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PREFACE

This second volume of our treatise on commutative algebra deals
Jargely with three basic topics, which go beyond the more or less classical
material of volume I and are on the whole of a more advanced nature
and a more recent vintage. These topics are: (a) valuation theory; (b)
theory of polynomial and power series rings (including generalizations to
graded rings and modules); (c) local algebra. Because most of these
topics have either their source or their best motivation in algebraic geom-
etry, the algebro-geometric connections and applications of the purely
algebraic material are constantly stressed and abundantly scattered through-
out the exposition. Thus, this volume can be used in part as an introduc-
tion to some basic concepts and the arithmetic foundations of algebraic
geometry. The reader who is not immediately concerned with geometric
applications may omit the algebro-geometric material in a first reading
(see “Instructions to the reader,” page vii), but it is only fair to say that
many a reader will find it more instructive to find out immediately what
is the geometric motivation behind the purely algebraic material of this
volume.

The first 8 sections of Chapter VI (including § Sbis) deal directly with
properties of places, rather than with those of the valuation associated
with a place. These, therefore, are properties of valuations in which the
value group of the valuation is not involved. The very concept of a valua-
tion is only introduced for the first time in § 8, and, from that point on,
the more subtle properties of valuations which are related to the value
group come to the fore. These are illustrated by numerous examples, taken
largely from the theory of algebraic function fields (§§ 14, 15). The
last two sections of the chapter contain a general treatment, within the
framework of arbitrary commutative integral domains, of two concepts
which are of considerable importance in algebraic geometry (the Riemann
surface of a field and the notions of normal and derived normal models).

The greater part of Chapter VII is devoted to classical properties of
polynomial and power series rings (e.g., dimension theory) and their
applications to algebraic geometry. This chapter also includes a treatment
of graded rings and modules and such topics as characteristic (Hilbert)
functions and chains of syzygies. In the past, these last two topics repre-
sented some final words of the algebraic theory, to be followed only by
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deeper geometric applications. With the modern development of homo-
logical methods in commutative algebra, these topics became starting points
of extensive, purely algebraic theories, having a much wider range of
applications. We could not include, without completely disrupting the
balance of this volume, the results which require the use of truly homological
methods (e.g., torsion and extension functors, complexes, spectral se-
quences). However, we have tried to include the results which may be
proved by methods which, although inspired by homological algebra, are
nevertheless classical in nature. The reader will find these results in
Chapter VII, §§ 12 and 13, and in Appendices 6 and 7. No previous
knowledge of homological algebra is needed for reading these parts of the
volume. The reader who wants to see how truly homological methods
may be applied to commutative algebra is referred to the original papers
of M. Auslander, D. Buchsbaum, A. Grothendieck, D. Rees, J.-P. Serre,
etc., to a forthcoming book of D. C. Northcott, as well, of course, as to the
basic treatise of Cartan-Eilenberg.

Chapter VIII deals with the theory of local rings. This theory pro-
vides the algebraic basis for the local study of algebraic and analytical
varieties. The first six sections are rather elementary and deal with more
general rings than local rings. Deeper results are presented in the rest of
the chapter, but we have not attempted to give an encyclopedic account of
the subject.

‘While much of the material appears here for the first time in book
form, there is also a good deal of material which is new and represents
current or unpublished research. The appendices treat special topics of
current interest (the first 5 were written by the senior author; the last
two by the junior author), except that Appendix 6 gives a smooth treatment
of two important theorems proved in the text. Appendices 4 and 5 are
of particular interest from an algebro-geometric point of view.

‘We have not attempted to trace the origin of the various proofs in this
volume. Some of these proofs, especially in the appendices, are new.
Others are transcriptions or arrangements of proofs taken from original
papers.

We wish to acknowledge the assistance which we have received from
M. Hironaka, T. Knapp, S. Shatz, and M. Schlesinger in the work of
checking parts of the manuscript and of reading the galley proofs. Many
improvements have resulted from their assistance.

The work on Appendix 5 was supported by a Research project at
Harvard University sponsored by the Air Force Office of Scientific Re-
search.

Cambridge, Massachusetts Oscar ZARISKI



INSTRUCTIONS TO THE READER

As this volume contains a number of topics which either are of some-
what specialized nature (but still belong to pure algebra) or belong to
algebraic geometry, the reader who wishes first to acquaint himself with
the basic algebraic topics before turning his attention to deeper and more
specialized results or to geometric applications, may very well skip some
parts of this volume during a first reading. The material which may thus
be postponed to a second reading is the following:

CuaPTER VI
All of § 3, except for the proof of the first two assertions of Theorem
3 and the definition of the rank of a place; § 5: Theorem 10, the lemma and
its corollary; § Sbis (if not immediately interested in geometric applica-
tions); §11: Lemma 4 and pages 57-67 (beginning with part (b) of
Theorem 19); §12; § 14: The last part of the section, beginning with
Theorem 34’; § 15 (if not interested in examples); §§ 16, 17, and 18.

Cuarter VII
§§ 3, 4, 4bis, 5 and 6 (if not immediately interested in geometric appli-
cations) ; all of §8, except for the statement of Macaulay’s theorem and
(if it sounds interesting) the proof (another proof, based on local algebra,
may be found in Appendix 6) ; § 9: Theorem 29 and the proof of Theorem
30 (this theorem is contained in Theorem 25); § 11 (the contents of this
section are particularly useful in geometric applications).

Cuaprer VIII
All of §5, except for Theorem 13 and its Corollary 2; §10; § 11:
Everything concerning multiplicities; all of .§ 12, except for Theorem 27

(second proof recommended) and the statement of the theorem of Cohen-
Macaulay; § 13.

All appendices may be omitted in a first reading.

vii
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VI. VALUATION THEORY

§ 1. Introductory remarks. Homomorphic mappings of rings
into fields are very common in commutative algebra and in its applica-
tions. We may cite the following examples:

EXAMPLE 1. The reduction of integers mod p. More precisely, let p
be a prime number ; then the canonical mapping of the ring J of integers
onto the residue class ring J/Jp maps J onto a field with p elements.
More generally, we may consider a ring D of algebraic integers (Vol. I,
Ch. 'V, § 4, p. 265), a prime ideal p in D, and the mapping of D onto D/».
These examples are of importance in number theory.

EXAMPLE 2.  We now give examples pertaining to algebraic geometry.

Let kbe a field and K an extension of k. Let (x4, - - -, x,,) be a point in
the affine n-space 4,X over K. With every polynomial F(X,, - - -, X)
with coefficients in k we associate its value F(x,, - - -, x,) at the given

point. This defines a homomorphic mapping of the polynomial ring
k[X,, -+, X,] into K. Now let us say that a point (x'y, - --,«",) of
AK is a specialization of (x,,---,x,) over k if every polynomial
Fek[X,,---,X,] which vanishes at (x,,---,,) vanishes also at
(*'y, -+ -, &’,). Then (by taking differences) two polynomials G, H
with coefficients in & which take the same value at (x,, - - -, x,) take also
the same value at (x',, - - -, #’,). This defines a mapping of k[x,, - - - ,,]
onto k[x’;, - - -, «’,] (= K), which maps x; on «’; for 1 <i<n. Sucha
mapping, and more generally any homomorphic mapping ¢ of a ring R
into a field, such that ¢(x) # 0 for some x € R, is called a specialization (of
klxy, - - - x,] into K in our case). Note that this definition implies
that p(1)=11if 1 € R. If, as in the above example, the specialization is
the identity on some subfield k of the ring, then we shall say that the
Specialization is over k.

