION. An ideal 91 in R is a valuation ideal if it is the inter-
section of R with an ideal of a valuation ring containing R; v is the
corresponding valuation we say that 91 is a valuation ideal associated with
the valuation v, or briefly: that 91 a v-ideal in R.

Let v be a valuation of an extension field K' of K and let v0 be the
restriction of v to K. It is clear that if 91

is a in R, then 91= n R, where = n and hence
is also a v0-ideal. Hence in studying valuation ideals in R we may,
without loss of generality, restrict ourselves to valuations v of the
quotient field K of R.

If v is a valuation, non-negative on R, and 91 is an ideal in R, then
the following statements are equivalent:

(a) 91 is a v-ideal.
(b) If a, b E R, a E 91 and v(b) v(a), then b E 91.
(c) The following relation is satisfied

(1)

That (a) implies (b) is immediate, for if 91 = n R, where is an
b

ideal in then b = _. a E a Now, assume (b). Any element

b of can be written in the form b = a1c1 + a2c2 + . . + with
a2 E 91 and c2 E If v(a1) = mm {v(a1), v(a2),.. . , then v(b)
v(a2), and thus if b E R then b E ¶1t. This proves (c). That (c) implies
(a) follows from the definition of v-ideals.

If 91 is an arbitrary ideal in R and v is a valuation of K which is
non-negative on R, then the ideal R is, of course, a v-ideal in R,

340
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and is the smallest v-ideal in R which contains the given ideal it
can be characterized as being the set of all elements b of R such that
v(b) v(a) for some a in

Since the set of ideals in is totally ordered by set-theoretic inclu-
sion (VI, § 3, Theorem 3) it follows that for a given valuation v, non-
negative on R, the set of v-ideals in R is also totally ordered by set-
theoretic inclusion. In the special case of a noetherian domain R
this set is even well-ordered in view of the "maximum condition" in
R (see Vol. I, p. 156). We shall derive later on in this section some
results concerning the ordinal type of the set of v-ideals in a noetherian
domain R (for a given v).

We shall now discuss some examples.
EXAMPLE 1. Any prime ideal in R is a valuation ideal. This is

obvious if = (0). If is a proper prime ideal in R then the statement
follows from the existence of valuations v which are centered at
for if v is any such valuation and if is the maximal ideal of then

n R= We see here incidentally that a valuation ideal in R may
be associated with more than one valuation v.

EXAMPLE 2. Let R be a Dedekind domain. Then every primary
ideal is a valuation ideal, and conversely. For if = (and leaving
aside the trivial case q = (0)), then q = for some n 1. Thus, if
vp is the valuation of K which is defined by the prime ideal
we have that q is the set of all elements x of R such that vp(x) n,
showing that q is a valuation ideal, by the above criterion (b). The
converse is also obvious, since every valuation v of K which is non-
negative on R is either the trivial valuation or is a valuation vp
defined by a prime ideal of R, and in the latter case the vu-ideals in R
are the powers of

EXAMPLE 3. In the general case not every primary ideal is a valua-
tion ideal, and not every valuation ideal is primary. For instance,
let R = Y] be a polynomial ring in two indeterminates, over a
field k, and let be the ideal generated by X2 and Y Then is
a primary ideal, with (X, Y) as associated prime ideal. If v is any
valuation of k(X, Y), non-negative on R, and if, say, v( Y) v(X), then
v(XY) v(X2), while XY Thus is not a v-ideal. On the other
hand, let m and n be positive integers and let 9i be the ideal (X, Ym).
This ideal is not primary, and its associated prime ideals are (X) and
(X, Y). We show that is a valuation ideal. The quotient ring of
k[X, Y] with respect to the prime ideal (X) is a discrete valuation ring
of rank 1. Let v1 denote the corresponding valuation of k(X, Y).
Then v1 is a one-dimensional valuation of k(X, Y) (namely the prime



342 APPENDIX 3

divisor of k(X, Y)/k whose center in the (X, Y)-plane is the line
X= 0 (see VI, § 14)). The residue field of v1 is the field k( Y) (or can
be canonically identified with this field). Let v0 be the valuation of
k( Y) which is non-negative in k[ Y] and has as center in k[ Yl the ideal
(Y) (v1 is then the prime divisor of k( Y) whose center on the line X= 0
is the origin Y= 0). Let v = v1 o v0 be the composite valuation of
k(X, Y) obtained by compounding v1 with v0. Then v is a discrete,
rank 2 valuation, and its value group can be identified with the set of
all pairs of integers (i,j), ordered lexicographically (see VI, § 10,
Remark (A) concerning discrete ordered groups of finite rank). For a
suitable identification we may assume that v(X) = (1, 0) and v( Y) =
(0, 1). Then our ideal (X, Ym) consists of all elements f of R
such that v(f) (n, m), and is therefore a v-ideal. —

However, the following is true quite generally: the radical of a
valuation ideal is prime, and if is associated with a given valuation
v then also the prime ideal is a valuation ideal associated with v.
In fact, if xy E V91, so that E for some n 1, then assuming that,
say, v(y) v(x), we have v(y2n) whence y2fl E by criterion
(b) of v-ideals. This shows that is prime. Furthermore, if

E and b E R is such that v(b) v(a), then whence also
b is

in the following lemma and we leave it to the reader to prove the
other assertions of that lemma (the proofs being straightforward):

LEMMA 1. If are v-ideals in R and is an arbitrary ideal in R,
then and are v-ideals.

Since is prime, it follows that if a v-ideal admits a primary
(irredundant) representation then only one prime ideal of is isolated.
We now prove the following proposition:

PROPOSITION 1. If a v-ideal (associated with a given valuation v)
in R admits an irredundant primary decomposition q1 n q2 fl . . fl

then the prime ideals = form a descending chain (in a suitable
order) and are themselves v-ideals (associated with the given valuation v).
If, say, 1> 2> > then also the ideals fl fl fl

1, 2,.. . , h; i.e., the isolated components of are v-ideals.
PROOF. If is a prime ideal of there exists an element c in R such

that c and : (c) is primary for (Vol. I, Ch. IV, § 5, Theorem 6).
By Lemma i, : (c) is a v-ideal and hence, again by Lemma 1, is a
v-ideal. Since the set of all v-ideals in R (associated with the given
valuation v) is totally ordered by set-theoretk inclusion, we must have

> > for a suitable labeling of the prime ideals of
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The last assertion of the proposition follows from Lemma 1 and from the
relation fl Cr2 fl fl fl fl fl

We now fix once and for always a non-trivial valuation v of K which
is non-negative on R and we study the totally ordered set of valuation
ideals in R which are associated with v. We shall find it often con-
venient to rep'ace R by the quotient ring where is the center of
v in R. This will not affect essentially the valuation ideals of R, in
view of the following lemma:

LEMMA 2. If is any v-ideal in R then the extension of in is
a v-ideal in and we have = The correspondence —* maps
in (1, 1) fashion the set of v-ideals in R onto the set of in
If fl q2 fl ... n is an irredundant primary decomposition of
then = q1 n i2 ... n is an irredundant decomposition of 91g.

PROOF. If x E we have x=y/z, where y, z E R, y E z
Then v(z) 0 and v(x) v(y). If x' =y'/z' E where y', z' E R and
z' and if v(x') v(x), then v(y') v(y) since v(x') = v(y'). There-
fore y' E and x' E This shows that is a v-ideal in We
have 9lec, and, on the other hand, we have just seen that if x is any
element of we have v(x) v(y) for some y Since is a v-ideal
in R this implies that whence = If is any v-ideal in

91'c is a v-ideal in R, and for every x in there exists an element
y in such that v(x) v(y). This implies at once that the two v-
ideals and must coincide, thus The last part of the
Lemma follows from Vol. I, Ch. IV, § 10, Theorem 17 and from
Proposition 1 by observing that the prime ideals of Proposition I are
all contained in

LEMMA 3. If v has rank 1 and is the center of v in R then every
v-ideal in R (other than (0) and R) is primary for If R is noetherian
then these ideals form a simple infinite descending chain having zero inter-
section.

PROOF. Since every proper ideal in the valuation ring is primary,
with as associated prime ideal, and since n R, the first
assertion of the lemma is obvious. From this it also follows that if R
is noetherian every proper v-ideal in R is preceded by at most a
finite number of v-ideals. Furthermore, n R is a strictly
contained in and this shows that the sequence {q1} of v-ideals (differ-
ent from (0) and R) is infinite. The intersection of the q1 must be the
zero ideal (it is true, quite generally, for a valuation v of any rank, that
the intersection of all the v-ideals different from (0) is the zero ideal,
because if 0 x E R and is the center of v in R then v(x) < v(y) for
every element y of and hence x is not contained in the v-ideal
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n R). This also shows that the sequence {q1} of
(different from (0) and R) is infinite.

We now restrict ourselves to noetherian domains R and we study the
set of valuation ideals of a valuation v of rank r> 1,

negative on R (r is necessarily finite; see Appendix 2). We denote
by the center of v in R. Let v where v1 is of rank r — I and 'i3
a rank one valuation of the residue field of v1. Since every ideal in

is also an ideal in R are also v-ideals.
LEMMA 4. If is a v-ideal (different from (0)) there exist two

secutive and such that > and we have
for some integer p 0. The number of v-ideals between 1 and is
finite.

PROOF. Since R is noetherian, every ideal in R is finitely generated
and therefore v admits, on a smallest value. As in Appendix 2,
we denote this smallest value by v(91).

Let be the first (i.e., the largest) which is a proper
ideal of 2 R
such that > From the definition of it follows that
is the smallest which contains Hence there are no
ideals between and

The value group of is an isolated subgroup of the value group 1'
of v, and 1'/zl is the value group of v1 (VI, § 10, Theorem 17). By the
definition of 1 we have 1) and since we have also

Hence v(6X)— E 4. We now consider the two
possible cases: (1) and (2) E zi.

In case (1) we have >0 (in this case, is also the center of
v1 in R, since—on the one hand—the center of v1 is the greatest
prime ideal in R such that >0, and—on the other
must be contained in because v is composite with v1). We have
therefore > and hence showing that cx >

In case (2) we have — 0 (in this case, the center of v1 in R is
proper subideal of and hence 0< E zl. Since we have also
0 — E and since has rank 1, there exists an integer
p 0 such — v(93 1). For such an integer p we have

showing that cx (since is a
At this stage we replace R by (see Lemma 2) and we therefore

assume that R is a local domain, with as maximal ideal.
If is any ideal in R and q is any integer 1, then the ideals between
and correspond in (1, 1) fashion to the of

where is to be considered as a module over Now
is a ring satisfying both chain conditions (since R is noetherian
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arid is maximal in R; see Vol. I, Ch. IV, § 2, Theorem 2). Since
is a finite module, it has a composition series (Vol. I,

Ch. III, § 10, Theorem 18). It follows that any descending chain of
ideals between Q3 and is finite. In particular, there can only be a
finite number of v-ideals between and since ¶ This
completes the proof of Lemma 4.

COROLLARY. If Q31 and are two consecutives (Q31 >

2 are finite in number if is also
the center of v1, and form a simple infinite sequence in the contrary case.

For, if is the center of v1 then we have seen that if
> If is not the center of v1, then the assertion follows

from the last part of the lemma and from the fact that the
n R, q = 1, 2,..., are all distinct and lie between Q31 and

PRoPosITIoN 2. Let r be the rank of v, let > ... > > (0)
be the prime ideals of and let > > (0)) be the
distinct prime ideals in the set fl R, fl R,. . . , n R}. The
ordinal type of the well ordered set of v-ideals in R, different from (0), is
a!' (where w is the first infinite ordinal number). If 91 is any v-ideal in R,
different from (0), and if the ordinal type of the set of v-ideals preceding 91
is of the form m0w'a + m 1w"i + + where h > h0 > h1> ...>
hq 0 and where m0, m1, . . . , mq are positive integers, then

are the prime ideals of 91 (here
PROOF. The proposition is obvious if r= 1 (see Lemma 3). We

shall therefore use induction with respect to r.
Let v = where v1 is of rank r— I and is of rank 1. Then

, are the prime ideals of other than (0). If is

also the center of v1 in R (i.e., if n R = n R), then the set
n R, n R, . . . , R} also consists of h elements, and thus,

by our induction hypothesis, the set of v1-ideals in R is of ordinal
type w'. Since in this case there is only a finite number v-ideals
between any two consecutive v1-ideals (see above Corollary), it follows
also that the set of v-ideals has ordinal type If is not the center
of v1, then our induction hypothesis implies that the set of v1-ideals in
R has ordinal type and it now follows from Lemma 4 and its
Corollary that the set of v-ideals in R has ordinal type

Now let 91 be any v-ideal, different from (0), and let be two
consecutive v1-ideals such that (Lemma 4). We shall
consider separately the two cases; (a) = 91; (b) >

t Concerning the notation + miwhi + + see 1-Tausdorif,
Grundzuge der Mengenlehre (1914), p.
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We denote by the distinct prime ideals in the set
n R, n R,... , n R} (we assume that we have

CASE (a): If n R then g=h and
From Lemma 4 and its Corollary follow that in this case the set of
v1-ideals preceding has ordinal type of the form + +

+ where the m'a are positive integers. Hence, by our
induction hypothesis, the prime ideals of 9t are i.e.,

If n R n R, then the ordinal type of the set
of v1-ideals preceding must be equal + ... +
(always by Lemma 4 and its Corollary; note that, by the Corollary,
can have in this case no immediate predecessor in this set of v-ideals,
whence hq > 0). Hence are the prime ideals
of and since we have obviously = in the present case, the
proof of our proposition is complete in Case (a).

CASE (b): > In this case, has an immediate predecessor in
the set of v-ideals (either or some v-ideal between and st). Hence
hq =0. Since for some positive p and since it follows
that itself is one of the prime ideals of i.e., (hq = 0) is one of the
prime ideals of Since all the prime ideals of are contained in
the set of prime ideals of consists of and of the prime ideals of
The set of v-ideals, preceding has ordinal type + ± .
± + m'q, where m'q 0. By case (a), applied to the v-ideal

(instead of to the ideal of the present case), we have that the prime
ideals of are either ., (if m'q > 0) or ,

(if m'q = 0). In either case, the desired conclusion concerning the
prime ideals of follows. rThis completes the proof of the proposition.
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COMPLETE MODULES AND IDEALS

The subject matter of this appendix is of considerable importance
for algebraic geometry. It deals with a general algebraic
which, when specialized to the field of algebraic geometry, leads not
only to the concept of a complete linear system on an algebraic variety,
but also to the concept of a complete linear system with so-called
"assigned base loci," as it gives a simple and workable formulation of
the intuitive geometric notion of "base conditions."

Throughout this appendix we shall deal with a fixed integral domain
o and a fixed field K containing o (K is not necessarily the quotient field
of o). We shall deal with o-modules M contained in K. Certain
additional conditions will be imposed on o and the modules M as and
when these conditions are needed. Thus, we may have to assume
sometimes that o is integrally closed, or that o is noetherian, or that
M is a finite o-module.

The following special situations are of particular importance in
geometric applications: (1) o is a field k (the ground field), K is a field
of algebraic functions over k, and M is a finite k-module (contained in
K); (2) o is integrally closed and is an ideal in o.

1. We denote by S the set of all non-trivial valuations of K which
are non-negative on o Riemann surface of K relative to o;
see VI, § 17). If v E S we denote by the valuation ring of v.

DEFINITIoN 1. if M is an o-module (contained in K) THE COMPLETION
OF M is the o-module

(1)

M will be denoted by M'. The module M will be said
to be complete if M= M'.

COROLLARY. if denotes the integral closure of o in K and if we set
M== then M' = M', where is the completion of the i5-module

347
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For S is also the set of all valuations of K which are non-negative
on ö, and hence

M'=
yeS yeS

It follows that the class of complete ö-modules coincides with the class of
complete o-modules. In the study of complete o-modules it would be
therefore permissible, without loss of generality, to restrict the treat-
ment to integrally closed domains o.

We list at once a number of formal properties of the operation of
"completion" consisting in passing from M to M'. To what extent
these properties characterize axiomatically the operation of completion
will be briefly discussed later on in this appendix. We denote by ö the
integral closure of o in K. In the following proposition, M, N and
L denote o-modules contained in K.

PRoPosITIoN 1. The operation M —* M' satisfies the following
conditions:

(a) o'=ö. /

(b)
(c) If then
(d) (M')' = M'.
(e) (MN)' = (M'N')', where by the product MN of two o-modules

M, N we mean the o-module generated by the products mn (m e M,
neN).

(f) (xM)' = xM' (x E K).
(g) If (MN)'c (ML)' and if the o-module M is either finite or is the

completion of a finite o-module, then N' L'.

PROOF. Property (a) follows from VI, § 4, Theorem 6, while (b) and
(c) are self-evident. From (b) and (c) follows M', but on the
other hand, we have for any v in S:

(M')'c M', and this proves (d). The inclusion (MN)'c
(M'N')' follows from (b) and (c). On the other hand, we have, for
any V E S: M' RUM, N' RON, whence M'N' R,JMN. Therefore

(MN)', and thus, by (c) and (d), (M'N')'c (MN)', which
proves (e). Property (f) is self-evident.

For the proof of (g) we observe that it is sufficient to consider the
case in which M is a finite o-module, for if M is the completion of a
finite o-module M0, then we have (MN)' (M'0N)' = (M'0N')' =

and similarly (ML)' = (M0L)', and thus (M01\T)'c (M0L)'.
Assume then that M is a finite o-module. Now observe, that if Z is
any o-module and v E S then Z'c and hence RVZ' = We
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have therefore RVML. Since M is a
finite o-module, RVM is also a finite, therefore a principal, Re-module

being a valuation ring). Therefore we can cancel M in the inclu-
sion RVMN" RVML. We thus have R,,L for all v E S, and this
establishes (g).

COROLLARY. We have

(2) (ox)' = ox, xEK;
(2') OM' M'.

Relation (2) follows from (f), by setting o, and from (a). We have
M' = (oM)' = M', and this establishes (2'). Relation
(2') shows that M' is always an s-module. Of course, we know that
already, in view of the Corollary of Definition 1, but we have derived
this here again as a formal consequence of relations (a)—(f). Other
formal consequences of these relations (more precisely: of the relations
(b), (c) and (d)) are the following:

(h) M1)' = M'1)'
(i) flM'1=(flM'1)',

where {M1} is any (finite or infinite) collection of o-modules. Note
that relation (i) implies that the intersection of any (finite or infinite)
number of complete modules is complete.

For any non-negative integer q we denote by the o-module
generated by the monomials . . E M (here M° stands
foro).

DEFINITIoN 2. An element z of K is said to be integrally dependent on
the module M if it satisfies an equation of the form

(3) ... =

It is not difficult to see the above definition is equivalent to the
following one: z is integrally dependent on M if there exists a finite
o-module N (contained in K) such that

(4) zNczMN,

where MN denotes the o-module generated by the products mn, m E M,
n E N. For, if (4) holds then (3) follows by using a basis of N and
determinants (see the proof of the lemma in Vol. I, p. 255). On the
other hand, if (3) holds then (4) is satisfied by taking for N the module

± M0
M such that a1 E for i= 1, 2, . . . , q.
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From criterion (4) it follows immediately that the set of elements z
of K which are integrally dependent on M is itself an o-module. We
may call that o-module the integral closure of M in K.