EXAMPLE 3. From function theory comes the following example:
with any power series in n variables with complex coefficients we
asso.cmte its constant term, i.e., its value at the origin.

Since any integral domain may be imbedded in its quotient field, a

Omomorphic mapping of a ring 4 into a field is the same thing as a

1



2 VALUATION THEORY Ch. VI

homomorphic mapping of 4 onto an integral domain. Thus, by Vol. I,
Ch. III, §8, Theorem 10 a necessary and sufficient condition that a
homomorphism f of a ring 4 map 4 into a field is that the kernel of f be
a prime ideal.

From now on we suppose that we are dealing with a ring 4 which is
an integral domain. Let K be a field containing 4 (not necessarily its
quotient field), and let f be a specialization of 4. An important problem
is to investigate whether f may be extended to a specialization defined
on as big as possible a subring of K. An answer to this question will be
given in §4. We may notice already that this problem is not at all
trivial.

exaMPLE 4. Consider, in fact, a polynomial ring k[ X, Y] in two
variables over a field &, and the specialization f of R[X, Y] onto k de-
fined by f(a)=a forain k, f(X)=f(Y)=0 (“the value at the origin”’).
The value to be given to the rational function X/Y at the origin is not
determined by f(since itappearsas 0/0). Wehavek[X|Y, Y]>ok[X, Y],
and any maximal ideal 9 in k[X/Y, Y] which contains Y contains also
X and thus contracts to the maximal ideal (X, Y) in k[X, Y]. Since
there are infinitely many such maximal ideals B (they are the ideals
generated by A(X/Y) and Y, where A(?) is any irreducible polynomial
in k[7]) it follows that f admits infinitely many extensions to the ring
R[X, Y, X|Y].

However, there are elements of K to which the given specialization f
of A may be extended without further ado and in a unique fashion.
Consider, in fact, the elements of K which may be written in the form
alb with a in 4, b in A4, and f(b)#0. These elements constitute the
quotient ring A, where p is the kernel of f and is a prime ideal. For
such an element a/b let us write g(a/b)=f(a)/f(b). It is readily verified
that g is actually a mapping: if a/b=a’[b’ with f(b)#0 and f(5") #0, then
f(@)f(b)=f(a')[f(}") since ab’=ba’ and since f is a homomorphism.
One sees also in a similar way that g is a homomorphism of 4, extending
f(see Vol. I, Ch. IV, §9, Theorem 14). Since g takes values in the
same field as f does, g is a specialization of 4p. The ring 4 is some-
times called the specialization ring of f; it is a local ring if 4 is noetherian
(Vol. I, Ch. IV, § 11, p. 228).

In Example 1 this local ring is the set of all fractions m/n whose de-
nominator 7 is not a multiple of p. In Example 2 it is the set of all
rational functions in X,,--.,X, which are “finite” at the point
(%4, + +, x,) (i.e., whose denominator does not vanish at this point).
In Example 3 it is the power series ring itself, as a power series with
non-zero constant term is invertible.
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On the other hand there are (when the specialization f is not an iso-
morphic mapping) elements of K to which f cannot be extended by any
means. These elements are those which can be written under the form
a/b, with a and b in 4, with f(a)#0 and f(b) =0, for the value g(a/b) of
a/b in an extension g of f must satisfy the relation g(a/b)-f(b) =f(a) (since
(a/b)-b=a), but this is impossible. The elements a/b of the above
form are the inverses of the non-zero elements in the maximal ideal of
the specialization ring of f.

We are thus led to studying the extreme case in which all elements of
K which are not in 4 are of this latter type. In this case 4 is identical
with the specialization ring of f, and every element of K which is not in
A must be of the form 1/x, where x is an element of 4 such that f(x)=0.

§ 2. Places

DerFINITION 1. Let K be an arbitrary field. A place of K is a homo-
morphic mapping P of a subring Ko of K into a field 4, such that the follow-

ing conditions are satisfied:
(1) if xe K and x ¢ K, then 1/x € Kp and (1/x)P=0;
(2) xP # 0 for some x in K».

In many applications of ideal theory (and expecially in algebraic geo-
metry) a certain basic field & is given in advance, called the ground field,
and the above arbitrary field K is restricted to be an extension of k:
k< K. Inthat case, one may be particularly interested in places & of K
which reduce to the identity on 4, i.e., places & which satisfy the follow-
ing additional condition:

3) ¢? = cfor all ¢ in k (whence & is a subfield of 4).

Any place 2 of K which satisfies (3) is said to be a place of K over &,
or a place of K/k.

EXAMPLES OF PLACES:

_ ExampLE 1. Let 4 be a UFD, and a an irreducible element in A.
The ideal 4q is a prime ideal, whence A/4a is an integral domain. De-
note by 4 its quotient field. The canonical homomorphism of 4 onto
A[Aa is a specialization f of A4 into 4. The specialization ring B of fis
thye set of all fractions x/y, with x € 4, y € 4, y ¢ Aa (i.e., y prime to a).
We denote by g the extension of f to B. The homomorphic mapping
& 1s a place: in fact, by the unique factorization, any element z of the
quotient field K .of 4 which does not belong to B can be written in the
{)OFm Ylx, withye 4, xe A4, y ¢ Aa, x € Aa; then its inverse 1/z=x]y
clongs to B and satisfies the relation 2(1/2)=0.
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We call the place g which is thus determined by an irreducible ele-
ment a of 4 an a-adic place (of the quotient field of A4).

EXAMPLE 2. A similar example may be given if one takes for 4 a
Dedekind domain and if one considers the homomorphic mapping f of
A into the quotient field of 4/p (» denoting a prime ideal of 4). The
extension g of f to the local ring 4, of f is again a place [notice that 4,
isa PID (Vol. I, Ch. V, § 7, Theorem 16), to which the preceding ex-
ample may be applied]. This place is called the v-adic place of A.

We shall show at once the following property of places: if 2 is a place
of K, then £ has no proper extensionsin K. Or more precisely: if ¢ is
a homomorphic mapping of a subring L of K (into some field), such that
L>Kgp and =2 0on Kg, then L=Kgp. We note first that, by condition
(1), the element 1 of K belongs to K#. It follows then from condition
(2) that 12 must be the element 1 of 4. Now, let x be any element of L.
We cannot have simultaneously 1/x € K# and (1/x)2?=0, for then we
would have 1=lp=(x-1/x)p=xp-(1/x)p=xp-0=0, a contradiction.
It follows therefore, by condition (1), that xe K. Hence L=Kg,
as asserted.

It will be proved later (§ 4, Theorem 5’, Corollary 4) that the above
is a characteristic property of places.

We introduce the symbol co and we agree to write x# = oo if x ¢ Kg.

The following assertions are immediate consequences of conditions (1)
and (2) above:

(a) if x = o0 and yZ # oo, then (x+y)? = ©0;
(b) if ¥ = oo and yZ # 0, then (xy)? = ©;
(c) if x # 0, then xZ = 0 if and only if (1/x)Z = c0.

If x € Ko we shall call x2 the Z-value of x, or the value of x at the place
2, and we shall say that x is finite at & or has finite P-value if x2 # 0,
i.e., if x€ K. The ring Kg shall be referred to as the valuation ring of
the place 2.

It is clear that the elements x2, x € Ko, form a subring of 4. It is
easily seen that this subring is actually a field, for if e=x2#0, then, by
condition (1), also 1/x € K, and hence 1/a=(1/x)2. We call this field
the residue field of . 'The elements of 4 which are not &-values of
elements of K do not interest us. Hence we shall assume that the
residue field of & is the field 4 itself.

If K is an extension of a ground field &, if £ is a place of K/k and if s
is the transcendence degree of 4 over & (s may be an infinite cardinal), we
call s the dimension of the place &, over k, or in symbols: s=dim Z[k. If
K has transcendence degree r over k, then 0 <s<7. The place £ of
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K|k is algebraic (over k) if s=0; rational if 4=k. On the other extreme
we have the case s=7. In this case and under the additional assump-
tion that r is finite, & is an isomorphism (Vol. I, Ch. 11, § 12, Theorem
29), and furthermore it follows at once from condition (1) that Ke =K,
whence & is merely a k-isomorphism of K. Places which are iso-
morphisms of K will be called rivial places of K (or trivial places of
K|k, if they are k-isomorphisms of K).

It is obvious that the trivial places & of K are characterized by the
condition Kz=K. On the other hand, if £ is a place of K and K, is a
subfield of X, then the restriction &, of £ to K, is obviously a place of
K,;. Therefore, if K;< Kgp then &, is a trivial place of K;. In parti-
cular, if K has characteristic p #0, then any place £ of K is trivial on the
prime subfield of K (for 1 € Kg).

From condition (1) of Definition 1 it follows that if an element x of K
is such that x2 #0, then 1/x belongs to K and hence « is a unit in Kg.
Hence the kernel of & consists of all non-units of the ring K. The
kernel of & is therefore a maximal ideal in Kg; in fact it is the only
maximal ideal in Kp. (However, the valuation ring K of a place £ is
not necessarily alocal ring, since according to our definition, a local ring
is noetherian (Vol. I, Ch. IV, § 11, p. 228), while, as we shall see later
(§ 10, Theorem 16), a valuation ring need not be noetherian.) The
maximal ideal in K will be denoted by M4 and will be referred to as the
prime ideal of the place #. The field Ko/ and the residue field 4 of
& are isomorphic.

Let L be a subring of K. Our definition of places of K implies that
if L is the valuation ring of a place 2 of K, then L contains the reciprocal
of any element of K which does not belong to L; and, furthermore, L
must contain & if L is the valuation ring of a place of K/k. We now
prove that also the converse is true:

THEOREM 1. Let L be a subring of K. If L contains the reciprocal
of any element of K which does not belong to L, then there exists a place P of
K such that L is the valuation ring of . If, furthermore, K contains a
ground field k and L contains k, then there also exists a place P of K|k
such that L is the valuation ring of 2.

PRrOOF. Assume that L contains the reciprocal of any element of K
which does not belong to L. Then it follows in the first place that
'1 € L. We next show that the non-units of L form an ideal. For this
1t 1s only necessary to show that if x and y are non-units of L, then also
¥+ is a non-unit, and in the proof we may assume that both x and y are
different from zero. By assumption, either y/x or x/y belongs to L.
Let, say, y/xe L. Thenx+y=x(1+y/x), and since 1+y/x €L and x
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is a non-unit in L, we conclude that x+y is a non-unit in L, as asserted.
Let, then, M be the ideal of non-units of L, and let & be the canonical
homomorphism of L onto the field L/M. Then condition (1) of
Definition 1 is satisfied, with Kp=L (while 4 is now the field L/9), for
ifxe Kand x ¢ L, then 1/xe L, whence 1/x € M and therefore (1/x)2=0.
It is obvious that also condition (2) is satisfied, since L/M is a field and
since & maps L onto L/M.

Assume now that the additional condition #< L. is also satisfied. Then
the field L/9M contains the isomorphic image kP of k. 'We may therefore
identify each element ¢ of k with its image ¢Z; and then also condition
(3) is satisfied. Q.E.D.

An important property of the valuation ring K of a place & is that it
is integrally closed in K. For let x be any element of K which is in-
tegrally dependent on Kg: "+ ax" 1+ - .- +a,=0, a,€ Kp. Divid-
ing by x” we find 1= —a,(1/x)—ay(1/x)2— - - - —a,(1/x)". If x¢ Ko,
then 1/x € K, (1/x)2 =0, and hence equating the Z-values of both sides
of the above relation we get 1 =0, a contradiction. Hence x € K, and
K2 is integrally closed in K, as asserted.

DErFINITION 2. If P and P are places of K (or of K|[Rk), with residue
fields 4 and 4’ respectively, then P and P’ are said to be isomorphic
places (or k-isomorphic places) if there exists an isomorphism i (or a k-
isomorphism ) of 4 onto 4’ such that P' =Pip.

A necessary and sufficient condition that two places & and &’ of K (or
of K/k) be isomorphic (or k-isomorphic) is that their valuation rings Ks
and Kg coincide. It is obvious that the condition is necessary.
Assume now that the condition is satisfied, and let ¢ be the canonical
homomorphism of Kz onto K/M». Then #-1p is an isomorphism of
4 onto Kg/Ma,and similarly '~ 1pisanisomorphismof 4’ onto Ko/Me.
Hence Z#-1%'(= P-1p-p~1Z’) is an isomorphism s of 4 onto 4’, showing
that # and &’ are isomorphic places. If, moreover, Z and &’ are places
of K|k, then ¢ is a k-isomorphism of 4 onto 4, whence # and &' are k-
isomorphic places.

It is clear that k-isomorphic places of K/k have the same dimension
over k.

Isomorphic algebraic places of K/k will be referred to as conjugate
places (over k) if their residue fields are subfields of one and the same
algebraic closure k of k. In that case, these residue fields are con-
jugate subfields of k/k.