THEOREM 1. The completion M' of M in K coincides with the integral
closure of M in K.

PROOF. Let z E K be integrally dependent on M. Using (4) we can
write

(5) Zn1
=

I = 1, 2, . . . , h,

where N= on1 and m11 E M. Let v be any valuation in S (i.e., v is

non-negative on o) and let be one of the h2 elements m3 for which
is minimum. Dividing (5) by and observing that

E for all i and j, we see that
z E RUM. Since this holds for all v in S we deduce

that z E M'.
Conversely, assume that z E M'. Let L denote the set of all

quotients m/z, m E M, and let us consider the ring o[L]. For any v
which is non-negative on o[L] (and hence also on o) there exists an
element m of M such that v(z) � v(m) (since z E M'). Hence there
exists no valuation v of K which is non-negative on o[L] and such that

contains the ideal o[L] . L. Therefore this ideal must be the unit
ideal in o[L] (VI, § 4, Theorem 4). Thus, there exists a finite set of
elements of L, say m1/z, m2/z, . . . , m,jz such that

(6) 1

=
.

,

where the f(i) are polynomials with coefficients in o. We can wrte
each of these polynomials in the form

f (0(m1/z, m2/z, . . . , m,jz) = m2, . . ,

where q is a suitable integer, independent of i, and where the
are homogeneous polynomials in m1, . . , z, of degree q— 1,
with coefficients in o. Then, multiplying (6) by we find at once that
z satisfies an equation of the form (3). This completes the proof.

REMARK. Every element of M1 is a finite sum of products of the
form m1m2. . m, where the m3 are elements of M. It follows there-
fore from Definition 2 and from Theorem 1 that the completion of M
is independent of the choice of the ring o. Thus, if M happens to be
also a module over another ring (for instance, if is a subring of o)
then the completion of M as an o1-module is the same as the completion
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of M as an o-module. If we take for o and
we treat M as a k-module, then the valuation space S which occurs in
our Definition 1 of completion becomes the set of all valuations of K.
We have therefore

flRVM.
yeS ally

We give here a direct proof of this equality.
We have to show if x E fl then v(x) v(M) for any valuation

ye S
v of K (and we may assume here that v S). Let 1' be the value group
of v, let H be the set of all elements a of 1' such that a = v(z) for some
z in Let be the set of those elements a of H which have the
property that also — a is in H. We note that H is closed under addition
(in 1') and that if a E H and fi � a then also fi H. From this it follows
easily that is an isolated subgroup of 1' (see VI, § 10; note that is
non-empty since 1 E o and since therefore 0 E zi). The isolated sub-
group determines a valuation v1 of K with which v is composite and
whose value group is (v1 is the trivial valuation if = I"). Now,
if a is any element of o then v(a) is either in or is a strictly positive
element of 1'. Therefore v1(a) 0, i.e., we have v1 E S, and thus
x E RUM. There exists then an element m of M such that v1(x)
v1(m), or—equivalently—v(x/m) E U Thus v(x/m) v(a) for some
a in o, and v(x) v(am), am E M.

2. We shall now present Theorem I under a different form, using
properties of graded domains (VII, § 2). We adjoin to the field K a
transcendental t, we set M* = Mt and we regard M* as an v-module. Let
M*' be the completion of M* in K(t). Using either criterion (3) or (4)
of integral dependence over M* and applying Theorem 1 we find at once
that an element z' of K(t) belongs to M*' if and only if z'/t E M'. Hence

(7) =

Hence the determination of M' reduces to that of M*'. We consider

the ring R* = :
(M*O = o). From the fact that t is a trans-

cendental over K follows that R* is a graded domain, being the
set of homogeneous elements of R*, of degree q. Let F be the field of
quotients of R* and let F0 be the subfield of F consisting of the homo-
geneous elements of F which are of degree zero. We have F= F0(t),
and it is clear that F0 is the smallest subfield of K which contains the
ring v and all the quotients m/m', where m, m' E M, m' 0. In other
words, F0 is the set of all quotients mq/m'q, where mq, m'q E and
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q= 0, 1, 2,. • . Let F'0 be the algebraic closure of F0 in K, and let
be the integral closure of R* in F'0(t). Then, by the Corollary to

Theorem 11 of VII, § 2, is a graded domain:
=

From Theorem 1, and using criterion (3) of integral dependence over
modules, we see at once (compare with the Remark at the end of VII,
§ 2) that

(8) M*' =

Relation (8) expresses in a different form the content of Theorem 1.
At this stage it will be convenient to introduce certain notations and
terminology. Given the v—module M, the field F0 introduced above
shall be denoted by v(M). The module M shall be said to be homo—

geneous if the sum R
—

is direct (so that R is therefore a graded

ring). It is immediately seen that if M is a homogeneous module,
then every element m of 1W, m 0, is transcendental over v(M), and that
if this last condition is satisfied by some element m of M, m 0, then
M is homogeneous.

The above transition from M to M* is only necessary if M is not
homogeneous. If M itself is homogeneous, then it is not necessary to
introduce a new transcendental t, and we can deal directly with the
graded ring R (instead of with R*). Summarizing, we can now state
the following result:

THEOREM 2. If M is a homogeneous v—module, if F' denotes the field
generated (in K) by M and the algebraic closure F'0 of v(M) in K and if

E' is the integral closure,1- in F', of the graded ring R = then the

completion M' of M is the module E of homogeneous elements of E', of
degree 1. If M is not homogeneous, then the adjunction of a transcendental
t to K reduces the determination of M' to the case of the homogeneous
v—module tM.

COROLLARY 1. The completion M' of M is not affected if the field K
is replaced by any field between F' and K (where F' is the field defined
in Theorem 2; in particular, we may replace K by F').

As a special case of complete v—modules we have the so—called
complete ideals in v, where an ideal in v is said to be complete if it is
complete as an v—module.

t Note that if y is any element of M, different from zero, then the quotient
field of R is given by F0(y), where F0 = v(M), and F' = F'0(y). Therefore, by
the Corollary of Theorem 11 in Ch. VII, § 2, R' is a graded domain.
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COROLLARY 2. If 2t is an ideal in o then the completion 2t is a
complete ideal in the integral closure ö of o in K, and if S' denotes the set
of all valuations v of the quotient field of ö which are non-negative on o
then

(9) — fl
V E S'

For, in the case of the present corollary, the field F' of Corollary I
is precisely the quotient field of ö, and this implies (9). Since
for all v E S' and since fl ö it follows that 2t'c: ö. Since is

yeS'
also an ö-n-iodule and is the completion of the ideal I32t (see Corollary
of Definition 1), 2t' is a complete ideal in 5.

3. We now study briefly the important case of complete ideals in an
integrally closed domain o.

o is integrally closed in K and 2t is an ideal in o, then the completion
2t' of is a complete ideal in o (Corollary 2 of Theorem 2). We have
therefore

— fl = fl (o nyeS yeS

Since o n is a valuation ideal in o (Appendix 3), we see that every
complete ideal in o is an intersection of valuation ideals. On the other
hand, if is a valuation ideal in o, associated with a valuation v (v E S),
then = o n (Appendix 3, formula (1)) whence = o fl

o n = i.e., = Thus, every valuation ideal in o is a complete
ideal, and so is every intersection (finite or infinite) of valuation ideals
[see property (i) of the 'operation]. Consequently, the class of complete
ideals in o coincides with the class of ideals which are intersections (finite
or infinite) of valuation ideals.

If K0 is the quotient field of o and v0 is the restriction of v to K0
then o n = o n RVØ2t. Therefore we may replace K by K0, and we
shall assume from now on that K is the quotient field of o.

If 2t is a complete ideal then

2t=
yeS

is a representation of 2t as intersection (generally infinite) of valuation
ideals, but there may be other such representations, and among these
there may be even some which are finite intersections (take as 2t, for
instance, a valuation ideal). In the case of a noetherian domain o we
have the following result:

THEOREM 3. Let o be a noetlierian domain, K afield containing o and ö
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the integral closure of o in the quotient field of o. If an ideal in ü the
completion (in K) of an ideal in o (in particular, if o itself is integrally
closed and is a complete ideal in o), then is a finite intersection of
valuation ideals of ö associated with discrete valuations of rank 1.

PROOF. We first establish a lemma on complete o-modules, where o
is not necessarily noetherian.

LEMMA. Let K be a field containing o, let M be a finite o-module
contained in K and let {x1} be a finite o—basis of M. For each i let

o the
the integral closure of in K. If M' is the completion of M in K then

M' = fl
PROOF OF THE LEMMA. If y E M' and v is any valuation of K which is

on then v E S and v(x3) v(x1) for all j. Thus
v(y) v(x1) for all such v, and hence y E

Conversely, let y be an element of the intersection of the and let
v E S. If i is an index such that v(x3) � v is
negative on and hence v(y) v(xj. Thus y E = REM, and this
shows that y E M'. The lemma is proved.

The proof of the theorem is now immediate. We identify the ideal
of the theorem with the module M of the lemma. Since, by

tion, the completion of (in K) is contained in the integral closure ö of
o in the quotient field of o, is also the completion of in this quotient
field. We may therefore assume that K is the quotient field of o.
Each ring is noetherian. Now, it can be provedt that the integral
closure of a noetherian domain is a Krull ring (VI, § 13). Hence each
of the rings is a KrulI ring. Since E the principal

is a finite intersection of valuation ideals in belonging to essential
(therefore discrete, rank 1) valuations (\TI, § 13). Taking intersections
with ö we see that the theorem follows from the above lemma.

COROLLARY. If, under the assumptions of Theorem 3, the ideal
admits an irredundant primary representation (in particular, if is a
complete ideal in a noetherian integrally closed domain), then also
admits an irredundant primary representation in which every primary
component is itself a complete ideal.

Since each essential valuation of is of rank 1, the corresponding

t See M. Nagata, "On the derived normal rings of noetherian integral do-
mains," Mem. Coil. Sci., Univ. Kyoto, 29, Mathematics No. 3, 1955.

The cited general result of Nagata is not needed if o is a ring of quotients
of a finite integral domain, for in that case we know (Vol. I, Ch. V, § 4, Theorem
9) that the rings are noetherian.
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valuation ideals in i5, of which is the intersection, are primary ideals.
Those which are associated with the same prime ideal in v yield a partial
intersection which is a primary complete ideal.

One often deals with complete fractional v-ideals, i.e., with finite
complete v-modules contained in the quotient field of v. It is clear

that any such complete fractional is of the form • where

is a complete (integral) ideal in v (use property (f) of Proposition 1).
4. We shall now discuss briefly the axiomatic aspects of the

perties (a)—(g) (see Proposition 1) of the 'operation. The operation of
completion of v-modules M, in K, is not the only 'operation on
modules which satisfies properties (a)—(g) of Proposition 1. If we
examine the proof of that proposition we see that we have not used the
fact that the set S consists of all the valuations v of K which are
negative on v, but only the fact that the intersection of all the valuation
rings V E 5, is the integral closure of v in K. Therefore, if we choose
any subset S1 of S with the property

(10)
V E S1

and define for any module M in K its completion M' by

(11) M' = fl RUM,
V E S1

we obtain another 'operation which satisfies conditions (a)—(g). An
important special case is the one in which v is a noetherian integrally
closed domain, K the quotient field of v and the set of all essential
valuations of v (i.e., the set of valuations Vp, where is any
minimal prime ideal of v). In that case the "complete" ideals v are
the ideals whose prime ideals are all minimal in v, and the "completion"
of an ideal in v is obtained by deleting from an irredundant primary
decomposition of those components which belong to prime ideals
which are not minimal in v.

It can be proved that any 'operation is "equivalent" to a 'operation
defined by a suitable set of valuations satisfying (10), two 'operations
being "equivalent" if they coincide on the set of all finite v-modules in
K. For the proof we refer the reader to the paper of W. Krull, entitled
"Beiträge zur Arithmetik kommutativer Integritätsbereiche," Math.
Zeitschrift, vol. 41

We note that if we have two 'operations, say '1 and '2, defined by
sets and of valuations satisfying (10), and if S1c then
M'2 for any module M. Applying this inclusion to the module M'1
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instead of to M we find M'1 (M'1)'2, and since the opposite inclusion
is obvious, we have

(12) M'1 = (M'1)'2, if S1c:S2,

i.e., every module which is complete with respect to the operation
is also complete with respect to the '2 operation. (We may say in that
case that the '2 operation is "finer" than the operation.) In particu-
lar, if we take for S2 the set S of all valuations which are non-negative
on o we conclude that in any 'operation the complete modules are integrally
closed (in K).

5. We shall now discuss briefly the application of the concept of
complete modules to the theory of complete linear systems in algebraic
geometry.

Let V/k be a normal projective variety, of dimension r, let o =k,
let K= k( V) (we shall assume that k is maximally algebraic in k( V)),
and let us first study the 'operation defined by the set of all prime
divisors of K/k which are of the first kind with respect to V/k (VI,
§ 14). Condition (10) is satisfied (with replaced by see end of
VI, § 14). In this case, given a finite k-module M in K, the completion
M' of M in K is obtained as follows:

For any prime divisor v in S0 we denote by the center of v on V
(WV is an irreducible (r — 1)-dimensional subvarietv of V/k). We set
nV=min {v(m), E M} and

(13) Z(M)=D=
V S0

Since M is a finite k-module, nV is finite for every v in S0, and only
a finite number of ne's are different from zero. Thus, the above sum
is finite, and D is an element of the free group of divisors on V/k
(see VII, § or—in algebro-geometric terminology—D is a divis-
orial cycle on V/k. The completion M' of M is then the set of all ele-
ments x of K such that (x) + D is an effective divisorial cycle (i.e., a
divisorial cycle of the form 0). Here (x) denotes the
divisor of x (we include the zero in M'). The set of effective divisors
(x)+D EM') is called a complete linear system on V/k, or, the
complete linear system determined by the cycle D (and is often denoted
by ID!). It consists of all effective divisorial cycles D' on V which are
linearly equivalent to D, i.e., which are such that D' — D is the divisor of
an element x of K (x 0).

A basic result in algebraic geometry is the following: the above
complete module M' is finite dimensional (as a vector space over k). We
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have all the tools for a short proof of this result. First of all, we replace
M by the homogeneous moduk N= Mt, where t is a transcendental
over k( V). Then N' = M't, and we have only to prove that N' is
finite dimensional. We now use the notations of Theorem 2, where
M is to be replaced by N, o by k and K by k(V)(t). Since N is a finite

k-module, the graded ring R is a finite integral domain over k.

On the other hand, the field F' is a finite algebraic extension of the
quotient field of R (since we are dealing with subfields of an algebraic
function field k( V)(t)). Hence is a finite R-module (Vol. I, Ch. V,
§ 4, Theorem 9). On the other hand R' is also a graded ring (VII,
§ 2, Theorem 11). Hence has a finite R-basis consisting of homo-
geneous elements (of non-negative degree). A basis of N over k, to-
gether with those basis elements of over R which are homogeneous
of degree 1, will therefore constitute a set of elements which span R
over k. Since N' (Theorem 2), N' is finite dimensional.

The mapping x (x)+ D x E M', (x)+ D E !D!) is such that
two elements x1, x2 of M' are mapped into the same cycle in D? if
and only if x2/x1 E k. This shows that the complete linear system D!
(if it is not empty) has a natural structure of a projective space of
dimension s, if s+ 1 is the dimension of M'. We say then that D!
has dimension s.

If is any divisorial cycle which is linearly equivalent to D (not
necessarily an effective cycle) then it is clear that D! = (in view of
the transitivity of linear equivalence: if D1 — D is the divisor of a func-
tion y in K and D2—D is the divisor of a function z, then D2—D1 is

1
the divisor of z/y). If D = (y), then the module M M

consists of all functions x1 in K such that (x1) + D1 is effective. This
module M'1 is therefore also complete and serves to define the same
complete linear system !D1 (= D1!) as the one defined by M'. Observe

that if we denote by M1 the module M, then Z(M1) = D1 (see (13))

and M'1 is the completion of M1.
Conversely, suppose we are given a divisorial cycle D on V/k and

assume that there exist effective cycles which are linearly equivalent to
D (the set of all such cycles will be denoted by D!). Then the set L
of all elements x in K such that (x) + D is effective (we include 0 in
that set) is a k-module of dimension 1. We assert that L is finite-

dimensional and complete. To see this, write D
=

n2 where the
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W1 are distinct irreducible (r— 1)-dimensional subvarieties of V/k and
the n1 are integers different from zero (if D is the zero-cycle then
L = k, and our assertion is trivial). Let v1 denote the prime divisor
of K/k defined by W1. For each i we fix an element y1 0 in K such
that v1(y1) — n1 and v1(y1) 0 if I (see VI, § 10, Theorem 18), and
we set y =YIY2• and N= k + k .y. It is immediately seen that the
cycle Z(N) (see (13)) is such that Z(N) — D is effective. That implies
that whenever (x) ± D is effective, also (x) + Z(N) is effective; in other
words: L is a subspace of the completion N' of N. Since N' is finite-
dimensional, so is L.

Let 1= Z(L). It is clear that D — Z(L) is effective. If x 0 is such
that (x) + Z(L) is effective, then a fortiori (x) + D is effective, and hence
x E L. It follows that L is a complete module, as was asserted.

The complete linear system defined by L is Z(L)!, not necessarily
However, if D1 is any member of then D1 (x) + D, where

x E L, whence D1 — Z(L) + D, with in Conversely, if
E then (zi — Z(L) + D) — D= — Z(L) = (x), x E L, whence
+ (D — Z(L)) E This shows that D! consists of the cycles of

Z(L)! augmented by the fixed effective cycle D — Z(L).
In view of the (1, 1) correspondence D1 —p- D1 + (D— Z(L)) between

cycles D1 in D! and those in we have a natural projective
structure in DL Any subspace of D! is called a linear system on V.

6. We shalt now discuss an extension of the notion of a complete
finite k-module in k(V) and of the corresponding notion of a complete
linear system on V. -

If is any set of valuations of k(V) such that contains the set
of the preceding section and if M is any finite k-module, we can con-
sider the S1-completion of M, i.e., the completion of M with respect to
the set (see (11)). We denote this completion by

M is S1-complete if M'
M. It is clear that is a subspace of M'.

If S is the set of all valuations of k(V) then we know, by (12), that
and that therefore is also S-complete. Thus all

our new complete modules are S-complete. We shall say that a finite
k-module is complete in the wide sense if it is S-complete, strictly
complete if it is 50-complete.

We note that given M and there exists a finite set of valuations
v1, v2,.• , vq such that if S is the union of and {v1, v2,.. , vq}, then

M' then we can take for {v1,.. , the
empty set. If M' then there exists a valuation
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v1 in S1 such that M' RV1M. Then, if we denote by the set
{S0, v1} we will have M' > If > we can find
a valuation v2 in S1 such that

M' is this process must stop after a finite
number of steps.