If 2 is a place of K[k, where k is a ground field, then K and the
residue field 4 of & have the same characteristic (since k=4). Con-
versely, assume that 2 is a place of K such that K and 4 have the same
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characteristic p. (Note that this assumption is satisfied for any place 2
of K if K has characteristic # 0, for in that case the restriction of 2 to the
prime subfield of K'is an isomorphism.) Let I" denote the prime subfield
of K. Weknow that if p# 0 then the restriction of £ to I' is an isomor-
phism. If p=0 and if J denotes the ring of integers in I, then J< K»
(since 1 € K) and the restriction of 2 to J must be an isomorphism (for
otherwise 4 would be of characteristic #0). Hence again the restriction
of Zto I'is an isomorphism (and we have I'c Kp). It follows at once (as
in the proof of the last part of Theorem 1) that P is isomorphic to a place
of K/I. We thus see that the theory of places over ground fields is
essentially as general as the theory of arbitrary places & in the equal
characteristic case (i.e., in the case in which K and 4 have the same
characteristic).

§ 3. Specialization of places. Let 2 and & be places of K. We
say that &' is a specialization of 2 and we write 2 — &', if the valuation
ring Kz of &' is contained in the valuation ring Kz of £, and we say
that &' is a proper specialization of P if K- is a proper subring of K».
If both & and &’ are places of K[k and &' is a specialization of £, then
we shall write 2 5 2.

It is clear that 2 — &’ if and only if either one of the following condi-
tions is satisfied: (a) x2’'# co implies xP+# 0; (b) xZ=0 implies
xP' =0 (for, x#=0 implies (1/x)?=co0, whence (1/x)# =c0, or
x#'=0). Hence we have, in view of (b):

(1) P >P > Kp > Kp: and Mp < Mo,
In particular, if both £ and &’ are places of K|k and 2 A 9, then we
conclude at once with the following result: If x,, x,, - - -, x, are any

elements of K which are finite at P’ (and therefore also at P), then any
algebraic relation, over k, between the P-values of the x; is also satisfied by
the #'-values of the x;. Thus, our definition of specialization of places is
a natural extension of the notion of specialization used in algebraic
geometry.

Every place of K is a specialization of any trivial place of K. Further-
more, isomorphic places are specializations of each other. Conversely,
if two places 2 and 2’ are such that each is a specialization of the other,
then they are isomorphic places. As a generalization of the last state-
ment, we have the following theorem:

ITHEOREM 2. Let P and P’ be places of K, with residue fields 4 and
4" respectively. Then P — P' if and only if there exists a place 2 of 4
such that P = P2 on K.
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ProOF. Assume that Z — %', We set 4,=Kz'? and we observe
that since Kg'< K, 42 1s a subring of 4. On the other hand, we have,
by (1), that Mgz is a prime ideal in K»-. Let now ¢ and ¢’ denote the
canonical homomorphisms of Kz’ onto Kg'/Ms and Kgp'/Ms- respec-
tively, and let 2, be the restriction of Z t0 K#'. Since Mg is the kernel
of #,, the product Z,~1¢p is an isomorphism of 4, onto Kgz'/Ms.
Similarly ¢~ is an isomorphism of Kgz//Mz onto 4’. Since
Mep< My, p~l¢’ is a homomorphism of Kyp'/Ms onto Ky /Mep. We
set 2=P, p-p 9 @' 1P =P ,~1P'. Then 2 is a homomorphism of
Ao onto 4'. If £is an element of 4 which is not in 45 and x is some
fixed element of K such that xZ=¢, then x ¢ K, (1/x)2?'=0, and
hence (1/£)2=0. We have thus proved that 2 is a place of 4, with
residue field 4’, and that 2,2=2". Hence &' and #2 coincide on
Kg.

Conversely, if we have ' =22 on Kp, where 2 is a place of 4, then
it is clear that x2’ # oo implies x# # co, whence K# < Ko, and Z' is a
specialization of 2. 'This completes the proof.

We note that 2’ and 2.2 coincide not only on K- but also on Kg, in
the following sense: if x € K and x ¢ Ko (whence xP € 4 and xP' = 0),
then (x?)2=co. For, if x¢ Kp-, then (1/x)#'=0, and hence
(1/x)22=0 (since =22 on Kg'), i.e., (1/xP)2=0 and (x#)2= o0,
as asserted.

We note also that in the special case of isomorphic places 2, ', 2 is
an isomorphism of 4, i.e., 2 is a trivial place of 4.

It is clear that the place 2 whose existence is asserted in Theorem 2
is uniquely determined by & and £ and that if both & and &' are
places over k, then also 2 is a place over & (i.e., a place of 4/k).

CoroLLARY. If P and &' are places of K|k and P L P, then
dim Z'[k<dim P[k. Furthermore, if the residue field A of P has finite
transcendence degree over k and P’ is a specialization of P over k, then
dim Z'[k=dim 2P|k if and only if P and P’ are k-isomorphic places.

We shall now investigate the following question: given a place £ of
K, find all the places of K of which £ is a specialization. From
Theorem 1 (§ 2) it follows at once that any ring (in K) which contains
the valuation ring of a place of K is itself a valuation ring of a place of K.
Hence our question is equivalent to the following: find all the subrings
of K which contain Kg. The answer to this equation is given by the
following theorem:

THEOREM 3. Any subring of K which contains Ko is necessarily the
quotient ring of Ko with respect to some prime ideal of Kg. If M, and M,
are ideals in Ko, then either I, contains M, or M, contains M, (and hence
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the set of rings between K» and K is totally ordered by set-theoretic inclu-
sion ). If P is a place of K|k and if tr.d. K|k=r+# co, then Ko has
only a finite number of prime ideals, and the number of prime ideals of K5
(other than Ko itself) is at most equal to r—s, where s=dim Z|k.
Proor. Let Lbearing between Kgand K: Kg<L<K. ThenLis
the valuation ring K2 of a place 2 of which & is a specialization and
hence the prime ideal M of 2 is also a prime ideal in K. Any element
of K which is not in M2 is a unit in K (since Mo is the ideal of non-
units of K2 and since K< K3). Hence the quotient ring of Kg with
respect to the prime ideal M, (i.e., the set of all quotients a/b, where
a, b€ Ko and b ¢ M) is contained in Ks. On the other hand, we now
show that any element x of K, belongs to the above quotient ring.
This is obvious if x € Kp. Assume that x ¢ Kp. If we set y=1/x,
then y € K (since K is a valuation ring). Furthermore, x ¢ M2 (since
Mao< Kg), and hence x is a unit in Kp. Therefore also y is a unit in
K3, and so y ¢ M. It follows that x(=1/y) belongs to the quotient
ring of Ko with respect to Ma. This proves the first part of the theorem.
Let M, and M, be any two proper ideals in Kz (not necessarily prime
ideals) and assume that MM, ¢ M,. Let x be an element of M;, not in
9M,, and let y be any element of M,, y#0. Then x/y ¢ K», and hence
ylx € Ko, y € M, (since M, is an ideal and x € M,;). Hence M, M,.
Assume now that & is a place of K/k and that tr.d. K/k=r#co. Let
M, and M, be two prime ideals in Ky and let us assume that, say,
M, >M,. Let L, i=1, 2, be the quotient ring of Kg with respect to
9M;, and let Z; be a place of K whose valuation ring is L;. We have
L,>L,, and hence &, is a proper specialization of Z,. On the other
hand, 2 is a specialization of #,. It follows by Theorem 2, Corol-
lary, that dim [k <dim &,/k<dim #,/k<r. This shows that the
number of prime ideals of Kz is finite and that the number of prime
ideals in K, other than Kg itself, is at most r—s. This completes the
proof of the theorem.
DeriNiTiON 1. The ordinal typet of the totally ordered set of proper
prime ideals o of Ko (04#(0), a# Ke; a, precedes a, if a,> a5) is called
the rank of the place P.