It follows from this observation that if we set v.(M) = a1, where a2 is
then an element of the value group of then consists of all elements
x of M' satisfying the inequalities

(14) v1(x) i 1, 2,. . , q.

Conversely, let v1, . , be a finite set of valuations of k( V),
let . , be arbitrary elements of their respective value
groups, let M' be a strictly complete (finite) module and let N be the
set of all elements x of M' satisfying inequalities (14). Then N is
complete in the wide sense and is, in fact, where S1
{S0, V1, , Vq}. For, if y is any element of fl RON, then

V E S1

y M',

y E
N is also the set of elements of N' satisfying (14),

since
By an elementary base condition (v, a) (to be imposed on elements

x of k(V)) we mean an inequality of the type v(x) a, where v is a
given valuation of k(V) and a is a given element of the value group of v.
The foregoing considerations can be then summarized as follows:
every complete (finite) N, in the wide sense, is obtained from a
strictly complete (finite) (in fact, from N') by imposing on the
elements of the latter module a finite number of elementary base conditions,
and every module thus obtained is complete in the wide sense.

The choice of the finite set of elementary base conditions (v, a) is not
uniquely determined by N. We shall show now that any elementary
base condition (v, a), imposed on a given finite k-module M, is equivalent
with a suitable elementary base condition (ii, v) such that is a prime
divisor of k(V)/k (equivalent in the sense that both conditions determine
the same submodule of M). It will follow from that, that any complete
(finite) in the wide sense, can be obtained from a (strictly)
complete k-module by imposing on the latter a finite number of ele-
mentary divisorial conditions. Naturally, the prime divisors in question
will be, in general, of the second kind with respect to V/k.

To prove our assertion, we denote by M1 the submodule of M
sisting of those elements x of M which satisfy the inequality v(x)>
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v(M). We next define in a similar way a submodule M2 of M1 (M2=
{x E > v(M1)}, and so we continue until we reach the sub-
module N= Mh of M consisting of those elements x of M which satisfy
the given elementary base condition v(x) a. We thus have M>
M1 > M2> ••• > = N. For each i= 0, 1,. • , h—I (M0 = M) we
fix an element ; such that ; E M1, z2 M2+1, we consider the finite

k-module L. = — M1 consisting of the elements where x is any

element of M1, and we denote by R the finite integral domain k[L0,
L1, . . . , It is clear that v is non-negative on R and that if
denotes the center of v in R then a quotient x/z2, with x in M, belongs
to if and only if x E This being so, we fix a prime divisor €3
of k(V) whose center in R is the prime ideal (see VI, § 14, Theorem 35)
and we set i3(N) v. We show that if x E M and €3(x) v, then x E N,
and this will establish the equivalence of the two base conditions
(v, a), (€3, v) with regard to the module M. We shall show that the
assumption that x E M1, x I < h, leads to a contradiction. We

have that whence €3(z1). On the other hand, since all

quotients —, U E N, belong to we have v = €3(N) > €3(z1). Hence

<v, a contradiction.
A simple consequence of this result is the following:
Every complete (finite) k-module M, in the wide sense, is a strictly

complete k-module with reference to a suitable projective model l7/k of
k(V)/k. For the proof it is sufficient to construct a model l7/k of k(V)
such that:

(1) i7 dominates V (see VI, § 17);
(2) each of the prime divisors v1, v2,.. . , which occur among

the elementary divisorial base conditions of definition of M is of the
first kind with respect to 17/k.

To construct a model i7 satisfying these two conditions, we have
only to construct first a model of k(V)/k such that the prime divisor
V1 is of the first kind with respect to V'1/k (VI, § 14, Theorem 31) and
then take for i7 the normalization of the join of V/k, V' 1/k, V '2/k,
V'q/k (the join of two models has been defined in VI, § 17, and the ex-
tension to any finite member of models is obvious). If we set S1 =
{ V1, , vq} and denote by the set of prime divisors of K/k
which are of the first kind with respect to 17/k then we have S0c' S1c' So'
and hence M, being S1-complete, is also (see (12)), i.e., M
is strictly complete with reference to l7/k.
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We have discussed so far only the extension of the notion of complete
k-modules. The corresponding extension of the notion of complete
linear systems on V/k is a straightforward matter of re-interpretation
of the preceding discussion in terms of linear systems, taking into account
that every k-module M defines a divisorial cycle D Z(M) (see (13))
and a linear subsystem L(M) of the complete linear system (defined
by M'). If M is complete (in the wide sense) we call L(M) complete
(in the wide sense). We thus can speak of "elementary base con-
ditions" to be imposed on a linear system and we can then easily restate
the preceding results in the terminology of linear systems.

We note that our definition of a complete linear system (in the wide
sense) is invariant under birational transformations. For any such
complete system is defined by a module M which is S-complete,
where S is the set of all valuations of k( V)/k, and which therefore
defines a complete linear system (in the wide sense) on any other
projective model of k(V)/k.
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COMPLETE IDEALS IN REGULAR LOCAL RINGS OF DIMENSION 2

The theory of complete ideals in polynomial rings k[x, y] of two
variables presents some particularly striking features. This theory,
developed by the senior author in 1938,+ will be presented in this
appendix in a much simpler form and in greater generality. The
generalization consists in dealing with arbitrary regular local rings of
dimension 2, rather than with that special class of such rings which
is obtained by taking quotient rings of k[x, y] with respect to maximal
ideals in k[x, y].

Very little is known about complete ideals in regular local rings of
dimension greater than 2. It is almost certain that the theory developed
in this appendix cannot be generalized to higher dimension without
substantial modifications both of statements and proofs.

1. Let o be a regular local ring of dimension 2. We shall denote by
in the maximal ideal of o and by k the residue field v/ni of o. By the
unique factorization theorem in o (Appendix 7, Lemma 2), every prime
ideal in o, other than in, is principal, and every ideal in o is of the
form where x E o and is an ideal which is primary for in (x being
the g.c.d. of the elements of different from zero). If is complete,
so is (since = ox), and conversely. This fact indicates that in
our proofs below we shall have to be concerned primarily with ideals in
o which are primary for ni.

For any ideal in o, (0), we denote by r, or the integer
with the property: TnT, d rnT+l, and we call r the order of
Clearly, r 0, and r 0 if and only if o. In particular, the order r
of an element x of o, x 0, the order of the principal ideal ox; thus,
x E TW, x TTtT+l.

We know that the associated graded ring of o (with respect to in) is
a polynomial ring k (VIII, § ii, Theorem

+ See 0. Zariski, "Polynomial ideals defined by infinitely near base points,"
Amer. J. Maths., 60 (1938), pp. 151—204.

362
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25). If 0 x E o and x is of order r, then x has an initial form (VIII,
p. 249), which we shall denote consistently by here is a
geneous polynomial in kIz1, z2], of degree r. The form depends
not only on x but also on the choice of a regular system of parameters
t1, t2 of o, the effect on of a change of parameters being the same as
that of a linear homogeneous transformation of the
variables z1 and z2, with coefficients in k. We shall fix once and for
always a regular system of parameters t1, t2. The fact that x E mT
and x mT+l signifies that x has an expression of the form x_—f(t1, t2),

f is a homogeneous polynomial of degree r, with coefficients in o,
not all in in. If we then denote by/the polynomial expression obtained
from f by reducing the coefficients off mod m, then =f(z1, z2).

If is an ideal in o, of order r, we denote by the set of nitial
forms of those elements of which are exactly of order i (we include
the zero in The homogeneous ideal in k[z1, z?J which is
generated by the union of all the sets is called the initial ideal of 91
(compare with VIII, § 1). It is clear that {O} if i < r, {O}

if i r, and that is a vector space over k.
We shall be rarticularly interested in the form space We

shall call Lr(91) the initial form module of We denote by the
greatest common divisor of the forms belonging to (and different
from zero). We call the characteristic form of ¶2C. Ifs is the degree
of then 0 � s � r.

The order function r(x) defines a valuation of the quotient field
of o (VIII, § 11, Theorem 25, Corollary 1). We call this valuation

the m-adic prime divisor of o; this is a discrete, rank 1, valuation,
centered at m. Since = Vm(t2) — 1, the vm-residue of t2/t1, which
we shall denote by -r, is 0, oo. If a is any element of the residue
field of Vm (a 0), and if, say, a is the residue of x/y, where x, y E 0,
then x and y must have the same order r. We can write then x =
f(t1, t2), y =g(t1, t2), where f and g are forms of degree r, with coeffi-
cients in o, not all in m. Then x/y =f(1, t2/t1)/g(1, t2/t1) and a =
f(1, T)/g(1, r), wheref and g denote the reduced polynomials, mod m.
This shows that k(-r) is the residue field of Vm. It is immediately seen
that r is transcendental over k. In fact, if P(Z) is a non-zero poly-
nomial with coefficient in k, of degree r, fix a polynomial F(Z) of,
degree r, with coefficients in o, which reduces to P mod itt, write
F(z2/z1) =f(z1, Z2)/Z1T, where f is a form of degree r (with coefficients
in o), and consider the element =f(t1, t2)/t1r. Since not all the
coefficients of f are in m, we have Vm(f(ti, t2)) = r, whence 0.

Therefore the vm-residue of is different from zero. But this residue
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is obviously P(r). Hence P(r) 0, which proves that i- is transcen-
dental over k. Thus, the residue field of Vm is a simple transcendental
extension of k (= v/rn), and this justifies our term m-adic prime divisor
(see Appendix 2).

Let v be any other valuation of the quotient field of o, centered at
rn and different from the rn-adic prime divisor Vm. We set y =v(rn),
i.e., y= min{v(t1), v(t2)}. Let, say, v(t1)=y. Since v is not the rn-adic
prime divisor Vm, there exists an element x in o (x 0) such that v(x)>
ry, where r is the order of x. If we write, as above, x=f(t1, t2), then
we find that v(f(1, t2/t1)) >0. Thus, if we denote by i the v-residue
of t2/t1 then we find f(1, =0, and hence i is algebraic over k. This
conclusion holds for every valuation v which is centered at rn and is
different from the rn-adic prime divisor vm of o.

DEFINITION 1. Let g(z1, z2) be the irreducible form in k[z1, z2] such
that = 0 (the form g is determined only to within an arbitrary
non-zero factor in k). Then g(z1, z2) is called the DIRECTIONAL FORM of
the valuation v.

The directional form of v is, of course, of positive degree. We
agree to regard 1 as the directional form of the rn-adic prime divisor vm.

LEMMA 1. Let v be a valuation centered at rn and different from the
rn-adic prime divisor, and let g be the directional form of v. If x is an
element of o (x 0), of order r, then v(x) > ry if and only if the initial
form of x is divisible by g (in k[z1, z2]).

PROOF. In the preceding notations we have v(x) > ry if and only if
f(1, 0, hence if and only if f(z1, z2) is divisible by g(z1, z2) in
k[z1, zLI. Since z2), the lemma is proved.

In the sequel we shall also speak of directional forms of an arbitrary
ideal in o. We give namely the following definition:

DEFINITION 2. If 91 is an ideal in o, different from zero, every irreducible
divisor g(z1, z2) of the characteristic form of is called a directional

form of (We agree to regard I as a directional form of if c(91) = 1.)
2. At this stage we shall introduce a construction which associates

with each irreducible form g(z1, z2) in k[z1, z2] another regular local
ring o', of dimension 2, which dominates o (i.e., which is such that o is
a subring of if, and iii' n o rn, where rn' is the maximal ideal of o')
and has the same quotient field as o. In algebraic geometry this con-
struction is the well-known "locally quadratic" transformation of an
algebraic surface, with center at a given simple point P of the surface.

Let g=g(z1, z2) he an irreducible form in k[z1, z21. We denote by
or simply by o' (whenever the form g is fixed throughout the

argument), the set of all quotients y/x, where x and y are elements of o,
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such that: (1) order of y order of x (i.e., if x E and x then
y E m7z); (2) g does not divide the initial form of x.

PRoPosITIoN 1. Assuming that g z1 we set r' = t2/t1 (where (t1, t2)
is a fixed pair of regular parameters of o) and R' = The set of
elements F(T') of R' (F-polynomial over o) such that the reduced poly-
nomial (mod m) P(z) is divisible by z) (z being an indeterminate)
is a maximal ideal in R', and o' is the ring of quotients of R' with respect
to this maximal ideal. Furthermore, o' is a regular local ring, of dimension
2, which dominates o (and is different from o). The residue field of o' is
k(a), where a is a root of the irreducible polynomial g(1, z). The m-adic
prime divisor of o is non-negative on o' and its center in o' is the principal
ideal o't1.

PROOF. Let G(z) z) and let a be a root of the irreducible
polynomial G(z) in some extension field of k (note that since z1
g(z1, z2), G(z) has positive degree). The transformation of R' onto
the field k(a) which associates with each element F(T') of R' the element
P(a) of k(a) is a mapping. To see this it is only necessary to show that
P(a)= 0 whenever F(T')= 0 (Vol. 1, Ch. I, § 11, Lemma 2). Let n be
the degree of F and write F(z) in the form f(1, z) where f(z1, z2) is a
form of degree n, with coefficients in o. The assumption F(-7-') =0
implies that f(t1, t2) = 0. Hence, by the basic property of regular
parameters, the coefficients off, i.e., of F, are all in m. Hence P(z) =0,
which proves our assertion. The mapping is therefore a homomor-
phism of R' onto the field k(a), and is not an isomorphism since

= 0 on m. The kernel of is a maximal ideal of R'. An element
F(i-') of R' belongs to if and only if P(a)= 0, i.e., if and only if
F(z) is divisible by z) in k[z]. This proves the first assertion of
the proposition.

If y/x E o' and n is the order of x, then we can write x =f(t1, t2),
y = h(t1, t2), where f and h are forms of degree n, with coefficients in o,
and f(z1, z2) is not divisible by g(z1, z2). Dividing both x and y by

we find y/x = H(T')/F(T'), where H(z) = h(1, z) and F(z) =f(1, z).
The fact that f(z1, z2) is not divisible by g(z1, z2) implies that P(z) is
not divisible byg(1, z). Hence F(7-') y/x E and thus
Conversely, let H(-r')/F(-r') be an arbitrary element of where
therefore P(z) is not divisible by z). Let s = deg F(z) and let
f(z1, z2) = Then f(z1, z2) is a form of degree s, and
f(z1, z2) is not divisible by g(z1, z2). If n = max (deg H, deg F), then

= h1(t1, t2), where h1 and f1 are forms of degree

f the roles of z1, z2 as well as of t1 and t2 in this proposition have to
be interchanged.
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n and f1(z1, z2) = (z1, z2). Since z1, also f1(z1, z2) is
not divisible by g(z1, z2), and this shows that H(T')/F(T') E o'. Thus
R o', and consequently = o'. Furthermore, if m' is the maximal
ideal of o' then o'/m' = R = k(a). Thus k(cz) is the residue field of o'.

If x E in we have x = a1t1 + a2t2, where a1, a2 E o, or x = t1(a1 + a2-r')
= F('r'), where F(z) = a1t1 a2t1z. Then P(z) =0, showing that x E In'.
Thus n o = m, and o' dominates o. We observe that we have
now shown incidentally that

(1) R'm=R't1.
The element t2/t1 does not belong to o, as follows immediately from

properties of regular parameters (or observe that the residue of t2/t1
in the m-adic prime divisor Vm of o is a transcendental over k, while
the vm-residue of each element of o is in k). Hence o is a proper subring
of o'.

Let q be the degree of g(z1, z2). We fix an element u in o such that
u =g(z1, z2) and we set

(2) t'2 =

Then it is clear that t'2 in'. We proceed to show that t1 and t'2
form a basis of in'.

Consider any element of m'; it can be written in the form y/x, where,
if x E X Inn+l, then is not divisible by g(z1, z2) and y E
It is clear that x/t17z is an element of R' which does not belong to
and hence is a unit in o'. Therefore must belong to If
y E then, by (1), y E R't11z+l and y/t17z E R't1, and thus y/x E o't1.
Assume y Then 9 must be divisible by g(z1, z2). We fix an
element w in o such that is of degree n — q and such that 9= o5g(z1, z2).
Then y — wu E or y — wu E R' Since E R', we find
that y/t17z E R 't'2 + R 't1, showing that y/x E o't1 + o't'2. This proves
our assertion that

(3) In' = o't1+o't'2.

We now consider the m-adic prime divisor Vm of o. It is clear from the
definition of o' that Vm is non—negative on o'. Since Vm(t1) =1, the
center of in o' contains the principal ideal o't1. Conversely, if y/x
belongs to the center of Vm in o' then in the preceding notations we must
have y E and we have already shown that this implies that
y/x E o't1. Hence the ideal o't1 is the center of Vm in o'. Thus
o't1 is a prime ideal in o'. It is different from m' since Vm(t'2) =
Vm(U) — q =0 and since therefore t'2 o't1. This shows that the local
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ring o' is of dimension 2. Then (3) leads to the conclusion that o'
is a regular ring of dimension 2 and that t'2} is a pair of regular
parameters of o'. This completes the proof of the proposition.

The local ring o' which we have just constructed will be referred to
as the "quadratic transform" of o, relative to the directional form i•

If is an ideal in o and r is the order of then = r, whence
Hence

(4) = t1rc2i',

where is an ideal in o'. We call the transform of 91 in o'.
PRoPosITIoN 2. Let 9.1 be an ideal in o, of order r, and let ga be the

highest power of g which divides the characteristic form c(9.1) of 9.1. Then:
(a) The order r' of the transform 9.1' of in o' is not greater than a,

but is positive if a is positive. Thus, in particular, 9.1' is the unit ideal if
and only if does not divide c(9.1).

(b) If is primary for in then 9.1' is either primary for in' or is the
unit ideal.

PROOF. We fix an element x in 9.1 such that the form is of
degree r and is exactly divisible by r. Then x' = 9.1'. Let

= where is of degree r — aq (q being the degree of and let
v be an element of o such that 'i3 = i/i. Then x — uav E W+i, where ii is
the previously chosen element of o such that ü = Dividing through
by t1' and setting v' = we find (using (1)) that x'— t'2av' E

(recall (2)). Now, since '15 is not divisible by v' is a unit in o'. Hence
x' nt'a+i, showing that r' a. If a is positive then the above argument
shows that if x is an arbitrary element of and x' = then x' E Ut'
(and in particular, x' E if x E This shows that if a is positive
then c21'c m', completing the proof of part (a) of the proposition.

Assume now that 9.1 is primary for in. If c(9t) is not divisible by
then we know already that = (1). If c(9.1) is divisible by and if,
say, as in the preceding part of the proof, x is an element of 9.1 such
that is of degree r and is exactly divisible by ga, then we have in 9.1'
the element x' such that x' — t'2av' E where v' is a unit in o'. On
the other hand, since 9.1 is primary for in, some power of t1 belongs to

say E ¶2t, where we may assume n > r. Then E i.e., some
power of t1 belongs to Since x' E 9t', this implies at once that also
some power of t'2 belongs to showing that 9t' is primary for in'.
This completes the proof.

We shall now study the class of ideals 9.1 in o which are contractions
of ideals in o' (any ideal 9t in this class is then necessarily the con-
traction of its extended ideal o'9.1). We shall refer to the ideals of that
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class as contracted ideals. (Later on we shall use this term in a wider
sense, since we shall replace o' by a semi-local ring fl fl fl

where the local rings O'2,• , are quadratic transforms of o,
relative to distinct directional forms g2, • We observe that
every power of itt is a contracted ideal, since

o = (every element of has value n in the m-adic prime
divisor of o). We also observe that as a consequence of Proposition 2,
part (a) we have the following

COROLLARY. If is a contracted ideal and g does not divide the
characteristic form c(91) of then is a power of m.

For we have then 9t' = o' and hence = o = mr, where r is
the order of

PROPOSITION 3. Let be an ideal in o, primary for m, let r be the
order of let s be the degree of c(91) and let

=

If is a contracted ideal then c(91) is a power of g (possibly, c(91) = 1),

and we have

(6) =

Furthermore, also is a contracted ideal, and we have = s, =
c(9J).

PROOF. If does not divide then, by the above corollary,
= nv, c(91) = 1, and all the assertions of the lemma are trivial is

now the unit ideal). We shall therefore now assume that g divides c(91).

Let = g which divides and let a be
the degree of ç15. We fix in an element x such that is of degree r
and = with and relatively prime; here is a form z2)
of degree r — a, with coeflicients in k. We assert that for each integer
j I there exist elements and in o such that

(7) E = =
The assertion is trivial for 1=1 (take for x1 and y1 any two elements
of o such that = Assume that, for a given j, a pair of
elements x3 and y1 satisfying (7) has already been found. Since
and are relatively prime, every form in z1, z2, of degree r — 1,

belongs to the homogeneous ideal in k[z1, z2].1- We apply this
f This is trivial if ci; = 1. If the degree r — a of ci; is positive we observe that

the space of forms of degree r — I which can be written as linear combinations
A B a and a —1 respec-

tively, has precisely the desired dimension r( = (r — a) + a) and thus consists of
all forms of degree r —1.
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fact. If x — E W+j±l we set = In the contrary
case, we express the initial form x — (of degree r +j) as a linear
combination + we fix elements v and w in o such that

and we set Then it is
seen at once that x — E iW+J+l, = = This
establishes (7) for allj.

We now define by = whence

(8)

Since is primary for in we have for large j. For such

a large j relation (7) yields the inclusion E Hence E st',

where = Since is not divisible by g and is exactly of degree
r— a, is a unit in o'. Hence E and t1'W

Since n o = it follows that E

x belongs to This holds for every element x of which
does not belong to and is such that is not divisible by
Now, if y is any element of which does not satisfy either one of these
two conditions, then we see that both x and x +y belong to
and hence y E We have thus shown that and this,
in conjunction with (8), yields the equality = This equality
implies that is at most of degree a. Since = gA) divides
and is of degree a we conclude that = and that a = s. We thus
have (5) and (6). By (6) we have at once that = s and that conse-
quently = Thus everything is proved except the asser-
tion that also is a contracted ideal. Now, we have = where

is the transform of (i.e., = t'W). If then y E o then
o'yntr_sci = whence y E = This com-
pletes the proof.

COROLLARY 1. If a is an integer such that r a s and we set
= then = = a contracted ideal.

We have = = ntra. nta—s93, hence and thus
Consequently = The proof that is a

tracted ideal is identical with the above proof that is a contracted
ideal (with s replaced by a). Furthermore, we have =

= ntr = Since = a, = the relation =
follows by applying Proposition 3 to the ideal instead of to

COROLLARY 2. If is a contracted ideal, primary for in, and q is any
integer 1, then also is a contracted ideal.

Let = n o. Using the notations of Proposition 3, we have
r (since and = q + r. Hence = q + r.
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The characteristic form of divides i.e., c(2t). If then
a is the degree of we have a s. Since is a contracted ideal,
we have, by Proposition 3:

=

where is again a contracted ideal. Since =
it follows that = By Corollary 1, applied to the ideal
instead of to is a contracted ideal. Hence
o fl o = Therefore which proves our assertion.

COROLLARY 3. If is a contracted ideal in o, primary for m, then the
initial form module of is the set of all forms of degree r (= order of
which are divisible by c(9.t).

This is a direct consequence of (6).
3. We now undertake an extension of the preceding results to the

case, as explained below.
Let , be distinct irreducible forms in k[z1, z2] (distinct

in the sense that no two are associates) and let be the quadratic
transform of o, relative to the directional form We set

(9) o' = o'1flo'2fl . . .

It is not difficult to see that o' is a semi4ocal ring having m maximal
ideals , where n nt'1 being the maximal
ideal of and that = This is obvious if g1 z1 for i—
1, 2,. . , m, because in that case each is a ring of quotients of R'
(= with respect to a maximal ideal and similarly if
for i= 1, 2,. . , m. If both z1 and z2 are among the m forms and
if k is an infinite field, we can choose a linear form c1z1 + c2z2 (c1, c2 E k)
which is different from all the and we can reduce the situation to
the case g1 z1 (i= 1, 2, . . . , m) by choosing a new pair of regular
parameters T1, T2 such that '?i = c1z1 ± c2z2. The following procedure
will work, however, also in the case of a finite field k. We choose an
irreducible form z2) in kIz1, z2] which is different from all the
we fix an element in o such that = z2) and, denoting by It the
degree of

1

ring S' consists of all quotients of the form where n is an
arbitrary integer and ij E Since does not divide S' is a
ring of Let rn'1 n S' = Then is a prime ideal in S', and we
have o'1. On the other hand, let y/x be any element of
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where x, y E t, is not divisible by and order y order x. Upon
replacing, if necessary, x and y by and respectively, we may
assume that the order of x is a multiple of A, say nA. Then writing
y/x as a quotient of and we conclude at once that yfx E
Thus t', = 1= 1, 2, .. , m, showing in the first place that each

is a maximal ideal of S' and that—since S' is is a
semi-local ring. The relations = are now obvious. It now also
follows that is the set of all quotients yfx, where x, y E is not
divisible by any of the m forms and order of y order of x.

PROPOSITION 4. Let be an ideal in primary for m, and let r be
the order of We assume that t' is the semi-local
ring defined in (9). We set

(10) i = 1,2,... ,m.
Then

(11)

The characteristic form of is a power of g1:

(12) = g7t, (A1 0)

and we have

(13)
=

If c(91) = 1 then is a power of m. If c(9)) 1 and if for a suitable labeling
of the indices we have A. 1 for i= 1, 2, . . , n (1 n m) and A. =0 for
i=n+1, . , m, then setting

= c"1flc"2fl ..
we have already

=

PROOF. We set = = = From the theory of
quotient rings we know (Vol. 1, Ch. IV, § 11, Theorem 19) that n

is obtained from by considering an irredundant decomposition of
into primary components and deleting those components which are

not contained in (recall that = Since .

are all the maximal ideals of x', it follows that

f' fl c') =
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or equivalently, sincefl

=

( =

Using (10) and the assumption that o = we find (II). Now
each is, by definition, the contraction of an ideal in o'1. Hence, by
Proposition 3, we have that is a power of which proves (12).

Since we have r. On the other hand, since 91. o

we have Vm(91j) = r, where Vm is the prime divisor of o.
Hence r(911) r, and thus

(15) r =

Applying again Proposition 3 we find that if we set

(15a) =

where = degree of c(911), then

(16) =

We set S = + + and we observe that since = Si we
have and similarly that

i= 1, 2, . . , m. Hence

(17)

Since = c(911) =g7i, the characteristic form of the ideal on the
left-hand side of (17) is fJ Hence it follows from (17) that c(91)
divides fl On the other hand, since 91c: must divide c(91).
(In this argument one must bear in mind that the ideals 91, and

all have the same order r.) This proves (13).
If c(91) = 1, then all ç are 0, 91. = mT (by (16)), and thus = mT.

If 1 and S = 0 for i= n + . , m, then = mT and o'.91 =
for i=n+ 1,. . , m. 1-lence, by (14)

= fl fl n o'mT.

Now, each ideal is the center, in of the m-adic prime divisor
of o. Hence o'mT is the symbolic power where is the center
of Vm in if. It follows that every prime ideal of o'91 is contained in one
of the maximal ideals 9)1'2, . . . , Therefore o'91 = fl if,
and thus = o n o =
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This completes the proof.
We call an ideal in o a contracted ideal if we have o = for

some semi-local ring o' which is an intersection of suitable quadratic
transforms O'2, of o.

COROLLARY 1. Let be an ideal in o, primary for in, let g1, g2,...,
be the distinct irreducible factors of the characteristic form c(91) of

let be the quadratic transform of o, relative to the directional form
and let o' = fl fl fl is a contracted ideal then already
o n o = (if c(91) = 1 then is a power of m, and we have o fl o =
for every quadratic transform o' of

COROLLARY 2. The assumption and notations being the same as in
Corollary 1, the initial form module of is the set of all forms of degree r
(r = order of which are divisible by c(91).

This follows from (17).
THEOREM 1. (Factorization theorem for contracted ideals.) Let be

a contracted ideal in o, primary for itt, let r be the order of s the degree
of let c(91) = . .

. where the g1 are the distinct irreducible
factors of c(91), and let s be the degree of There exists one and only
one factorization of of the form

(18) = m

such that each is a contracted ideal whose characteristic form is a
power of If we denote by o relative to
the directional form and set

(19) o =
then

(20) =

and we have

(21) =

(22) = fl ... fl

(23) = r.

Furthermore, we have = mr—s.

PROOF. We first prove the uniqueness of the factorization (18).
Let (18) and

=

be two such factorizations. We have = c(931)c(932) . . .
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hence Furthermore, + •••
and since deg = s, it follows that = s. Simi-

larly, =s1. Since is a contracted ideal and is
a power of we have o = by above Corollary 1. Similarly

o = Now, assuming, as we may, that z1 g1(z1, z2), we
have = for i> I (Proposition 2, part (a)). Hence =

Similarly o'12t = Hence =
o = o = Similarly = for all i=

1,2,.. •,m.
To prove the existence of the factorization (18) we define the ideals
by (19) and the ideals by (20). Then, by Propositions 3 and 4,

and by (15), the relations (21), (22) and (23) are satisfied, the are
contracted ideals, and we have c(2t1) by (12). Furthermore, we
have by (17):

To prove the opposite inclusion, let x be any element of 2t such that
the initial form of x is precisely of degree r. Let =
where is a power of for i= 1, 2, . . . , m, and is not divisible
by any of the Let be the degree of (i= 1, 2,. .. , m + 1), 50

that for i = 1, 2,. . . , m, and ± P2+ + Pm+ 1 = r. We assert
that for any integer 1 there exist elements x13, x23,• , in o
such that

(24) x—x13x21• E mT+i; = i = 1, 2,. . . , m± 1.

The assertion is trivial for j = 1 (take for any element of o such that
= Assume that for a given j we have already determined m ± 1

element satisfying (24). If x — x13x2j •
E mT+)+l we set

= In the contrary case, we consider the initial form of
X — X1jX2j This is a form of degree r +j. Now, since any
two of the forms are relatively prime, it a straightforward matter
to show that the homogeneous ideal in k[z1, z2] generated by the
m + I forms = . contains all forms of degree r — 1

(= ± P2 + + — 1). [The proof is by induction with respect
to m, the case m =2 having been settled in the course of the proof of
Proposition 3; see footnote on p. 368.] We can therefore write

m+l
x—x11x21 . . . =

where A1 is a form in z1, z2, of degree p. +j (with coefficients in k).
We fix in o an element such that = and we set = ±
The m + I elements satisfy all our requirements.
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Since the ideals (i= 1, 2, . . . , m) are primary for nt, we can take
in (24)j so large as to have

(25) mT+jc

For such a large value ofj we will have, by (17): E

We may assume that z1. Since are not
divisible by and since the initial form . of

Xm+i,j is of degree r — it follows that is a unit in o'

Hence, if we set
o = E Since p1 s1, we have, by Corollary

I of Proposition 3: = Hence E

Similarly, E j= 1, 2,.. , m, and we have also Xm+ij E
Hence Xm+1,j E flt whence by (24)

and (25) we and that

X E

This inclusion holds for every element x of such that x ntr+l, but
then, as in the proof of Proposition 3, we see at once that it holds for
every element x of Hence and this estab-
lishes (18).

Since, by (18), factors out from it is clear that if we set
= then = To complete the proof of the theorem

we have only to show that = We observe first of all
that from o = i.e., that also is a
contracted ideal. In fact, if x E o then where E 0'
and E Hence fl 0= x E as asserted. We can
therefore apply Theorem I to the ideal We have to find, first of all,
the ideals o = and r =

s s, = deg it follows from Corollary I to Proposition 3
that = Hence, assuming—as we may—that z1 we have

= On the other hand, we have = (by the
definition (19) of whence = = Hence

But from n follows—
as was just shown above—that also o

n o = i = 1, 2, . , m. Since = we have =
so that the integers s, of Theorem I are not affected by passing

from to We have now = s. By Corollary 1 to Proposition 3
we have i.e., Thus also the
ideals are not affected. Thus the analog of (18) for (instead of
is = This completes the proof of the theorem.
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COROLLARY 1. If is a contracted ideal and q is any integer I
then also is a contracted ideal.

It is sufficient to consider the case in which 9i is primary for m since
every ideal in o is of the form x9t, x E o, primary for m. We use the
notations of Theorem 1, we set o' = fl fl fl O'rn and

n o. It is clear that = q± r. We have =
and since is the contraction of its extended

ideal in (Proposition 3, Corollary 2), it follows that if we set

— fl

then
=

Thus If we set = then =

and therefore, by the uniqueness of factorization of contracted ideals,
we have = By Theorem 1, applied to (instead of to 4 we
have therefore = =

COROLLARY 2. Let be contracted ideals whose
characteristic forms 2), , are two by two relatively
prime (any number of the may be equal to 1). Then the product

is also a contracted ideal.
If some is 1, say = 1, then is a power of m (Proposition

4), and from Corollary I of Theorem 1 it follows that it is then sufficient
to prove that is a contracted ideal. We may therefore
assume that 1 for i= 1, 2, , m. A further obvious reduction
is permissible, whereby we may assume that every is primary for m.
Finally we can carry out a third reduction to the case in which each
characteristic form is a power of an irreducible form. In fact, by
Theorem 1, each contracted ideal which is primary for m is a product
of contracted ideals having only one directional form.

Let = deg If the order r of is greater than then
factors out from i.e., we have = where is a

contracted ideal (Proposition 3), and Corollary 1 of Theorem I allows
us to replace in the proof by We may therefore assume that
r = 1= 1, 2,. , m. We set s = + + + we denote by

o relative to the directional form of
and we set where
We have then = and hence = =

Consequently, if we set o then
(since both and are contractions of ideals in From
this, by unique factorization, we conclude that = 91.: and from
Theorem 1 we deduce that 91 =
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COROLLARY 3. With the assumptions and notations as in Theorem 1,
the decomposition (22) of ¶It is the only decomposition of into contracted
ideals satisfying (23) and such that is a power of

Let n fl be another such decomposition. Then
divides and thus the degree of is not greater than s..

Since factors out from we can write where is
again the contraction of an ideal in We have mT
mr_S hence

(26) vt).

On the other hand, m and passing to the
extended ideals in we that Since both

and are contracted ideals it follows that Therefore, by
(26), we have

• . . (__

By the unique factorization property of contracted ideals it follows
now that whence (i= 1, 2,. . . , m).

We conclude the theory of contracted ideals with the following result:
THEOREM 2. Any product of contracted ideals in o is a contracted

ideal.
PROOF. Let . , be contracted ideals in o. It is sufficient

to give the proof in the case in which the are primary for m. Using
Theorem 1 we begin by factoring each into a product

of contracted ideals such that is a power of an irreducible
form in k[z1, z2]. Then, in the set of m1+m2+ • • ideals
we group together those ideals whose characteristic forms are powers
of one and the same irreducible form in k[z1, z2], we form the product
of the ideals belonging to one and the same group and we denote the
various partial products thus obtained by . , By
Corollaries 1 and 2 to Theorem 1 it is sufficient to prove that each
is a contracted ideal. We therefore may assume that the characteristic
forms of the given n ideals are powers of one and the same
irreducible form g in k[z1, z2], 1. The proof of the theorem will
now be based on (and, in fact, will be an immediate consequence of)
the following two lemmas:

LEMMA 2. If is an ideal in o and R' is the ring o[t2/t1], a necessary
and sufficient condition that we have R n o is that the following
equality be satisfied:

(27) =
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PROOF. Assume that R n = and let x be any element of
Then xt1=aE9.1, xt2=a.t2ft1ER'9 and so

=
which proves (27).

Conversely, assume that (27) holds true and let x be any element of

n Then x= a1 E We see that is divisible by

t1 in t, say = and since E it follows from (27) that
also belongs to If, then, we set = we find

n—2 /t2\1
x — — J + + —

jØ \t1/ \t1

This is a new expression of x as a polynomial in t2ft1, with coefficients
which still belong to but the degree of the polynomial is now at
most n — 1. Continuing the reduction of degree we arrive at the
desired conclusion.

LEMMA 3. If two ideals are such that m and
then we have also

PROOF. Since cfct1 is a regular ring of dimension 1, hence a principal
ideal ring, there exists in an element x2 such that t1) = (x1, t1),
i= 1, 2. We observe that our assumptions on and imply that

(i= 1, 2). Hence neither x1 nor x2 is divisible by t1. Now,
let be any element of :tt1. Then

= (a13x1_Lfl11t1)(cz23x2+fl23t1),

where the a's and fl's are in t and + E Since x2 E
it follows that E and hence E Furthermore,

x1x2 is divisible by t1, and therefore is divisible
by t1. We then find easily that has an expression of the form
t1(yx1x2 ± 8), where y E t and 8 E Therefore E and
this completes the proof.

We now apply these lemmas. Let t' be the quadratic transform of
t relative to the directional form g. Since n o = we have
a fortiori, R fl t I = 1, 2,. . . , m (we assume that g z1 and that
therefore Hence, tm (Lemma 2), itt
(Lemma 3) and thus R n (Lemma 2). Now, is a power
of g. This implies that R '9X where is an ideal in R' which is
either the unit ideal or is primary for the maximal ideal in R' such
that = R Hence all the prime ideals of R are contained in p'.
Therefore n R' R and thus n = This completes the
proof of Theorem 2.
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4. We now apply the preceding theory to complete ideals in t.
The application is possible since it is not difficult to see that every
complete ideal ¶�t in t is in fact a contracted ideal. To prove this it is
sufficient to consider the case in which ¶�t is primary for in. Let
9X = n q2 ... n be a representation of as a finite intersection
ot valuation ideals (Appendix 4, Corollary to Theorem 3), and let
be a valuation with which is associated. Each has necessarily
center in in 0. Let be the directional form of v1 (Definition 1).
For each i such that I (i.e., such that is not the m-adic prime
divisor Vm of o) we consider the quadratic transform of 0 relative to

and we denote by 0' the intersection of all those rings 011. In view
of the definition of it follows at once from Lemma I that v2 is non-
negative on Hence each of the is non-negative on o' (and this
includes the case in which = Vm, for Vm is non-negative on every
quadratic transform of o). Let = o fl where is an ideal in the
valuation ring of and let = n 0'. Then is the contraction to
o of the ideal q'1 fl q'2 fl ... n of o', which proves the assertion.