t In most axiomatic systems of set theory it is possible to attach to every
totally ordered set E a well-defined object o(E) in such a way that we have
o(E)=o(F) if and only if E and F are isomorphic ordered sets (i.e., if there exists
a one-to-one mapping f of E onto F such that the relations x <y and f(x) = f(y)
are equivalent). The object o(E) is called the ordinal type of E. Further-
more, if E is isomorphic to the set {1,2,-.-,n} (i.e., if E is a finite, totally

ordered set with n elements), we shall identify its ordinal type with its cardinal
number p,
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CoroLLARY 1. If K has finite transcendence degree r over k, then any
place P of K|k has rank <r—s, where s=dim P|k.

The rank of a place 2 of K is zero if and only if & is a trivial place of K.

The rank of 2 is 1 if and only if 2 is not a trivial place of K and is not
a proper specialization of any non-trivial place of K. A necessary and
sufficient condition that a place 2 be of rank one is that its valuation
ring be a maximal (proper) subring of K. We shall see later (§4,
Theorem 4, Corollary 3) that any maximal (proper) subring of K is in
fact the valuation ring of a place of K, provided the subring is a proper
ring, i.e., not a field.

We shall have occasion to use in § 6 the following corollary:

CoroLLARY 2. If ay, a,, - - -, a,, are elements of K, not all zero, then
for at least ome integer j, 1<j<m, it is true that (a,/a;)P # o,
i=1,2,.-.,m,a;#0.

Since K is the quotient field of Kg, it is sufficient to consider the case
in which all the a; are in Kp. In that case we take for a; the element
which generates the greatest ideal in the set of principal ideals (a;).

If & is of finite rank m, there are exactly m—1 rings L; between Kgp
and K, and we have Kg<L,<L,< --- <L, ;<K. If 2;1s a place
of K whose valuation ring is L,, then &, is of rank m—z, 2, is a special-
ization of Z; if i<j (1=0,1,.--,m—1; #,=%). We have thus a
specialization chain for 2

(2) Pur—> P> > P~ 2,

which joins a place Z,,_, of rank 1 to the given place & of rank m. This
chain is maximal in the sense that it cannot be refined by insertion of
other places which are not isomorphic to any of the m places ;. We
shall call the chain (2) a composition chain for Z. Any place P* of
which £ is a specialization is isomorphic to one of the places Z; (assum-
ing of course that 2* is not a trivial place of K), and if

P s> Py > Py > P

is any other composition chain for &, then &; and &', are isomorphic
places (1=0,1,---,m—1).

If r=tr.d. K/k+# oo, then of particular importance are the places
which are of dimension r—1. It is clear that the rank of such a place
is 1 (Corollary 1). The (r—1)-dimensional places of fields of algebraic
functions of 7 independent variables are of particular importance in the
theory of algebraic varieties. A discussion of these places will be found
in § 14.



§4 EXISTENCE OF PLACES 11

§ 4. Existence of places. We shall prove the following existence
theorem:

THEOREM 4. Let o be a subring of K containing 1, and let % be an
ideal in o, different from v. Then there exists a place P of K such that
Kp>0 and Map>A.

Proor. Let M denote the set of all subrings R; of K such that
o< R; and RA#R;. The set M is non-empty, since o € M. We par-
tially order the rings R; by set-theoretic inclusion. Let {R} be a
totally ordered subset N of M, and let R be the join of the rings R,.
We cannot have a relation of the form 1=a,¢,+a,é,+ - -+ +a,&,,
a, €%, £ € R, for the £'s would then belong to some Ry, Ry € N (since
N is linearly ordered), and we would have R, %=R;, a contradiction
(since Rge M). It follows that R% R, and hence Re M. We have
therefore proved that every totally ordered subset NV of M has an upper
bound Rin M. By Zorn’s lemma, M contains, then, maximal elements.
We shall prove that every maximal element of M is the valuation ring
of a place 2 of K, satisfying the required conditions.

Let L be a maxima! element of M. The ring L satisfies, then, the
following conditions (1) o= L, L% # L; (2) if L’ is any subring of K such
that L<L’, then L'%=L'. The remainder of the proof will be based
on the following lemma:

LemMA. | Let R be a subring of a field K, containing 1, and let I be a
proper ideal in R. Then for any element x of K at least one of the
extended ideals R[x]3, R[1]x]Q is a proper ideal of R[x], R[1/x] respec-
tively.

ProoF oF LEMMA. Assume the contrary: R[x]¥=R[x], R[1/x]¥=
R[1/x]. That means that we have two representations of the element
1of R:

n

(1) 1=2ax, €%, 0=2i<mn
i=0
(1) 1 =j=znbj/xf, b;e8, 0<j<m

We shall suppose that the relations (1) and (1’) are of the smallest pos-
sible degrees n and m. Let, say, m<n. We multiply (1) by 12,
and (1') by axm:

1—=by = (1=bg)ag+ - - - +-(1—-bpax",

(1=bp)aa™ = @byl -+ +abanm,
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Thus,

1-by = (1 =bg)ag+ - - +(1=bg)a, x+abxr~1+ -+ +ab,x"m
or

and this is a relation of the same form as (1) and of degree less than »,
contrary to our assumption that (1) is of lowest possible degree.

We now apply the lemma to the case R=L, ¥=LY%. If x is any ele-
ment of K, and if we set L' =L{x], L"=L[1/x], then the lemma tells us
that at least one of the following two relations must hold: L'Q#L’,
L"g#L". This implies by the maximality property of L, that either
L=L"or L=L", i.e., either xe L or 1/xe L. Hence L is a valuation
ring of a place Z of K (§ 2, Theorem 1).

The prime ideal Mp of £ is the ideal of non-units of L, whence
Me> LAD Y, and since L Do the proof of the theorem is now complete.

We note that if & is a trivial place of K then M»=(0). Hence if the
ideal % is not the zero ideal, any place £ satisfying the conditions of the
theorem is necessarily non-trivial.

CoroLLARY 1. If o is an integral domain, not a field, and if K is a
field containing o as subring, then there exist non-trivial places P of K such
that K>o.

For o contains ideals different from (0) and o.

CorOLLARY 2. A field K possesses only trivial places if and only if K
is an absolutely algebraic field, of characteristic p+0 (i.e., if and only if K
is an algebraic extension of the prime field of characteristic p +0).