Let 'Qt be a complete ideal in o, primary for in, of order r. We can
write then

(28) = inT fl q1 fl fl ... fl

where q1 is a valuation ideal in o, associated with a valuation which is
non-negative on o and is centered at in, and where we now may assume
that each is different from the in-adic prime divisor of o (in view of the
presence of the component inr in (28)). We say that a decomposition
(28) of into valuation ideals (one of which is iW, where r =order of ¶�t)
is irredundant if no is superfluous.

LEMMA 4. Each prime divisor of the characteristic form c(91) of ¶�t is a
directional form of one of the v2. If the decomposition (28) is irredundant
then, conversely, the directional form of each v1 (i= I, 2,. . . n) is a prime
divisor of c(91).

PROOF. Let be the directional form of v1, let
o relative to and let o' = fl n n We have

just seen that is then the contraction of an ideal in o'. The first part
of the lemma follows therefore from the expression (13) of given in
Proposition 4. To prove the second part of the lemma, assume that
one of the say is not a divisor of We shall show that q1
is superfluous in (28). By assumption, there exists an element x in
¶�t such that the initial form is of degree r and is not divisible by g1.
We have then v1(x) = v1(IW) (Lemma I), and since x E q1 and q1 is a
v1-ideal, it follows that showing that q1 is superfluous.
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Using this simple lemma we can now prove the following important
complement to the factorization theorem (Theorem 1):

THEOREM 1'. If the ideal of Theorem 1 is complete, then the factors
in (18) and the ideals in (19) are also complete.

PROOF. We consider an irredundant decomposition (28) of into
valuation ideals. By Lemma 4, the set of directional forms of the
valuations v1, v2, coincides with the set (g1, of the
irreducible factors of For each i 1, 2, ,m, let be the
intersection of nV and of those for which has directional form
Then

where each is a complete ideal, and again by Lemma 4, is a
power of Furthermore, we have obviously r. From the
uniqueness of the decomposition (22) (Theorem 1, Corollary 3) it
follows that = and thus is a complete ideal. The complete-
ness of now follows directly from the relation (20) in Theorem 1.

COROLLARY 1. If is a complete ideal and q is any integer 1, then
also is a complete ideal.

We may assume that is primary for in. Let — let be
the completion of and let r be the order of It is clear that the
complete ideal fl (which is primary for in) has order q + r
(since has order q + r and fl If, then, we denote by a
the degree of the characteristic form n n we have,
by Theorem 1, fl — where fl

Now, ii divides and while the degree of
is r. Hence a r. Let be the completion of Then

from fl — follows that n (since
is complete). We have and

i.e., and Applying
property (g) of Proposition 1, Appendix 4, and observing that and

are complete ideals, we conclude that and that consequently
— showing that is a complete ideal.

COROLLARY 2. If the ideaLs 2 to
Theorem 1 are complete, then also the product is complete.

We refer to the proof of Corollary 2 to Theorem 1. All the pre-
liminary reductions carried out in that proof are applicable also in the
present case. In the last part of that proof (where we dealt with the
case = 5,, i 1, 2, . . . , m) we found that if we set
then = fl . fl where Since is com-
plete, is also complete by the preceding Corollary 1, and thus also

is complete.
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The further development of the theory of complete ideals in o
depends on the repeated application of successive quadratic trans-
formations. If o' is a quadratic transform of o then we may consider
any (of the infinitely many) quadratic transforms o" of o', and this
procedure can be continued indefinitely, leading to infinite, strictly
ascending sequences o <if <if < . . . < . . . of regular rings
of dimension 2, each being a quadratic transform of its immediate
predecessor 0(i—1)(0(O) o). For each ideal in o we have defined its
transform in o' [see (4)]. The property of of being a contracted
ideal is not preserved under quadratic transformations, i.e., the ideal

in o' is not necessarily a contracted ideal (in the sense of the definition
given immediately after the proof of Proposition 4, with o being
replaced by o'; see p. 373). However, for complete ideals we have the
possibility of using an inductive process, in view of the following
property of these ideals:

PROPOSITION 5. If is a complete ideal in o and if if is a quadratic
transform of o, then the transform of in if is also a complete ideal.

PROOF. Since differs from only by a principal ideal factor, it
is sufficient to prove that is a complete ideal in if. We may assume
that is primary for m, for any ideal in o differs from such an ideal
only by a principal ideal factor (unless itself is a principal ideal, in
which case o' is integrally
closed).

Let the quadratic transform o' of o be relative to the directional
form g. We may assume that g z1. Let r be the order of If g
does not divide then o't1T (Proposition 2, part (a)), and thus

is complete. Assume therefore that g divides and let g1, g2,
be the irreducible factors of where we assume that g1 = g.

We applythe factorization given in Theorem 1.
We have if i> 1, since is a power of g
does not divide if 1> 1. Therefore and it is
sufficient to prove that is a complete ideal in o'. We therefore
may assume that c(91) originally was a power of g. (Recall that, by
Theorem 1', the ideals are complete.)

By Lemma 4, the valuation ideals which occur in some irredun-
dant decomposition (28) of into valuation ideals are associated with
valuations v1 having g as directional form. Therefore, in order to
prove that an element of o belongs to it is not necessary to prove
that we have v which are non-negative
on o; it is sufficient to prove this only for those valuations v, non-negative
on o, whose directional form is either g or I (in the latter case, v is the
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nt-adic prime divisor of o). In other words: it is sufficient to prove that
v(e) v which are non-negative on o'. We shall
make use of this observation.

Let y/x be any element of o' which belongs to the completion of the
ideal here x and y are elements of o, is not divisible by g, and
n is the order of x then y E iW'. If v is any valuation which is non-
negative on o' then we must have v(y/x) v(o'62!) v(62!), v(y) v(x) ±

Hence v(y) Now is a complete ideal (Theorem
1', Corollary 1), and its characteristic form is hence a power of g.
Therefore, by the above observation, applied to nV'91, the validity of
the inequality v(y) v(nVlc2t) for all v which are non-negative on
implies that y E iW'91. Hence y E and since x tf'. x' where x'
is a unit in o', it follows thaty/x E This completes the proof.

By Theorem 3 of Appendix 4, every complete ideal in o has a
decomposition into valuation ideals belonging to discrete valuations of
rank 1. Let

(29) = n q2 n fl

be such a decomposition of and let v2, , be the corres-
ponding valuations. Let q'1 be the v-ideal determined by the con-
dition Since q1, we have v1(q1), hence

q1 and q'i q'2 . . . Since q'1 for all i, it follows
that q'i fl q'2 fl . . . n Thus we may impose on the
position (29) the following further condition:

(30) v1(qj, i = 1, 2, . . , n.

A decomposition (29) of into valuation ideals belonging to discrete
valuations v1, . . of rank 1, shall be called a standard decom-
position of if the relations (30) are satisfied.

Each standard decomposition (29) of determines the non-negative
integer max . . . , We denote by the mini-
mum value attained by this integer as the decomposition (29) ranges
over the set of all standard decompositions of Then is a
numerical character of It is a non-negative integer, and it is clear
that if and only if

Let now o' be a quadratic transform of o, relative to a directional
form g (which we shall assume to be different from zr), let r = order of

and let = tflt', so that is the transform of in o. We wish to
prove that if is primary for m then

(31) <

We need the following simple lemma:
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LEMMA 5. Let (29) be a decomposition of a complete ideal into
valuation ideals and let be a valuation on o) such that

is a v-ideal (we do not assume that the are discrete). Assume that
is primary for m and that the decomposition (29) satisfies conditions

(30). Let h be an arbitrary integer, let r be the order of and let be
the determined by the condition: Then

(32) n fl ... fl

PROOF. Denote by the ideal on the side of (32).
Since has order r±h and since also has order
r + h. Therefore divides and the difference between the
order r -'- h of and the degree of is at least equal to h. Therefore,

factors out from (Theorem 1). Let = Since
and = it follows that = Thus

v1(m'1) ± v.(m'1) + i.e., and
q1. Consequently and showing that =

Q.E.D.
We now proceed to the proof of the inequality (31). We fix a stan-

dard decomposition (29) of such that

(33) w(91) = max . ,

If not divisible by g then o', whence 0 while >0.
We may assume therefore that g divides Then g is the directional
form of at least one of the n valuations (Lemma 4). Let =
g), . . , be the (distinct) directional forms of v1, . ,

[m n; if one of the v1 is the prime divisor of o (so that is a
power of m) we omit that particular v.]. Let r be the order of let

be the partial intersection of those q1 for which the corresponding v1
has directional form and let = n mr. Then

each is a complete ideal, c(915) is a power of g1, and r =
We know that a decomposition of with these properties is unique
(Theorem 1, Corollary 3). Hence, by (19) (Theorem 1), we have

o o, whence o o

the of Now, if, for a suitable labeling
of the v1, , we have that v1, , are the valuations
whose directional form is g, then

= q1 fl 'r2 fl fl fl in.
This is a standard decomposition of the complete ideal In fact,
we have v1(911) v1(91) = for i= I, 2, . . , n', whence
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v.(2t1). Furthermore, niT is a where Vm is the m-adic
prime divisor of o, and since r(911) = r it follows that Vm(2ti) Vm(TflT) T.

Now, max {v1(2t1), v2(2t1), • • • , r} max {v1(cr1), v2(q2), •
(since = r, for i= 1, 2, • , n) = Hence

w(911) w(91), and it will be sufficient to prove that w(91') <w(911).
We may therefore assume that already our original ideal 2t has the
property that is a power of g. If none of the v1 (i= 1, 2, • , n) is
the ni-adic prime divisor we can add to the standard decomposition
(29) of 2t the niT, i.e., we may write

(34) = q1 fl q2 fl ... fl fl IttT,

and this will still be a standard decomposition of 2t, since from 2tc: niT,
follows Vm(2t) T Vm(fltT). Relation (33) is not affected, since

from 2tc: niT follows r. We therefore use the decomposition (34)
and we now assume that v1, v2, . , are different from vm. Since
c(2t) is a power of g, any such that the directional form of is different
from g is superfluous in (34) (Lemma 4), and the omission of that
particular component q1 will obviously not affect condition (33). We
therefore assume that g is the directionalform of each of the n valuations

This being so, each is on o', and its center in o' is
the maximal ideal in'. Let q'1 be the in o' such that v1(q'1) =

Since o'2t = and (in view of our assumption
that g z1), we have

q'3 = — V.(ntT) <
and hence

max {v1(q'1), v2(q'2), . . . , < w(2t).

We shall now show that

(34') = q'2 . . .

and this will establish inequality (31).
We have only to prove the inclusion q'1 n cj'2 fl . . . fl

Let then be any element of q'1 0 q'2 fl . . . n and let us write the
element in the form y/x, where is not divisible by and y E nih
if Ii is the order of x. We have to show that E 2t', or—what is the
same thing—that

(35) y/xeo'2t.

Since E fl'1, we have or
Since x E it follows that

(36) i = 1, 2, . . , n.
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For the prime divisor Vm of o we have vm(e') 0, Vm(YIX) r,
whence Vm(y) r ± h, showing that y E From this and (36) we
conclude, by Lemma 5, that y E and this establishes (35) and
completes the proof of the inequality (31).

Proposition 5 and inequality (31) complete our preparation of a
basis for the inductive proofs of the theorems concerning complete
ideals in o, given below.

THEOREM 2'. Any product of complete ideals in o is a complete ideal.
PROOF. Let 2t1, . . , be complete ideals in o. It is obviously

sufficient to consider the case in which each 2t1 is primary for in.
Using the factorization theorem for complete ideals (Theorem 1') and
also Corollary 2 to Theorem 1', we achieve at once a reduction to the
case in which all the characteristic forms c(2t1) (1= 1, 2, . . . , n) are
powers of one and the same irreducible form g. In this case, let
be the quadratic transform of o relative to the directional form g and
let be the of We now use induction with respect to
max • • , for the theorem is trivial when that
maximum is zero. Since < our induction hypothesis
implies that . . is a complete ideal in if. If we denote then
by the product . . and by r the order of we have =

(assuming—as we may—that g z1), and hence also
is a complete ideal. On the other hand, we have by Theorem 2

that = n o. Hence also ¶2t is a complete ideal. Q.E.D.
The culminating point of our theory of complete ideals is a theorem

of unique factorization of complete ideals into simple (complete) ideals.
We shall say that an ideal is simple if it is not the unit ideal and has no
non-trivial factorizations, i.e., if from = where and are
ideals in o, follows necessarily that one of the ideals is the unit
ideal. A principal ideal in o (not the unit ideal) is simple if and only
if it is prime, for it is easily seen that every ideal factor of a principal
ideal in o must be principal. In a noetherian ring, the ascending
chain condition leads immediately to the conclusion that every ideal
(different from the unit ideal) can be factored into simple ideals. For
complete ideals we have also the following fact: if a complete ideal

(1) admits at all non-trivial factorizations, it also admits a non-
trivial factorization into complete ideals. For, if = . . . then

=
• = ¶2t, whence =

where ' denotes the operation of completion (and where, therefore, if
91. (1) then also (1)). It follows again by the ascending chain
condition, that every complete ideal 0) can be factored into simple
complete ideals.
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THEOREM 3. (Unique factorization theorem for complete ideals): In a
regular local ring v, of dimension 2, every complete ideal 2t (?z 0, v) has a
UNIQUE factorization into simple complete ideals.

PROOF. We shall use induction with respect to the numerical
acter w(91) introduced earlier in this appendix, for if w(91) = 1 then
necessarily 2t = m,+ and in is obviously a simple ideal. The induction
is based on a lemma which we shall state immediately after the following
observation.

If is a simple contracted ideal (in the sense defined at the end of
the proof of Proposition 4), primary for m, then it follows from the
factorization theorem for contracted ideals (Theorem 1) that is a
power of an irreducible form g in k[z1, z21 (a positive power of g,
unless m). Let v' be the quadratic transform of v, relative to the
directional form g, and let be the v-transform of We shall
refer to as the transform of P, then

LEMMA 6. If is a simple CONTRACTED ideal, different from m (but
not necessarily complete), then the transform of is a simple ideal.

PROOF. If is a principal ideal, then the statement is trivial. We
therefore assume that is primary for m. Let r be the order of
whence = (we assume that g z1). Let = be a
factorization of in if. We have to show that either 2t' or is the
unit ideal. Let a be the smallest (non-negative) integer with the
property that is the extension of an ideal in v (there exist integers
with that property, since any ideal in if has a finite basis consisting of
elements of the ring v[t2/t1]). Similarly, let b be the similar integer,
relative to the ideal Since an extended ideal in if is also the
extension of its contracted ideal, it follows that if we set

= fl v, = n v,

then
v'2t =

t1 =
have the same extension in v'. On the other hand, both these

ideals are contractions of ideals in v' (Theorem 2). Hence =
Now, in does not factor out from either 2t or for if say,

= m2t1 then v'2t1 = t1t3—12t', in contradiction with the minimality of a.
Hence the characteristic form c(91) of 2t is a power of and its degree is

1' If r = order of 2t and v'2t = where v' is a quadratic transform of v,
relative to a directional formj z1), then w(2t')< (see (31)); i.e., w(2t')=O,

= if, and hence j does not divide c(2t) (Proposition 2). This holds true for
any irreducible form j in kIz1, z21. Hence c(2t) =1 and 2t is a power of
(Proposition 4), and therefore 2t = itt since w(2t) =1.
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equal to the order a of ¶�t (Proposition 3), and similarly for Hence
the order of is a + b ± r and the degree of a b. The
degree of is obviously r. Hence r = a b, and from Theorem
1 it now follows that Hence either or must be the unit
ideal, showing that either or is the u&t ideal. This completes
the proof of the lemma.

The proof of the theorem can now be rapidly completed.
Suppose that we have two factorizations of a complete ideal into

simple complete ideals. Among the simple factors there may occur
the maximal ideal m. We therefore put into evidence the power of m
which occurs in both factorizations:

= .
. =

where the and are simple complete ideals, all different from m.
Let r be the order of and s the degree of the chafacteristic form
of The latter is a product of the characteristic forms j=
1, 2, . . . , n, and since each is simple, the degree of is equal
to the order of (otherwise, by Proposition 3, in would factor out
from Hence h = r — s. Similarly = r — s, and thus h Each
directional form g of (i.e., each irreducible factor of c(91)) is the
directional form of at least one of the and also of at least one of the

and, furthermore, the directional form of each and of each
is a directional form of Let g2,.. . , be the distinct directional
forms of let (or be the product of those (or whose
directional form is Then =
and the characteristic form of (or is a power of Hence, by
Theorem 1, we must have = i== 1, 2, .. , m. This reduces the
proof of the theorem to the case in which h = 0 and all the ideals
have the same directional form, say g. In this case we introduce, as
usual, our quadratic transform o' of o, relative to the directional form g,
and we denote by vt', the if-transforms of respect-
ively. Then, clearly, passing to extensions in o' and cancelling the
common factor 1t1T, we find
Since the ideals and in o' are simple (by the above lemma) and
complete (by Proposition 5), and since we have, by our
induction hypothesis, that n = ñ and that for a suitable labeling of the

and the we must have = If a2 is the least integer such
that is an extended ideal, then is the extension of both
91's and and we have = = fl o. This completes the
proof of the theorem.

REMARK. It is not difficult to show that every contracted ideal
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o) can be factored into simple contracted ideals. The proof is as
follows:

Let
•

be a non-trivial factorization of Let g2,
be the set of directional forms of , and let

0 01 fl fl 0'm, where is the quadratic transform of o,
relative to the directional form g1. Let o and let

It is clear that , is the set of directional
forms of Therefore n o (Proposition 4, Corollary 1). By
Theorem 2 (and Proposition 4, Corollary 1) we also have o n o
(since each directional form of is also a directional form of and
since, therefore, the directional forms of are in the set

Since it follows that whence
and this yields a factorization of such that If one of the
is not a contracted ideal then > 91g. If one of the is not a simple
ideal (and is not the unit ideal) we factor it into simple ideals. Pro-
ceeding in this fashion and using the ascending chain condition in 0,
we arrive after a finite number of steps at a factorization of into
simple contracted ideals.

However, the theorem of unique factorization of complete ideals into
simple complete ideals does not generalize to contracted ideals, i.e., a
contracted ideal does not necessarily have a unique factorization into
simple contracted ideals. The reason for this is that Proposition 5
does not generalize to contracted ideals, i.e., the extension of an ideal
in o which is the contraction of an ideal in 0' is not necessarily a con-
tracted ideal in the regular ring o'. For example, let 0' be the quadratic
transform of 0, relative to the directional form z2, and let be the ideal
(t22, nt4) in 0. It is easily seen that is the contracted ideal of its
extension t12(t'22, t12) in 0', where t'2= t2/t1 (t1 and t'2 are regular
parameters in o'). However, the transform t12) of is not a
contracted ideal in o' (we have 1, but is not a power of nt';
see Corollary to Proposition 2). Note that as a consequence of this
and in view of Proposition 5, cannot be a complete ideal; but this is
also easily seen directly, because we have t22, t14 E t12t2 while
t12t2 is integrally dependent on ((t12t2)2== t14t22). We note also that

is a simple ideal and that where (t2, m2) is also a simple
(complete ideal). Thus the contracted ideal (see Corollary to
Theorem 1) admits two distinct factorizations into simple contracted
ideals.

5. We shall conclude this appendix with some miscellaneous pro-
perties of simple complete ideals.

(A) Let g be an irreducible form in k[z1, z2], let 0' be the quadratic
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transform of o, relative to the directional form g, and let be the set
of all simple complete ideals in o having g as directional form. Then

where E and is the transform of (in o'), is a (1, 1)
mapping of onto the set of all simple complete ideals in o'.

For the proof, we shall assume that z1 5q. We note that if
then p o, where a is the least integer such that is the
extension of an ideal in o. This shows that the mapping is
univalent. Now, given any simple complete ideal in o', define a
and as above. Then is a complete ideal in o', and we have

Clearly, must be a power of (Proposition 3), and
must be simple, for in the contrary case we would find at once that
is not simple. This completes the proof.

(B) Starting with a given simple complete ideal different from m,
we consider its transform (this transform is an ideal in o' introduced
in (A), if E Me). If m' (m' maximal ideal in o') we may
repeat the procedure and consider the transformffl" of in a suitable
quadratic transform o" of o'. Since > > . . . , this
process is finite. We thus obtain a finite strictly ascending sequence
of regular rings

each ring in the sequence being a quadratic transform of its immediate
predecessor, and in each ring we have a simple complete ideal
such that is the transform of and such that
is the maximal ideal m(h) of This sequence of rings and the
integer h are uniquely determined by we say that is a simple ideal
of rank h. We denote by the prime divisor of Then

is a prime divisor of the quotient field of o, and the center of in
o is m (in other words: is of the second kind with respect to 0; see

VI, § 5, p. 19). It is clear that we have . . .

where — m(h)

(C) is a in o.
Proof is by induction with respect to the integer h, since if h = 0

then m and is the m-adic prime divisor of o. The integer h is
the number of successive quadratic transforms which are necessary to
transform into the maximal ideal of a suitable regular ring
It is clear that is a simple ideal of rank h — 1. Therefore, by our
induction hypothesis, is a va-ideal in o'. Now, let
where we assume that g z1, so that a is the order of Let q be the
vai-ideal in o determined by the condition: Then
q and we have to show that actually q = We first show that
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ma n q. We have only to prove that ma n q. Let x be any
element of ma n Since x E ma, we have x= t1ax', with x' in o'.
Since x E a, we have =
whence x' E (since is a va-ideal) and thus x E o =
which proves the equality = n q. We now have to show that
q ma Suppose the contrary to be true, and let b be the order of q
(whence b < a). The characteristic form c(q) of q is then at most of
degree b, and since m's' q also the degree of is at most equal
to b. On the other hand, the order a of is greater than b. Hence,
by Proposition 3, m factors out from in contradiction with the fact
that is a simple ideal.

(D) The method of proof in (C) can be used to derive a general
result which concerns arbitrary valuations centered at m and which
we shall want to use later on.

Let v be a valuation centered at m, different from the m-adic prime
divisor of o, let g be the directional form of v (we assume that g z1),
and let o' = be the quadratic transform of o, relative to g. In the
well ordered set of v-ideals in o we consider the initial infinite simple
sequence { where i = 1, 2, . . . , ii, . . . ; here q1 = o (if v has rank 1,
then this sequence is in fact the entire set of v-ideals in o). Since we
have assumed that v is different from the m-adic prime divisor of o,
v is also centered at the maximal ideal m' of o'. We consider in o'
the initial infinite simple sequence {q'3} of v-ideals, j= 1, 2,. . . ,

(q'1 = o'). Since the characteristic form of any q. is a power of g
(Lemma 4), we can speak of the transform of in o'. We denote this
transform by For any q'1 there exists a smallest integer a3 such
that t1a, is the extension of an ideal in o. Then we set = t1a1 q'.
so that t1a1 is also the extension of We call the inverse
transform of

The result which we wish to prove describes the relatiortship between
the two sequences {q1}, and is as follows:

(1) The transform of any q. is a member of the sequence {q'3}.
(2) The inverse transform of any is a member of the sequence

{ (and hence any q'5 is the transform of some qj.
(3) Any is of the form where is the inverse transform of

some q'3.
(4) If then

Assertion (1) follows directly from relations (34) and (34'), as applied
to the ideal

q be the v-ideal in o such that v(n) = Since = t1a1 a's,
has order a3. It is clear that maj n q. By the same reasoning
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as the one used in (C) we find that, in the first place, we must have
= maj q, and—next—that (always using the fact that the

degree of the characteristic form of is equal to the order of
Hence = q, and this proves assertion (2).

Let = be the transform of q2 and let q = be the inverse
transform of If a and b are the orders of q and h respectively,
then b a. The two ideals and have the same extension in
o', namely the ideal Since they are both contracted ideals, it
follows that q1 = = and this proves assertion (3).

Let a and b be the orders of and respectively (a b), whence
= = t11' Assume that

assertion (4) is false and that we have therefore Then it
follows that o', and therefore since both
these ideals are contracted ideals. The equality b = a is excluded since

> Hence b — a >0, i.e., m factors out from and this is in
contradiction with the fact that b is the least integer such that t11' is
an extended ideal. This establishes assertion (4).

(E) The correspondence is a (1, 1) mapping of the set of all
simple complete ideals in o onto the set of all prime divisors of the quotient
field of o which are of the second kind with respect to o.

We first observe that if m then In fact, assuming that
the directional form g of is different from z1, we have vnt(x) = r for
every element x of o such that x E mr, x while if the initial form

of x is divisible by g then > r (Lemma 1). Now, if and
are two arbitrary distinct simple complete ideals in o, then our assertion
that is, in the first place, obvious if the directional forms of

and (which are also the directional forms of the valuations
and are distinct, and, in the second place, if and have the

same directional form then the assertion follows immediately by
induction with respect to the integer s = max {rank rank by
passing to transforms 2' since we have just proved the assertion

in the case s=1. We have thus shown that the mapping
is univaleflt.

To complete the proof we now have to show that given any prime
divisor v of'o (i.e., any valuation of the quotient field of o such that v
has 1) there exists a simple complete ideal in o such
that v = v is the m-adic prime divisor of o, there is nothing to
prove: we have = m. In the contrary case, v has a well defined
directional form g, and if o' is the quadratic transform of o, relative to
the directional form g, then v is still of the second kind with respect to
o', its center in o' being the maximal ideal in'. If v is the m'-adic
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divisor of v', then we have v = where is the simple ideal (of rank 1)
in v whose transform is nt'. In the contrary case, v has a well defined
directional form in v', and if if denotes the corresponding quadratic
transform of v', then v is of the second kind with respect to v". If v
is the prime divisor of v", then we have v = where is the
simple complete ideal (of rank 2) in v whose (second) transform in v"
is nt'. In the contrary case we go on to a suitable quadratic transform
v'" of if. We have to show that after a finite number of steps we obtain
a ring such that v is the prime divisor of where
is the maximal ideal of We shall show that the assumption that
the above process does not terminate after a finite number of steps leads
to a contradiction. Under such an assumption we will have an infinite
strictly ascending chain of rings

v<v(1)<v(2)<

with the following properties:
(1) Each ring is a quadratic transform of its immediate pre-

decessor.
(2) v is non-negative on any 0(hj), and its center in 0(hj) is the maximal

ideal of
We now fix an element w in the quotient field of v such that the

v-residue of w is transcendental over the residue field k (= v/nt) of v.
Since the residue field of 0(hj) is an algebraic extension of the residue
field of it follows that the v-residue of w is also transcendental
over Now let us write w in the form w where x, y E 0.
Both x and y necessarily belong to nt. Assuming—as we may—that
the directional form of v is different from z1, then we can write x— t1x1,
y t1y1, with x1, Yi in if. Then w =y1/x1 and v(x) > v(x1). Since v
is also of the second kind with respect to v', it follows again that both
X1, Yi are in in', and thus we find another representation of w, of the
form w =y2/x2, with x2, Y2 in if and v(x1) > v(x2). Proceeding in this
fashion we obtain an infinite, strictly decreasing sequence v(x)>
v(x1) > v(x2)> ... of positive integers, which is absurd.

(F) Let be a simple complete ideal, of rank h, let v <if <if <
be the sequence of successive quadratic transforms of v which is

determined by (see (B)), and let be the simple complete ideal in v
whose transform in 0(j) is the maximal ideal of (i= 1, 2, . . . , h).
Then:

(1) m>e'o1>el)2>
(2) Each of the h -'- I ideals nt, is a vai-ideal in v,

and every vai-ideal in v is a power product of these h + 1 simple ideals.
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If h 0 then assertion (1) is vacuous, while (2) is obvious, since
is in that case the nt-adic prime divisor of o, and therefore every
ideal is in that case a power of in. We therefore proceed by induction
with respect to h.

Let be the transform of in o' (i= 1, 2, . . . , h). Then
is a simple complete ideal in o', of rank i— 1, and where

transform of We have therefore, by our induction
hypothesis:

lit' > >

Since is the inverse transform of (in the sense of (D)), it follows
from statement (4) in (D) that

_

Since the strict inclusion nt > is obvious, assertion (1) is proved.
That each of the h + 1 ideals nt, is a va-ideal

follows from statement (2) of (D) and from our induction hypothesis.
Now, if q' is any va-ideal in o', then by our induction hypothesis, we
have q' = The inverse transform of q' is clearly

and assertion (2) now follows from statement (3)
in(D).

This result characterized the simple complete ideal of rank h,
by means of the sequence {qJ of valuation ideals in o which are associ-
ated with the corresponding prime divisor that sequence contains
precisely h + 1 simple ideals, and is the smallest of these simple
ideals (p1) is the last simple ideal which occurs in the sequence {q1}).

The arithmetic theory of complete ideals in o which we have developed
in this appendix has also geometric interpretations, since all the known
results of the geometric theory of infinitely near points on an algebraic
non-singular surface are included in this arithmetic theory. For these
geometric interpretations we refer the reader to the original paper of
0. Zariski (quoted in the beginning of this appendix).
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MACAULAY RINGS

Let A be a noetherian ring, a an ideal in A and a an element of A.
We say that a is prime to a if a : Aa = a. This means that a does not
belong to any associated prime ideal of a (Vol. 1, Ch. IV, § 7, Corollary
2 to Theorem 11). We say that a sequence {a1,... , of non-
invertible elements of A is a prime sequence if, for every j, a is prime
to the ideal . . . (For j=O we follow our usual con-
vention that the empty set generates the zero ideal. Thus, a single
element a constitutes a prime sequence if and only if it is not a zero
divisor.) It follows easily from Vol. I, Ch. IV, § 14, Theorems 30
31, that, if {a1,. . . , a prime sequence in A, and if is an
ated prime ideal of Aa1 + ... + then we have
(1) � n,

equality holding if and only if is isolated.
We note that {a1, a prime sequence if and only if for each

1=1, 2,. . . , q, a1 is not a zero divisor in the ring ... +
Aa1_1).

We are going to devote several lemmas to the study of prime sequences
in local rings.

LEMMA 1. Let A be a local ring, a an ideal in A, b a
element prime to a, and an associated prime ideal of a. Then there
exists an associated prime ideal of a ± Ab such that (thus >

This has been implicitly established in the proof of Theorem 44,
VII, § 13, but we prove it again for the reader's convenience. Suppose
the conclusion is not true. Then, for every associated prime ideal

of a Ab, we have and hence there exsts an element x of
such that x for every] (Vol. 1, Ch. IV, § 6, Remark, p. 215). We
thus have (a + Ab) Ax a + Ab. Now, if v is an element of A such
that xv E a, we have xv E a Ab, whence v E a +Ab; setting v = a' ± v'h
(a' E a, v' E A), we have xv'b xv — xa' E a, whence xv' E a since b is
prime to a. In other words, we have a : Axc' a + b(a Ax) a m(a: Ax)

394
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(where in denotes the maximal ideal of A), whence a: Ax = a + itt(a: Ax).
From this we conclude that a: Ax = a (VIII, § 4, Theorem 9, (f)), in con-
tradiction with the fact that x belongs to the associated prime ideal

a. Q.E.D.
LEMMA 2. Let A be a local ring, {a1,. . . , a prime sequence in A,

and j —p- i(j) a permutation of the indexing set {1, 2,. . , n}. Then
{a1(1), a prime sequence in A.

By elementary properties of permutations, it is sufficient to prove
that, for every j, {a1, . . . , a prime
sequence. The property that a is prime to the ideal generated by the
elements ak which precede it in this sequence is obviously true for
i = 1, , j— 1,1+2, .. . , n. It remains to be proved that this pro-
perty is also true for i=j+ 1 and for i=j. We set a=Aa1+ ... +

If were not prime to a, there would exist an associated
prime ideal of a such that E by Lemma 1, would then be
contained in an associated prime ideal of a in contradiction
with the fact that a is prime to

is prime to a ± A
a E

a ± E a a
y E a, z E A), we have = + + b, whence
(x — E a, and x — E a since is prime to a. We therefore
have x E a and this proves our assertion.

In the case of a local ring A, it has therefore a meaning to say that a
finite subset S of A is a prime sequence in A, since, by Lemma 2, the
property of S being a prime sequence is independent of the order in
which the elements of S are considered.

LEMMA 3. Let A be a local ring, in its maximal ideal, {a1,.. . ,

and {a'1,. . . , two prime sequences in A with the same number of
elements, and a, a' the ideals they generate in A. Then the A-modules
(a: in)/a and (a': in)/a' are isomorphic.

We proceed by induction on n. In the case n = 1 the hypothesis
means that a = a1 and a' = a'1 are not zero-divisors. Let T be the total
quotient ring of A and let f be the A-linear mapping

x E Aa : m, then xa' E Aa (since, by definition, the
elements of a prime sequence are non-invertible elements), whence
f(x) E A. On the other hand, siflce Aa, we have f(x)in =
a'a-'xntc: Aa', whence f maps Aa : in into Aa' : in. Similarly, the A-
linear mapping g defined by g(x) = aa'-1x (x E T) maps Aa' : in into
Aa : m. Since fg and gf are the identity mappings, it follows that f is
an isomorphism of the A-module Aa : in onto the A-module Aa': itt.
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Since we have obviously f(Aa) Aa', we deduce that (Aa :m)/Aa and
(Aa' : rn)/Aa' are isomorphic.

In the general case, since is non-invertible, no associated prime
ideal of Aa1 ± . . . ± is equal to in; similarly no associated
prime ideal of . . . is equal torn. Let b be an
element of ni which does not belong to any nor to any (Vol. I,
Ch. IV, § 6, Remark, p. 215). Then {a1,. . , a,1_1, b} and {a'1,.

b} are prime sequences in A; let b and b' be the ideals they
generate. Applying the case n 1 to the ring A/(Aa1 ± ... +
and to the prime sequences constituted by the classes of and of b
respectively, we see that (a: rn)/a and (b: are isomorphic as
(A/(Aa1+ ... and therefore also as A-modules.
Similarly the A-modules (a': rn)/a' and (b': rn)/b' are isomorphic. We
apply now the induction hypothesis to the ring A/AlL For x E A, let
us denote by the (Ab)-residue of x. Since {b, a1, , a
prime sequence in A (Lemma 2), . . . , is a prime sequence in
A/Ab; similarly for {a'1,. . . , Thus the induction hypothesis
shows, as above, that the A-modules (b: rn)/b and (b': rn)/b' are iso-
morphic. This proves our assertion since the product of three iso-
morphisms is an isomorphism. Q.E.D.

Formula (1) shows that, in a local ring A, the number of elements of
a prime sequence is bounded by dim (A). Thus, in a local ring, there
exist maximal prime sequences.

THEOREM 1. Let A be a local ring. Any two maximal prime sequences
in A have the same number of elements.

PROOF. Let {a1,. . . , and {a'1,.. . , a'q} be two maximal prime
sequences in A. It is sufficient to show that the assumption "p <q"
leads to a contradiction. In fact, if p <q, let us consider the ideals
a, a' generated by , and
a' a' a fortiori a': rn a' (rn : maximal
ideal of A), whence (a' : rn)/a' = (0). By Lemma 3 we have therefore
(a: nt)/a (0), i.e., a: rn = a. Thus rn is not an associated prime ideal
of a, and there exists an element b of rn which does not belong to any
associated prime ideal of a (Vol. 1, Ch. IV, § 6, Remark, p. 215). Then
{a1,. . . , a prime sequence, in contradiction with the maxi-
mality of {a1, . . . ,

a local ring. The common number of ele-
ments of the maximal prime sequences in A is called the homological
codimension (or the grade) of A, and is denoted by codh (A). If codh (A)
= dim (A), we say that A is a Macaulay ring (or a Cohen-Macaulay
ring).



MACAULAY RINGS 397

We have seen that in any local ring A, we have the inequality

(2) codh (A) � dim (A).

It follows from the definition of codh (A) that every prime sequence in
A may be included in a prime sequence with codh (A) elements. To
say that A is a Macaulay ring is equivalent to saying that there exists
a system of parameters of A which is a prime sequence (by formula (1)).

EXAMPLES. (1) Any regular local ring A is a Macaulay ring. In fact
any regular system of parameters of A is a prime sequence by VIII,
Theorem 26, § 11.

(2) Any local domain A of dimension I is a Macaulay ring. In fact
any single element 0 of the maximal ideal of A constitutes a prime
sequence. More generally, for a local ring A of dimension 1 to be a
Macaulay ring, it is necessary and sufficient that the maximal ideal in
of A is not an associated prime ideal of (0).

(3) Any integrally closed domain A of dimension 2 is a Macaulay
ring. In fact, if we choose a non-invertible element 0 of A, all the
associated prime ideals of Ax have height 1 (Vol. I, Ch. V, § 6,
Theorem 14), and are therefore distinct from the maximal ideal in.
Hence there exists an element y E m such that y for every i,
and {x, y} is a prime sequence.

Before giving the main property of Macaulay rings, we need a
lemma:

LEMMA 4. Let A be a local ring, d its dimension, , distinct
elements of A. For dim (A/(Aa1 + . . . + to be equal to d—j, it
is necessary and sufficient that {a1, . . . , aj be a subset of a system of
parameters of A.

The sufficiency has been proved in VIII, § 9 (see p. 292).
Conversely, if A/(Aa1+ ... has dimension d—j, we consider
d—j elements . . . , ad whose residue classes form a system of
parameters of A/(Aa1 + . . . + Aa,). Then the ideal in A generated
by a1, . . . , a1+1, .. . , ad is primary for the maximal ideal of A,
whence {a1, . . . , ad} is a system of parameters of A. Q.E.D.