For, the absolutely algebraic fields, of characteristic p# 0, are the only
fields with the property that all their subrings are fields, whereas the
valuation ring of a non-trivial place is not a field.

COROLLARY 3. If 0 is a proper ring and a maximal subring of a field K,
then v is the valuation ring of a place 2 of K.

This follows at once from Corollary 1. Note that £ is then neces-
sarily of rank 1 (see § 3, Definition 1).

Of great importance for applications to algebraic geometry is the fol-
lowing consequence of our existence theorem:

THEOREM 5. If v is an integral domain contained in a field K and if m
is a prime ideal in v, msto, then there exists a place P of K such that
Kp>0 and Mp no=m.

ProoOF. Let o’ denote the quotient ring of o with respect to m and
let m’=0'm=ideal of non-units in o’. From our assumptions on m it
follows that m’s£p’. Hence there exists a place & of K such that
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K#>0', Mpno'>m’. Since m’ is a maximal ideal in o’ and since
1¢Myp, it follows that Mrno'=m’. Hence Mpno=m, since
m No=m.

The following is essentially an equivalent formulation of Theorem 5:

THEOREM 5.  (The extension theorem). If o is an integral domain and
K is a field containing o, then any specialization ¢ of o can be extended to a
place P of K. In particular, if k is a subfield of K then any place of k can
be extended to a place of K.

For if m denotes the kernel of  then m # o (by definition of specializa-
tions), and there exists a place £ of K such that K#>0 and Mz no=m.
If ¢ denotes the restriction of 2 to o, $~1p is an isomorphism of oy} onto
op (since m is the kernel of both ¢ and ). This isomorphism can be
extended to an isomorphism of the residue field 4 of £ into some field
containing op. If 2 is such an extension, then the place 22 of K is an
extension of ¢.

We now give a number of important consequences of Theorems 5
and 5.

For applications to algebraic function fields, or, more generally, to
fields K in which a subfield & has been specified as ground field, it is
important to analyze Theorem 5’ in the special case p=1 (whence
m=(0)), with reference to the following question: does there exist in this
case a non-trivial place which is an extention of ? If & is such a place
then K contains the quotient field of o in K, and the restriction of &
to that quotient field is also the identity. Therefore, we may as well
assume that o is a field, say 0 =%, and the non-trivial places & which we
are seeking are the places of K/k. If K is an algebraic extension of %,
then K>k implies Kp=K, since Kz must be integrally closed in K
and since every element of K is integrally dependent on .. Hence if K
is an algebraic extension of k, then K|k possesses only trivial places. On
the other hand, assume that K has positive transcendence degree over k.
Then if x is any transcendental element of K over k, the polynomial
ring k[x] is a proper ring (i.e., not a field) and admits at least one speciali-
zation g over k which is not an isomorphism (in fact, there are infinitely
many such specializations of k[x], for each irreducible polynomial in
k[x] can be used to define a ). We have therefore the following.

CoroLLARY 1. If Kis a field extension of a ground field k, then K|k has
non-trivial places if and only if K has positive transcendence degree over k.

To this corollary we can now add the following very useful additional
result:

CoroLLARY 2. If a field K has positive transcendence degree over a
subfield k, then there exist algebraic places of Kjk.
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For consider the set M of all valuation rings in K which belong to
places of K/k (i.e., valuation rings which contain k). By Corollary 1,
M is non-empty. By Theorem 1, § 2, the intersection of any descending
chain of valuation rings in K is again a valuation ring. Hence, by Zorn’s
lemma, M contains minimal elements (it is understood that M is par-
tially ordered by set-theoretic inclusion). Let R be a minimal element
of M and let 2 be a place of K/k such that Kg=R. We assert that #
is algebraic over k. For, assuming the contrary, i.e., assuming that the
residue field 4 of # has positive transcendence degree over &, then it
would follow from Corollary 1 that there exists a non-trivial place 2 of
A4/k. Then the composite place ' =22 is a place of K[k whose
valuation ring is a proper subset of R, a contradiction. '

CoROLLARY 3. If ¢ is a specialization of an integral domain o, and if
K is a field containing o, then there exists a place of K which is an extension
of ¢ and whose residue field is algebraic over the quotient field of op.

Let k& be the quotient field of the p-transform op of o. We fix a place
2 of K which is an extension of ¢ and whose residue field 4 therefore
contains k. If 4 is algebraic over k then £ is the desired place. If 4
is not algebraic over k&, then we fix, by Corollary 2, an algebraic place 2
of 4/k. The composite place ' =22 of K is an extension of ¢ (since
2 is the identity of op) and its residue field is algebraic over & (since 2
is an algebraic place of 4/k).

CoROLLARY 4. Let v be an integral domain and let K be a field con-
taining o as subring.  If a specialization ¢ of o is such that it has no proper
extensions within K, then ¢ is a place of K (this is the converse of a result
proved in the beginning of § 2).

This is a direct consequence of Theorem 5'.

The two corollaries that follow have already been proved in the pre-
ceding chapter in the more general case of arbitrary commutative rings
with identity. However, as in the case of domains they are very simple
consequences of Theorem 5, we give here a second proof of these
results,

COROLLARY 5. Let O and o be integral domains such that v is a subring
of O and such that every element of © is integrally dependent on o.
Then for every prime ideal m in o there exists a prime ideal M in O such
that M No=m.

The assertion being trivial if m=o, we assume ms#o. If K is the
quotient field of O, there exists a place & of K such that K#>0 and
Mo N o=m (Theorem 5). Since Kz is integrally closed in K and O is
integral over o, it follows from Ks>0v that Ks>9. Hence Ms N O is
a prime ideal M in O, and we have M No=m.



§5 THE CENTER OF A PLACE IN A SUBRING 15

COROLLARY 6. The rings © and o being as in the preceding corollary,
let a be an ideal in 0. Then if a0, we have Da# O.

Since o contains an identity, there exists a prime ideal m in o such that
acmso (for instance, there exist maximal ideals containing a). By
Corollary 5, let M be a prime ideal in © such that M no=m. Then
clearly M # O, and since Sac Om< M, it follows that Sax#O.

Place-theoretic properties of integrally closed domains are of parti-
cular importance in the arithmetic theory of algebraic varieties. Many
of these properties are based on the following theorem:

THEOREM 6. If o is an integral domain and K is a field containing o,
the intersection of all the valuation rings Ko of places P of K such that
Kg>o is the integral closure of o in K.

PROOF. Since every Kp is integrally closed, every Ks containing o
contains the integral closure 8 of 0. So we have only to show that if x
is an element of K which does not belong to 3, then there exists a place
2 of K» such that Ks>0 and x ¢ K. 'To show this, we consider the
ring o’ =o[y), where y=1/x. Our basic remark is to the effect that y
is @ non-unit in o’. For, if y were a unit in o, then we would have a
relation of the form: l/y=x=ax"+a,x "1+ ... +a, a;€0, Or
amtl—gan— ... —qy=0, and hence x would be integrally dependent
on o, contrary to assumption. Since y is a non-unit in o/, the ideal 0’y
is differert from o’. By Theorem 4, there exists, then, a place £ of K
such that K#>0', Mp>0’y. Hence y is also a non-unit in Kp, and
consequently x ¢ Kap.