THEOREM 2. Let A be a Macaulay ring, d its dimension, a

a the ideal generated by these j elements. If
dim (A/a) = d —j, then {a1,.. . , a prime sequence, and for every
associated prime ideal of a, we have =j and dim (A/p) = d—j. In
particular, a has no imbedded prime ideals, and is unmixed.

PROOF. We proceed by induction on j. If j = 0, the given set is
empty and is a prime sequence. We then have a = (0). We consider
an associated prime ideal of (0). Let {b1, . . . , bd} be a prime sequence
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in A. By repeated applications of Lemma 1, we find a strictly increas-
ing sequence of prime ideals such that is an associ-
ated prime ideal of Ab1 . . . + Ab1. This proves that we have
dim (A/b) � d, whence dim (A/u) = d since dim (A) = d. On the other
hand we have =0 since, otherwise, we would get a chain of prime
ideals in A with d ± 2 distinct terms. This proves Theorem 2 in case
j = 0.

We now suppose that Theorem 2 is true forj — 1. We set a' = Aa1 ±
+ Since dim (A/a) = d—j, {a1,... , a1} is a subset of a

system of parameters (Lemma 4). Hence dim (A/a') = d —j± I
(Lemma 4). By the induction hypothesis, {a1, . . . , a prime
sequence, and all the associated prime ideals of a' have height]— I and
dimension d—j-'-- 1. If a3 were contained in some associated prime
ideal of a', we would have whence dim (A/a) � dim (A/p') =
d —j + 1, contradiction with the hypothesis. Therefore {a1,...,
a1_1, a prime sequence. This prime sequence is contained in
some maximal prime sequence, say {a1, . . . , a., a,+i, . . . , ad}, which
has d elements (and is therefore a system of parameters), since A is a
Macaulay ring. The a-residues of aj+i, . . . , ad form a prime sequence
and a system of parameters in the ring A/a, which is therefore a
Macaulay ring. Applying the case j =0 to the ring A/a, we see that
we have dim (A/p) = d —j for every associated prime ideal of a. On
the other hand, such an ideal contains some associated prime ideal

of a', and we have since a1 E and aj ({a1,. . . , being
a prime sequence); we therefore have � h(V) I = (j — 1) ± I =j.
Since the inequality dim (A/u) + <d holds for every prime ideal in
a local ring A of dimension d (otherwise A would admit a chain of
prime ideals with d ±2 terms), the relations dim (A/p) = d —j and

�j give =j. Q.E.D.
REMARK. Since a regular local ring is a Macaulay ring, Theorem 2

gives a new proof of Cohen-Macaulay's Theorem (VIII, § 12, Theorem
29), and generalizes it to a regular local ring of unequal characteristic.
It may also be noticed that Macaulay's Theorem about polynomial
rings (VII, § 8, Theorem 26) is an easy consequence of Theorem 2.
In fact, let k be a field, and be an ideal in R = kIX1,.. . , of dimen-
sion d — h and generated by h elements , Let be an
associated prime ideal of and a maximal ideal in R containing ¶3.
The local ring has dimension d and, since may be generated by
d elements (VII, § 7, Theorem 24), is regular. Since dim =
d— h, Theorem 2 shows that dim = d — h being
associated prime ideal of see Vol. I, Ch. IV, § 11, Theorem 19).



MACAULAY RINGS 399

Since this relation holds for every maximal ideal WI containing
the depth of whence also its dimension, is d—h.

Theorem 2 has many consequences.
COROLLARY 1. Let A be a local ring. The following properties are

equivalent:
(a) A is a Macaulay ring;
(b) There exists a system of parameters of A which is a prime sequence;
(c) Every system of parameters of A is a prime sequence.
The equivalence of (a) and (b) has already been established. It is

clear that (c) implies (b) since a local ring admits at least one system of
parameters. Now, if A is a Macaulay ring and if {a1,. . . , ad} is a
system of parameters of A, we have dim (A/(Aa1 + . .. + = 0 =
d— d, whence Theorem 2 shows that {a1,. .. , ad} is a prime sequence;
thus (a) implies (c). Q.E.D.

COROLLARY 2. Let A be a Macaulay ring. For a finite subset S of A
to be a prime sequence, it is necessary and sufficient that it be a subset of
some system of parameters.

In fact, if S is a prime sequence, it is contained in a maximal prime
sequence, i.e., in a system of parameters. The converse follows from
Corollary I ((a) implies (c)), since any subset of a prime sequence is a
prime sequence (Lemma 2).

COROLLARY 3. Let A be a Macaulay ring. For every prime ideal
in A, we have ± dim (A/p) = dim (A).
In fact, among the prime sequences which are contained in we

consder a maximal one, say {a1, . . . , aj. Let be the set of associ-
ated prime ideals of a = Aa1 + ... + Aa1. We have U for in

the contrary case would contain an element b such that a : Ab a, and
then {a1, . . . , a1, b} would be a prime sequence, in contradktion with
the maximality of {a1, . . . , aj. Therefore there exists an index i
such that (Vol. I, Ch. IV, § 6, Remark, p. 215). On the other
hand, since contains a, contains some isolated prime ideal of a.
Since a is generated by a subset of a system of parameters (Corollary 1),
we have dim (A/a) = dim (A) —j (Lemma 4), and therefore, by Theorem
2, a is unmixed. Hence = = and is an associated prime
ideal of a. Thus our assertion follows from Theorem 2.

COROLLARY 4. Let A be a Macaulay ring. For every prime ideal
in A, the local ring is a Macaulay ring.

a prime sequence {a1,. .. , a1}

such that is an associated prime ideal of Aa1 + . . . + Aa1. Let f be
the canonkal mapping of A into Since is an isolated prime ideal
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of Aa1 ± ••• ± Aa3 and since =j (Theorem 2), {f(a1),. • , f(a,)}
is a system of parameters of and it remains to be proved that it is
also a prime sequence. Now this is immediate, since for every q �j,
we have the formula (f(a1), . . . , (f(aq)) ((a1, . . . ,

(aq))Ap (see Vol. I, Ch. IV, § 10) (ar, . . . , aq_j)Ap (f(a1), .

COROLLARY 5. Let A be a Macaulay ring. For every prime sequence
{a1, . . . , in A, the local ring A/(Aa1 ± . . . ± Aa3) A' is a
Macaulay ring.

In fact, the given prime sequence is contained in a maximal prime
sequence {a1, . . . , a1, a1+1, . . . , ad}, i.e., in a system of parameters
(d== dim (A)). We have dim (A') d—j (Lemma 4), whence the resi-
due classes of . . . , ad in A' form a system of parameters. Since
they obviously form a prime sequence, Corollary 5 is proved.

REMARK. It follows from Corollary 5 that, if W is an irreducible
subvariety of a variety V, and if V is a hypersurface in affine or projective
space (more generally a complete intersection of hypersurfaces), then
the local ring o(W; V) is a Macaulay ring.

COROLLARY 6. Let A be a local ring, A its completion. For A to be
a Macaulay ring, it is necessary and sufficient that A be a Macaulay
ring.

Let a be elements of A. By Corollary 5 to VIII, § 4,
Theorem 11, and since bA n A b for every ideal b in A (VIII, § 2,
Corollary 2 to Theorem 5), the relations (Aa1 + .. . + :Aa1 =
Aa1+ +Aa3_1 and (Aa1+ ... ...
are equivalent. Thus for a subset S of A to be a prime sequence in A,
it is necessary and sufficient that it be a prime sequence in A. Now,
if A is a Macaulay ring, we take for S a system of parameters of A
(which is therefore a prime sequence in A). Then A is a Macaulay
ring since S is a system of parameters of A. Conversely, if A is a
Macaulay ring, then any system of parameters S of A is a prime
sequence in A since it is a system of parameters of A (Corollary 1);
thus S is also a prime sequence in A, and A is a Macaulay ring. Q.E.D.

THEOREM 3. Let A be a local ring. The following properties are
equivalent:

(a) A is a Macaulay ring;
(b) There exists an ideal q in A, generated a system of parameters,

such that e(q)=1(A/q).
(b') For every ideal q in A generated by a system of parameters, we

have e(q) = l(A/q).
(c) There exists an ideal q in A generated by a system of parameters
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such that the associated graded ring Gq(A) is isomorphic to a polynomial
ring in dim (A) variables over A/q.

(c') For every system of parameters • , Xd ofA, the initialforms
of the elements x7 in Gq(A) (q Ax1 + • • ± Axe) are algebraically
independent over A/q (whence Gq(A) is isomorphic to a polynomial ring in
d variables over A/q).

PROOF. The equivalence of (b) and (c) follows from VIII, § 10,
Theorem 23. Similarly (b') and (c') are equivalent. It is obvious
that (b') implies (b). We are going to show that (a) implies (b') and
that (c) implies (a), and the proof will then be complete.

For proving that (a) implies (b'), we can, if A/rn is an infinite field
(rn: maximal ideal of A), use the discussion preceding Theorem 23 in
VIII, § 10. In fact, in the course of that discussion we have constructed
a suitable system of parameters {y1, . . yd} generating q, and we have
shown that if that system satisfies the condition (Ay1 + . . . +

Ay1 + ... + then e(q) l(A/q). Now the above relation
obviously holds since every system of parameters in a Macaulay
ring is a prime sequence (Corollary I to Theorem 2). The process
of adjoining an indeterminate to A could then take care of the case
of a finite residue field A/rn. However, we prefer to give a direct
proof of the fact that (a) implies (b'), since this proof uses two lemmas
which are of interest in themselves.

LEMMA 5. Let A be a Macaulay ring, and a an ideal in A generated
by a prime sequence. For every exponent n, the ideal is unmixed
(and admits, therefore, the same associated prime ideals as a; see
Theorem 2).

We proceed by induction on n. The case n 1 is covered by
Theorem 2. We suppose that our assertion is proved for n, and prove
it for n + 1. We have to show that if c is prime to a and if x is an
element of A such that cx E a7z+l, then x belongs to a7z+l. Since
cx E alz, the induction hypothesis shows that x E alz. Let {a1,.. . ,

a prime sequence generating a. By a suitable grouping of the
monomials of degree n in a1,•• . , we see that x may be written in
the form x = x1a1 + ... + xqaq, where q �j and x2 E (Aa1 + ... +

We prove that x E by induction on q. The case q =0
is trivial. For q >0, we write x = x' + xqaq (where x' x1a1 + ... +
xq_iaq_i), and we denote by b the ideal generated by . , aq_1,

. . , we have a— b + Aaq. Since = + alzaq, the relation
c(x' + xqaq) = cx E shows the existence of an element y of alz such

that cx' + cxqaq —yaq E Since x' E blZ, this implies (cxq —y)aq E b7z.

Now, aq being prime to b (Lemma 2), the induction hypothesis on n
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shows that CXq —y E whence CXq E since)' E ctlz. Again the induc-
tion hypothesis on n shows that Xq E alz (c being prime to a). From
X = X' ± Xqaq we then deduce that cx' belongs to Therefore
x' E by the induction hypothesis on q. Since x = x' ± aqxq and
since Xq E alz, we have x E Q.E.D.

LEMMA 6. Let A be a Macaulay ring and a an ideal in A generated by
a prime sequence {a1,. . . , We have alz: Aa, = for every n.

Let x be an element of A such that xa1 E alz. We set b = Aa1 +
Since alz = b7z ± there exists an element y of such

that e b7z. As is prime to b, it is prime to (Lemma 5),
whence x—y E b7Z. Therefore x E and we have the
inclusion : Since the opposite inclusion is obvious,
Lemma 6 is proved.

CONTINUATION OF THE PROOF OF THEOREM 3. We are going to prove
that (a) implies (b'). For this we proceed by induction on the

d of A. The case d= 0 is trivial since we then have q = (0),
e( q) 1(A) = l(A/ q). For d> 0, let {a1,. . . , a system of
meters generating q. We set A' = A/Aad, q' = Since {a1,.. .,
ad} is a prime sequence, we have qlz: Aad= (Lemma 6), whence
the formula — A( : Aad) (Lemma 3, VIII, § 8) gives
Pq'(n) = Pq(n) — Pq(n — 1) and therefore e( q') = e( q). Since A' is a
Macaulay ring (Corollary 5 to Theorem 2), the induction hypothesis
gives e(q')=l(A'/q'). As A'/ci' is isomorphic to A/q, we have e(q)=

Thus (a) implies (b').
We finally prove that (c) implies (a). Suppose that q is an ideal

generated by a system of parameters such that Gq(A) is generated
over A/ q by d (= dim (A)) algebraically independent elements a7, and
let a be an element of q admitting a7 as (q2)-residue. It is sufficient
to prove that {a1, . . . , a prime sequence (since d= dim (A)).
We set a =Aa1 + ... ± a an

e a; we set ya1 = x1a1 + . . . +
(x7EA).

This is a relation of the type = 0. Let us denote by v the

order function in A (for x E A, we have x e qv(x) and x see
VIII, § 1). Let I be the set of indices I for which takes its mini-
mum value, say s. We have z.a2 E whence, by passage to the

iEI
initial forms, = 0. Choosing a fixed index k in I, we see that,

ieI
in the polynomial ring Gq(A) = , zkak is the ideal
generated by the indeterminates a7 (i E I, k). Thus Zk is in this
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ideal, and there exist elements b1 of qs_l (1 E I, k) such that Zk =
i.e., such that Zk — b2a1 is an element Z'k of Setting

i
i for i a relation

d
z'1a1 =0 in which v(z'1) � for every i and v(z'k) >

2—
j—l

Now, among the relations ya1
=

E A) we choose one which

has the following two properties: (a) mm1 (v(x1)) has the greatest
possible value, say s; (b) the number of indices i such that = s is
the smallest possible. Then we have s = v(y). In fact s > v(y) is
obviously impossible. On the other hand, if s < v(y), we transform,

as above, the relation ya1 — =0: the coefficient y of a1 is then

unchanged, whereas, either s is increased, or the number of indices i
such that v(x1) = s is decreased. This is impossible. Thus v(y) =

mm1 (v(xj). Transforming, as above, the relation ya3
—

=0,

this time with ya3 playing the part of zkak, we get a relation y1a1 —

=0 with Yi E and y —y1 E a. Since Yi E a: Aa3, we can

apply the same process to By repeated applications we get an
element y —y,, E a. We thus have y E a +
for every n, whence y E a since a is closed. Consequently we have
a : Aa3 a. The opposite inclusion being obvious, we have a: Aa3 = a.

Q.E.D.
REMARKS. (1) Let R = . . , X,,] be a polynomial ring over a

field k, and an ideal of the principal class of R. By passage to quo-
tient rings maximal ideals) and using Lemma 5, one proves,
as in the Remark following Theorem 2, that 92 is unmixed for every n.

(2) Let A be a Macaulay ring. It is easily seen that the local ring
AJX]] is a Macaulay ring.
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UNIQUE FACTORIZATION IN REGULAR LOCAL RINGS

In the present appendix we are going to prove that every regular
local ring is a UFD. The method of proof, due to M. Auslander and
D. Buchsbaum, uses the notion of cohomological dimension (VII,
§ 13).

LEMMA 1. Let A be a local domain. The following assertions are
equivalent:

(a) A is a UFD.
(b) Every irreducible element of A generates a prime ideal.
(c) For any two elements a, b of A, the ideal Aa n Ab is
(d) For any two elements a, b 0 of A, the cohomological dimension

+ Ab) is � I (i.e., considered as an A-module, Aa ± Ab is isomorphic
with a factor module F/F' with F and F' free).

For the equivalence of (a) and (b) we first notice that (b) is nothing
else but condition UF.3 of Vol. I, Ch. I, § 14; on the other hand every
non-unit of A is a finite product of irreducible factors since A is
noetherian (Vol. I, Ch. IV, § 1, Example 3), whence A satisfies UF.1.

It is clear that (a) implies (c) since the ideal Aa n Ab is obviously
generated by the least common multiple of a and b.

We now prove that (c) implies (b). Let p be an irreducible element
of A, x and y two elements of A such that xy E Ap and x Ap. We
set Ax fl Ap Am. Since m divides xp, mx1 (which is an element of
A) is a divisor of p; it is not a unit since m is a multiple of p and x is not.
Since p is irreducible it follows that mx1 and p, and therefore also
m and xp, are associates. Thus Ax n Ap = Axp. The hypothesis
xy E Ap implies xy E Ax n Ap Axp, whence xy is a multiple of xp
and thereforey is a multiple of p.

Let us prove that (c) is equivalent to (d). Let f be the A-linear
mapping of (the free A-module) A x A onto Aa + Ab defined by
f(x, y) = xa —-yb. Its kernel F0 is the set of pairs (x, y) such that
xa =yb, and the mapping (x, y) —* xa is obviously an isomorphism of
F0 onto the ideal Aa fl Ab. If (c) holds, this ideal is principal, hence a

404
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free A-module, and therefore (d) is true. Conversely, if (d) is true,
Aa Ab is isomorphic with a factor module F/F' with F and F' free.
Then the kernel F0 off is equivalent to F' in the sense of VII, § 13

(VII, § 13, Lemma 2) and is therefore a free module, since A is a local
ring (VII, § 13, Lemma 3). Since Aa n Ab is isomorphic with F0, it
is a principal ideal, and (c) is true. Q.E.D.

LEMMA 2. A regular local ring A of dimension 1 or 2 is a UFD.
Let a and b be any two elements of A. Since Aa + Ab is a submodule

of a free module, we have 8(Aa + Ab) � dim (A) — I by the theorem on
syzygies (VII, § 13, Theorem 43). Hence 8(Aa -'- Ab) � 1, and we use
Lemma 1.

Notice that, if dim (A) = 1 (or 0), A is a discrete valuation ring (or a
field), and that the unique factorization properly is obvious in this case.

LEMMA 3. A regular local ring A of dimension 3 is a UFD.
Let a and b be any two elements of A. By the theorem on syzygies,

we have 8(Aa + Ab) � 2. In the proof of Lemma 1, we have seen that
Aa fl Ab is a first module of syzygies of Aa + Ab, whence 8(Aa n Ab) � 1.
Since x ax is an isomorphism of Ab : Aa onto Aa fl Ab, we also have
8(Ab : Aa) � 1. From this we are going to deduce that Ab: Aa is free,
therefore a principal ideal, and this will complete the proof since
Aa fl Ab will then be principal.