COROLLARY. Let o be an integral domain and let K be a field containing
o. If o is integrally closed in K, then o is the intersection of all the valua-
tion rings Ko of places P of K such that Ks>o.

REMARK. If K is a field of algebraic functions over a ground field &,
then all the results established in this section continue to hold if by a
“place of K we always mean a “place of K/k,” provided that k<o.
For, every place 2 such that K#>0 is k-isomorphic to a place of K/k.

§ 5. The center of a place in a subring. Let o be an integral
domain, let K be a field containing o and let 2 be a place of K. We say
that 2 is finite on o if 2 has finite value at each element of o, or—
equivalently—if o= Kp. If 2 is finite on o then the restriction of &
to o is a specialization of o. If this specialization is the identical
mapping of o onto itself, then we shall say that & is a place of K
over o,

Let 2 be a place of K which is finite on 0. The set y=Msp No of
those elements of o at which 2 has value zero is clearly a prime ideal in
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o. This prime ideal is called the center of 2 inv. The center p is
always different from v since 1 ¢ Mz ; it is the zero ideal if and only if
the restriction of £ to v is an isomorphism (in particular, p=(0) if &
is a place of K over 0). It is clear that the residue class ring o/ is iso-
morphic to the subring 02 of the residue field 4 of 2.

Since any element of v which is not in the center p of £ in v is a unit
in the valuation ring K, it follows that £ is also finite on the local ring
op of the specialization induced by £ in v, and it is clear that the center
of & in v, is the maximal ideal bo, in v,.  Conversely, if p is a prime
ideal in o, different from o, and if 2 is a place of K such that (1) 2 is
finite on vy and (2) the center of & in vy is the maximal ideal m in oy,
then £ is also finite on v and has center p in o (since m No=p). Note
that condition (1) by itself is only equivalent to the following condition:
P is finite on v and its center in v is contained in .

Isomorphic places have the same center in any ring o on which they
are finite. On the other hand, if we have two places & and £ such that
2 is a specialization of 2, then if 2 is finite on v also £ is finite on v
(since K> K) and the center of Z in o is contained in the center of 2
in o (for Map<=Ma).

Theorem 5 (§4) said that any prime ideal (different from (1)) in a
subring v of a field K is the center in 0 of a place of K. A more precise
result can be proved:

THEOREM 7. Let o be a subring of a field K, p and a two prime ideals
in o such that < a. Suppose that P is a place of K with center p in v.
Then there exists a place 2 of K which is a specialization of 2 and which
admits q as a center in v.

PROOF. Without loss of generality we may assume that K»/Mg is the
residue field of 2. Consider now the subring o/p of the residue field
Ks[Ms of P, the prime ideal q/p of v/p, and the canonical homomor-
phism of o/p onto (v/p)/(a/p). By Theorem 5’ (§4), this homomor-
phism can be extended to a place Z of the field Ka/M». The product
2=2P is then a place of K. Its valuation ring contains v, and its
center on o is obviously q.

CoROLLARY. Let O be an integral domain, v a subring of © over which
O is integral, B a prime ideal in O, v the prime ideal B N v, and q a prime
ideal in v containing p. Then there exists a prime ideal 0. in O containing
B and such that &nov=q.

For, let K be a field containing ©. There exists a place & of K with
center B in O. Then the center of Z inv is p=0NnNP. Theorem 7
shows the existence of a specialization 2 of & with center g inv. Since
9 is integral over v, the valuation ring of 2 contains ©. Thus £ admits
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a center £ in O, and this center is a prime ideal containing 8. Further-
more, we have £ N o= g, since q is the center of 2 in o.

REMARK. This corollary has already been proved in Vol. I, Ch. V,
p. 259, without any assumption on zero divisors.

The places £ of a field K which have given center p in a given subring
o of K are among the places of K whose valuation ring contains the
quotient ring oy, but they are those which satisfy the additional condi-
tion M Nop=1ypop. By Theorem 6, §4, we know that the integral
closure of o, in K is the intersection of all the valuation rings K which
contain op. We shall now prove the following stronger result.

THEOREM 8. Let o be an arbitrary subring of a field K and let p be a
given prime ideal in o, different from v. Let O be the quotient ring of »
with respect to p. If N denotes the set of all valuation rings R in K which
belong to places P of K having center b in o, then

N R = integral closure of O in K.
ReN

PROOF. It will be sufficient to show that every valuation ring S in K
which contains © contains as subset some member of N. Let 2 bea
place of K such that S= K and let Ms N o= q, where q is a prime ideal
in 0. Since S©9, q is the contraction of some prime ideal in O
(namely of Ma N O), and hence g=yp. By Theorem 7 (where q and p
have now to be interchanged) there exists a place & of K which is a
specialization of 2 and admits p as center ino. Then K< S, and since
Kg e N, the proof is complete.

CoroLLARY. If o is integrally closed in K, then [} R=o,.

ReN

For in that case also oy is integrally closed in K.

As an application of the notion of the center of a place we shall now
give a complete answer to the following question: given a Dedekind
domain R, find all the places of the quotient field of R which are finite
on R,

THEOREM 9. Let R be a Dedekind domain, K its quotient field. The
non-trivial places of K which are finite on R are the p-adic places of R (see
§2, Example 2) and these places are all of rank 1.

PROOF. Let & be a non-trivial place of K which is finite on R.
Since & is non-trivial, and since K is the quotient field of R, the center
of Z in R is a proper prime ideal p. The valuation ring of & contains
the quotient ring R,. In order to show that these two rings are equal,
We need only prove that R, is a maximal subring of K, and this will
Prove Theorem 9.
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It has been proved (Vol. I, Ch. V, § 6, Theorem 15) that there exists an
element m of Ry, such that every element of R, may be written as ums?
where u is a unit in R, and g a non-negative integer. It follows, upon
division, that every element of K may also be written under the form ovms,
where v is a unit in R, and s an integer. Let S be a subring of K
properly containing Rp. Then S contains some element vms, with
s<0. Thus, since S contains Ry, it contains m-1=(m—s~1v~1)(vm*);
hence S contains m~" for every integer n, and therefore also every ele-
ment um? (¥ a unit in Ry, g—any integer). It follows that S=K.
Q.E.D.

CoroLLARY 1. The only non-trivial places of the field of rational
numbers are the p-adic ones (p, a prime number).

In fact, the valuation ring of such a place must contain the ring J of
ordinary integers.

COROLLARY 2. Let k be a field, and K=k(X) the field of rational
Sfunctions in one indeterminate X over k. The non-trivial places of K|k
are:

(a) The p(X)-adic places (p(X), an irreducible polynomial in k[ X]).
(b) The place R whose valuation ring consists of all fractions a(X)[b(X)
(a, b: polynomials) such that da < 0b.