We set q = Ab : Aa, we denote by in the maximal ideal of A, and we
pick an element b' E q, b' in q. We have b'a = a'b with a' E A. Since
the relations xa' =yb' and xa =yb are equivalent, so are xa' E Ab' and
xa E Ab, whence Ab' : Aa' = Ab : Aa q. We are going to prove that
q = Ab'. For this it is sufficient to prove that q Ab' + in q (apply
Theorem 9, Condition (f), of VIII, § 4, to the local ring A/Ab' and to
the ideal q/Ab'). In the contrary case, there exists an element c of q
such that the classes of c and b' mod in q are linearly independent
over A/in. We consider a system of elements (b', c, c1, . . . , of q
the inq-residues of which form a basis of q/rnq over A/rn; these ele-
ments generate q (bc. cit.). Consider q as a factor module F/F' of a
free module F with generators (fi, y, , (these generators being
mapped onto (b', c, c1, . . . , The module of relations F' is free,
since 8(q) � 1. We have F'c inF since the elements b', c, c1, . . . ,

are linearly independent mod inq.
Let us write ca' db' with d E A. We have a'y — dfl E F' and evi-

dently also b'y — cfl E F'. We take a free basis (a1) of F' and write

(1)

(2) b'y—c,8
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Since b'(a'y — dfl) = a'(b'y — ca), we have b'x1 = a'y3 for every j, whence
E q. On the other hand, each a1 is a linear combination of the

elements fi, y, yr,. • , of the basis of F. Let m1 be the coefficient
of y in this representation of We have E in since F' mF.
Comparing the coefficients of y in both sides of (2), we get b' = y1m3,
whence b' E in q. This contradicts our choice of b' and proves the
lemma.

THEOREM. Every regular local ring A is a LTFD.
PROOF. We proceed by induction on dim (A). By lemmas 2 and 3

we may assume that dim (A) � 4. We consider two elements a, b of
A, set b = Aa + Ab and prove that 8(b) � I (Lemma 1). Let in be the
maximal ideal of A. The ideals b, b : in,.. . , b : . form an
increasing sequence, whence there exists an integer n such that
b : = h : = .... Setting a = b : ins, we have a: in = a, whence in
is not an associated prime ideal of a, and there exists an element x of in,
not in in2, such that a : Ax = a.f Since A/Ax is a regular local ring of
dimension dim (A) —1 (VIII, § 9, Theorem 20, Corollary 2 and VIII,
§ 11, Theorem 26), the induction hypothesis shows that the cohomo-
logical dimension 8A/Ax ((b + of (b + considered as an
(A/Ax)-module, is 1. We set S= b +Ax, S/Ax, A=A/Ax.
Since 1, we have an exact sequence

where F' and F are free modules over A. Considering F' and F as
modules over A we have 1 ± max (8A(F), 8A(F')) (VII, § 13,

formula (7)). Now, F may be written in the form F/xF, where F is a free
A-module; since also xF is a free A-module we see that 8A(F) 1;
similarly 8A(F') 1. We therefore have 8A (S/Ax) = 2. Since
Ax is free, it follows from the formula 8A(S) max (8A(S/Ax), 8A(Ax))
(VII, § 13, formula (5)) that 8A(S) = 8A(b _L Ax) 2. It follows then
from formula (4) of VII, § 13, that 8(A/(b + Ax)) 3.

From this and from VII, § 13, Theorem 44 it follows that, if is any
associated prime ideal of b + Ax, we have � 3. Since dm (A) � 4,

1' The existence of such an element x can be proved as follows:
Let ..., be the prime ideals of a and let y be an element of in,

not in in2. Assume that y e fl P2 fl. fl (0 y U Since
f=g+1

1=1

(Vol. I, Ch. IV, § 6, Remark, p. 215). Let z be an element belonging to
fl and not to U Then set x=y+z.
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in is not an associated prime ideal of b + Ax. In other words we have
(b + Ax) :m = b ± Ax, whence (b Ax) = b Ax. Now, since a =
b we have (b ± Ax) : = b ± Ax, and evidently b a. For every
a E a, we may write a = b + cx with b E t and c E A; since b a, we have
cx E a, whence c E a since a : Ax = a. In other words we have

a b a =
b and the

b we have 8(b ± Ax) = 1 + 8(b)
(VII, § 13, Lemma 6), whence 8(e) � 1. Q.E.D.
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tively. Thus the entry "Composite valuation, Vi, 10, 43" means that a defi-
nition of composite valuations may be found in Chapter VI, § 10, page 43.
In the text, all newly defined terms are usually either introduced in a formal
DEFINITION or italicized.

VIII, 5, 270
Absolutely prime (ideal), VII, 11, 226
Absolutely unramified (ideal), VII,

11, 226
Affine model, VI, 17, 116
Affine restriction (of a projective

variety), VII, 6, 188
Affine space, VI, Sbis, 21
Algebraic affine variety, VI, Sbis, 21
Algebraic place, VI, 2, 5
Algebraic point (of a projective va-

riety), VII, 4, 172
Algebraic projective variety, VII, 4,

169
Algebro-geometric local ring, VIII,

13, 318
Analytically independent elements,

VIII, 2, 258
Analytically irreducible local domain,

VIII, 13, 314
Analytically normal local ring, VIII,

13, 314
Analytically unramified local ring,

VIII, 314
Approximation theorem for places,

VI, 7, 30
Approximation theorem for valua-

tions, VI, 10, 47
Archimedean (totally ordered group),

VI, 10, 45
genus (of a polynomial

ideal or of a variety), VII, 12, 236
Arithmeticaly normal va-

riety), VII, 4bis, 176

Associated graded ring, or module,
VIII, 1, 248

Basis of neighborhoods of zero, VIII,
2, 251

Birational correspondence, VI, Sbis,
24

Canonical extension of a valuation of
K to K(X), VI, 13, 85

Canonical valuation, VI, 9, 36
Cauchy sequence, VIII, 2, 254
Center of a place on a ring, VI, 5, 16
Center of a place on a variety (affine

case), VI, Sbis, 22
Center of a place on a variety (pro-

jective case), VII, 4bis, 174
Chain condition for prime ideals, App.

1, 326
Chain of syzygies, VII, 13, 237
Characteristic form (of a polynomial

ideal), App. 5, 363
Characteristic function (of a homoge-

neous ideal or of a module), VII,
12, 234

Chatacteristic polynomial (id.), VII,
12, 235

Characteristic function (of an ideal
in a semi-local ring), VIII, 8, 284

Characteristic polynomial (id.), VIII,
8, 285

Chow's lemma, VI, 17, 121
Codimension (homological codimen-

sion of a local ring), App. 6, 396
409
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Cohen-Macaulay ring, App. 6, 3%
Cohen's structure theorem, VIII, 12,

304
Cohomological dimension (of a mod-

ule), VII, 13, 242
Complete linear system, App. 4, 356
Complete model (over another

model), VI, 18, 127
Complete module (or ideal), App. 4,

347
Complete module (in the wide sense

or in the strict sense), App. 4, 358
Complete ring (or module) (in the

topologkal sense), VIII, 2, 254
Complete set of quasi-local rings, VI,

17, 115
Completely integrally closed ring,

VIII, I, 250
Completion of a module, App. 4, 347
Completion of a ring (or module)

(in the topological sense), VIII, 2,
256

Composite valuation, VI, 10, 43
Composition chain of a place, VI, 3,

10
Conjugate (algebraic) places, VI, 2,

6
Conjugate places (in a normal exten-

sion of a field), VI, 7, 28
Contracted ideal, App. 5, 368
Convergent power series, VII, 1, 142
Coordinate domain, VII, 3, 160
Coordinate ring (of an affine variety),

VI, Sbis, 22
Correspondence (birational c.), VI,

Sbis, 24

Decomposition field (of a valuation),
VI, 12, 70

Decomposition group (of a valua-
tion), VI, 12, 68

Deficiency (ramification d.), VI, 11,
58

Defined over k (affine variety), VII,
3, 160

Defined over k (projective variety),
VII, 4, 169

Defining ring (of a affine model), VI,
17, 116

Degree (of an element of a graded
module), VII, 12, 231

Degree (of an element of a graded
ring), VU, 2, 150

Degree (of a polynomial ideal), VII,
12, 236

Dimension formula (in noetherian do-
mains), App. 1, 326

Dimension of an affine variety, VI,
Sbis, 22

Dimension of an ideal (in a finite
integral domain), VII, 7, 196

Dimension of a linear system, App. 4,
357

Dimension of a place, VI, 2, 4
Dimension of a point, VI, 5bs, 22
Dimension of a prime ideal (in a finite

integral domain), VI, 14, 90
Dimension of a projective varety,

VII, 4, 171
Dimension of a semi-local ring, VIII,

9, 288
Dimension of a valuation, VI, 8, 34
Directional form (of a polynomial

ideal), App. 5, 364
Directional form of a valuation, App.

5, 364
Derived normal model, VI, 18, 127
Discrete (ordered group or valua-

tion), VI, 10, 48
Distinguished pseudo-polynomial, VII,

1,146
Divisor (prime, of an algebraic func-

tion field), VI, 14, 88
Divisor (prime, of a local domain),

App. 2, 339
Divisor, or divisorial cycle, VI, 14, 97
Divisor, or divisorial cycle (projective

case), VII, 4bis, 175 and App. 4,
356

Divisor of a function, VII, 4bis, 175
Dominate (a quasi-local ring domi-

nates another quasi-local ring), VI,
17, 115
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Dominate (a valuation dominates a
local ring), App. 2, 330

Domination mapping, VI, 17, 115
Domination relation, VI, 17, 115

Effective cycle, App. 4, 356
Elementary base condition, App. 4,

359
Equicharacteristic local ring, VIII, 12,

304
Equidimensional ideal, VII, 7, 196
Equivalent modules, VII, 13, 238
Equivalent valuations, VI, 8, 33
Essential valuations (of a Krull do-

main), VI, 13, 82
Extension of a place, VI, 6, 24
Extension of a valuation, VI, 11, 50
Extension theorem for specializations,

VI, 4, 13

Factorization theorem for contracted
(or complete) ideals, App. 5, 373
and 386

Faithful pairing, VI, 12, 75
Field of representatives, VIII, 7, 281,

and VIII, 12, 304
Finite (place, finite on a ring), VI, 5,

15

Finite homogeneous ring, VII, 2, 151
First kind (place of), VI, 5, 19
First kind (prime divisor of), VI, 14,

95
Formal power series, VII, 1, 129
Function field (of an affine variety),

VI, Sbis, 22
Function field (of a projective va—

riety), VII, 4, 171

General point (affine case), VI, Sbis,
22

General point (projective case), VII,
4, 171

Generalized power series expansions,
VI, 15,

Graded module, VII, 12, 230
Graded ring, VII, 2, 150
Graded subring, VII, 2, 150

I Ground Field, VII, 3, 160
G'ound fied of a place, VI, 2, 3

Hensel's lemma, VIII, 7, 279
Higher ramification groups, VI, 12,

78
Nullstellensatz, VII, 3, 164

Hilbert theorem on syzygies, VII, 13,
240

Hilbert-Serre theorem on character—
istic functions, VII, 12, 232

Homogeneous component (case of
graded modules), VII, 12, 231

Homogeneous component (case of
graded rings), VII, 2, 150

Homogeneous coordinates, VII, 4, 168
Homogeneous coordinate ring, VII, 4,

170
Homogeneous element (case of graded

modules), VII, 12, 231
Homogeneous element (case of graded

rings), VII, 2, 150
Homogeneous homomorphism (case of

graded modules), VII, 12, 231
Homogeneous homomorphism (case

of graded rings), VII, 2, 150
Homogeneous ideal, VII, 2, 149
Homogeneous module, App. 4, 352
Homogeneous ring (finite), VII, 2,

151
Homogeneous submodule, VII, 12, 231
Homogeneous system of integrity

(case of finite homogeneous rings),
VII, 7, 198

Homogeneous system of integrity
(case of power series rings), VII,
9, 210

Homogenized polynomial, VII, 5, 179
Homological codimension (of a local

ring), App. 6, 396
Hyperplane at infinity, VII, 6, 187

Ideal (of an algebraic affine variety),
VI, 5bis, 22

Ideal (of the principal class), VII,
13, 245
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Implicit functions (theorem of), VIII,
7, 280

Independence of places, VI, 7, 29
Independence of valuations, VI, 10,

47
Inertia field (of a valuation), VI, 12,

70
Inertia group (of a valuation), VI,

12, 68
Infinite sums of power series, VII, 1,

133
Initial component (of an element of a

graded ring), VII, 2, 150
Initial form, VIII, 1, 249
Initial form (of a power series), VII,

1, 130
Initial form module, App. 5, 363
Initial ideal, App. 5, 363
Integral closure of a module, App. 4,

350
Integral dependence on a module, App.

4, 349
Integral direct sum, App. 2, 334
Irreducible components (of a variety),

VII, 3, 163
Irreducible variety, VI, Sbis, 22 and

VII, 3, 162
Irredundant (set of quasi-local rings),

VI, 17, 115
Irrelevant ideal, VII, 2, 154
Isolated subgroup (of an ordered

abelian group), VI, 10, 40
Isomorphic places, VI, 2, 6
k—isomorphic points, VI, Sbis, 22

Join (of two models), VI, 17, 121

Krull domain, VI, 13, 82

Large ramification group (of a valua—
tion), VI, 12, 75

Leading ideal (or submodule), VIII,
1,250

Lexicographic order (of a direct prod—
uct of ordered groups), VI, 10, 49

Limit of a Cauchy sequence, VIII, 2,
254

Linear equivalence (of cycles), App.
4, 356

Linear system, App. 4, 358
Local ring of a point (affine case),

VI, 5bis, 23
Local ring of a point, of a subvariety

(projective case), VII, 4bis, 173
Locally normal variety (affine case),

VI, 14, 94
Locally normal variety (projective

case), VII, 4bis, 174
Lost (prime ideal lost in an over—

ring), App. 1, 325

m-adic completion, VIII, 2, 256
m-adic prime divisor (of a regular

local ring), VIII, 11, 302
rn-topology, VIII, 2, 253
M acaulay ring, App. 6, 396
Macaulay's theorem, VII, 8, 203
Majorant, VII, 1, 142
Maximally algebraic subfield, VII, 11,

227
Model of a field, VI, 17, 116
Module (graded), VII, 12, 230
Module of relations, VII, 13, 237
Module of syzygies, VII, 13, 237
Multiplicity (of an ideal, of a semi--

local ring), VIII, 10, 294

Normal model, VI, 18, 124
Normal system of integrity, VII, 9,

213
Normal variety (affine case), VI, 14,

94
I Normal variety (projective case),

VII, 4bis, 174
I Normalization theorem, VII, 7, 200

Null divisor of a function, VI, 14, 97
Null sequence, VIII, 2, 254

Order function, VIII, 1, 249
Order of a function at a prime divisor,

VI, 14, 97
Order of an ideal (in a local ring),

App. 5, 362
Order of a power series, VII, 1, 130
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Order of a projective variety, VII,
12, 236

p-adic integers, VIII, 7, 278
p-place (in a Dedekind domain), VI,

2, 4
p-adic place (in a unique factorization

domain), VI, 2, 4
valuation (in a Dedekind do-

main), VI, 9, 39
p-adic valuation (in a unique factori—

zation domain), VI, 9, 38
Place VI, 2, 3
Place of the first or of the second

kind, VI, 5, 19

Point at finite distance, at infinity,
VII, 6, 188

Polar divisor of a function, VI, 14,
97

Power series (formal or convergent),
VII, 1, 129 and 142

Prime divisor (of an algebraic func-
tion field), VI, 14, 88

Prime divisor (of the first or of the
second kind), VI, 14, 95

Prime divisor (of a local domain),
App. 2, 339

Prime ideal of a place, VI, 2, 5
Prme ideal of a p&nt on a variety,

VI, 5bis, 22
Prime ideal of a valuation, VI, 8,

34
Prime sequence (in a ring), App. 6,

394
Principal class (ideal of), VII, 13,

245
Projective dimension of a homoge-

neous ideal, VII, 4, 171 and VII,
7, 196

Projective extension of an afline va-
riety, VII, 6, 188

Projective limit (of an inverse sys-
tem), VT, 122

Projective model, VI, 17, 119
Projective space, VII, 4, 168
Projective variety, VII, 4, 169

Proper specialization of a place, VI,
3, 7

Quadratic transformation, App. 5,
367

Quadratic transform (of a local ring
or of an ideal), App. 5, 367

Quasi absolutely prime ideal, VII, II,
226

Quasi-compact topological space, VI,
17, 113

Quasi-local ring, VI, 17, 115
Quasi maximally algebraic subfield,

VII, II, 227
Ramification deficiency, VI, II, 58
Ramification groups, VI, 12, 78
Ramification index of a valuation, VI,

11, 53
Ramified prime ideal (under ground

field extension), VII, 11, 226
Rank of a place, VI, 3, 9
Rank of a valuation, VI, 10, 39
Rational place, VI, 2, 5
Rational rank of a valuation, VI, 10,

50
Rational valuation, VI, 10, 50
Real valuation, VI, 10, 45
Reduced ramification index of a valu—

ation, VI, 11, 53
Reducible affine variety, VII, 3, 162
Regular extension, VII, 11, 229
Regular local ring, VIII, 11, 301
Regular system of parameters, VIII,

11, 301
Relative degree of a place, VI, 6, 26
Relative degree of a valuation, VI,

11, 53
Relative dimension of a place, VI, 6,

25
Representative cone of a projective

variety, VII, 4, 172
Residue of an element with respect to

a valuation, VI, 8, 34
Residue field of a place, VI, 2, 4
Residue field of a valuation, VI, 8, 34
Riemann surface (of a field over a

subring), VI, 17, 110
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Second kind (place of), VI, 5, 19
Second kind (prime divisor of), VI,

14,95
Segment (of an ordered set), VI, 10,

40
Semi-local ring, VIII, 4, 264
Simple ideal, App. 5, 385
Specialization, VI, 1, 1

Specialization chain for a place, VI,
3,10

Specialization of a place, VI, 3, 7
Specialization of a point (affine case),

VI, Sbis, 23
Specialization of a point (projective

case), VII, 4, 170
Specialization ring, VI, 1, 2
Standard decomposition of a complete

ideal, App. 5, 382
Strictly complete linear system, App.

4, 358
Strictly homogeneous coordinates,

VII, 4, 168
Substitution of power series, VII, 1,

135
Superficial element, VIII, 8, 285
System of integrity (homogeneous),

VII, 9, 2W
System of integrity (normal), VII 9,

213
System of integrity (power series

case), VII, 9, 216
System of parameters, VIII, 9, 292
System of parameters (regular),

VIII, 11, 301
Syzygies (chain of), VII, 13, 237
Syzygies (module of), VII, 13, 237

Topological module, or ring, VIII, 2,
251

Topology of VII, 3, 161
Topology VIII, 5,

270
Topology (m-adic), VIII, 2, 253
Transform of an ideal (under a quad-

ratic transformation), App. 5, 367
Trivial place, VI, 2, 5
Trivial valuation, VI, 8, 32

Universal domain, VI, Sbis, 22
Unmixed ideal, VII, 7, 196
Unramified prime ideal (under ground

field extension), VII, II, 226

Valuation, VI, 8, 32
Valuation ideal, App. 3, 340
Valuation ring, VI, 2, 4, 9, 34
Value of an element at a place, VI, 2,

4
Value group of a valuation, VI, 8, 32
Variety (algebraic affine), VI, Sbis,

21
Variety (algebraic projective), VII,

4, 169

Weierstrass preparation
VII, 1, 139

theorem,

ring, VIII, 4, 263
Zero of an ideal (affine case), VII,

3,160
Zero of an ideal (projective case),

VII, 4, 169
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