(Equivalent places may be obtained by replacing in the rational func-
tions f(X) either

(a) X by a root of the irreducible polynomial p(X) or
(b) 1/X by 0.)

Let Z# be a non-trivial place of K/k. If its valuation ring K« contains
X, it contains R[X), and we are in case (a). Otherwise 1/X is in Kg,
and is a non-unit in this ring. Thus K¢ contains the polynomial ring
k[1/X], and the center of Z in this ring must be a prime ideal containing
1/X, i.e., it must be the principal ideal (1/X). Then the valuation ring
of Z consists of all fractions a'(1/X)/6'(1/X) (a’, b': polynomials over k)
such that 5(0)#0. The verification of the fact that this is the valuation
ring described in (b) may be left to the reader.

REMARK. The last corollary expresses the fact that the non-trivial places
of k(X)[k correspond to the elements of the algebraic closure & of & (more pre-
cisely to the classes of conjugate elements of &) and to the symbol co: the
value of the rational function f(X) at the place # corresponding to x in £ (to o0)
being f(x) (f(0)). Notice that all these places have dimension 0 and rank 1,
and that their valuation rings are quotient rings of polynomial rings. The
places of K[k, where K is a field of rational functions in several variables over
k, are of more complicated types (see § 15).
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COROLLARY 3. An integrally closed local domain R in which the ideal
of non-units is the only proper prime ideal is the valuation ring of a place
of rank 1.

For, R is a Dedekind domain (Vol. I, Ch. V, § 6, Theorem 13), and if
p is the ideal of non-units in R then R=R,. Note that R is a discrete
valuation ring of rank 1 (in the sense of Vol. I, Ch. V, end of § 6, p. 278;
see also § 10 of this chapter, Theorem 16, Corollary 1).

We shall conclude this section with the derivation of another criterion
for a domain to be a valuation ring. Let o be an integral domain, q a
prime ideal in o, and let 2 be a place of the quotient field K of o which is
finite on o and has center q. Since M» N v = g, the integral domain o/q
can be canonically identified with a subring of the residue field 4 of Z.
Thus 4 is an extension of the quotient field 4, of o/q. We shall say
that the place 2 is of the first or of the second kind, with respect to o,
according to whether the transcendence degree of 4 over 4, is zero or
positive.

TueorReM 10. Given an integrally closed integral domain o and a
prime ideal q in o, q5 0, a necessary and sufficient condition for the quotient
ring o, to be a valuation ring is that there should not exist a place P of the
quotient field of o such that P has center q and is of the second kind with
respect to o.

For the proof of Theorem 10 we shall first prove a general lemma:

LemMa. Let o be an integrally closed integral domain, let K be the
quotient field of o and let q be a prime ideal ino. If an element t of K is a
root of a polynomial f(X)=a,X"+a, X"+ ... La,, where the coeffi-
cients a; are in o but not all in a, then either t or 1]t belongs to the quotient
ring o,,.

PROOF. The element 1/t is a root of the polynomial @y +a, X + - - - +
a,X".  Our assumptions are therefore symmetric in # and 1/2. There
exists a place & having center q. We shall show that ¢ € o, or 1/t €0,
according as t## o or (1/t)P# 0. Let, say, tP# 0. Let us assume
thatag, a,, - - -, a;_, € q,a; ¢ q; herej is some integer such that 0<j<n.
If j=0, then the equation f(¢)=0, upon division by a,, implies that ¢ is
Integrally dependent on og, and hence # € o, since oq is integrally closed
(Vol. 1, Ch. V, § 3, p. 261). We cannot have j=n, for in the contrary
Case the existence of a place Z having center q and such that t2# oo
would imply that ¢,#=0, a, € q, a contradiction. We shall therefore
assume that 0<j<n.

Let

£ =apti+a,ti-l+ ... ta;  tta;
M=t Gafts o gl
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Let 2 be any place which is finite on 0. If 22 # o0, then also ¢2 # oo,
and also p? # oo since {t+7=0. If 2= o0, then 2 # 0, and since
£+ 1/t=0, it follows that {£#=0. Hence, in all cases we have £2 # o0
and 7%+ co. Since this holds for all places which are finite on o, it
follows that the elements £ and n both belong to o. Now, by assumption,
there exists a place £ having center q and such that ### co. For such
a place 2 we will have £2#0 since ¢,#=0, i=0,1,...,5=1, and
a;2#0 (in view of the assumption made on the coefficients a, a,,...,a;).
Therefore the element ¢ of o does not belong to q, and consequently
t=—n/é €oq. This completes the proof of the lemma.

We note the following consequence of the lemma:

CoRroLLARY. Let 0 be an integrally closed integral domain, let K be the
quotient field of o and let q be a prime ideal in o. If an element t of K is
such that neither t nor 1/t belongs to the quotient ring oq and if 5 denotes
the ring o(f], then the extended ideal §="0q is prime, the contracted ideal
& N o coincides with q, and the G-residue of t is transcendental over v/q.

For, dq consists of all elements of the form n"+m "1+ ... +7,,
m; € q, n an arbitrary integer 20. If nyt"+m "1+ ... + 7, =ac€o,
then it follows from the lemma that a € q, showing that 5qno=q.
Hence the integral domain o/q can be regarded as a subring of 5/§. If
we have a relation of the form §yfn+ &1+ ... +¢ =0, where
£, €0/qand f is the d-residue of ¢, and if we fix an element q; in o such
that £; is the g-residue of a;, then agt"+a,t" 1+ - - . +a,€§, i.e., there
must exist elements «'y, 7'y, - -, 7'y, 7y, my, -+, 7, in q such that

h
> al i (ag—mo)tr 4 (ay— w1+ - oo +(a,—m,)=0. Therefore, by
=1

the lemma, we must have a;,—; € q, 4;=§,=0, showing that f is trans-
cendental over o/q. Hence o/a[f] is an integral domain, and since this
ring is the residue class ring /g, it follows that § is a prime ideal.

[In terms of dimension theory: dim §=14dim q.]

The proof of Theorem 10 is now immediate. The necessity of the
condition is obvious, for if o4 is 2 valuation ring, any place & which is
finite on o and has center q necessarily has oq as valuation ring, and thus
the residue field of & coincides (to within an isomorphism) with the
quotient field of o/q. To prove the sufficiency of the condition, we
assume that oq is not a valuation ring and we show that there exists a
place 2 of K which has center q and is of second kind with respect to o.
For this purpose, we consider an element ¢ of K such that neither # nor
1/t belongs to o, (such an element exists since oq is not a valuation ring)
and we pass to the ring 5=0[f] and to the ideal §=5a. By the above
corollary, § is a prime ideal, different from 8. Let & be a place of K
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which is finite on 6 and has center § in 5. Then it follows from the
corollary that the center of £ in o0 is g and that £ is of the second kind
with respect to o (since the residue field of & contains /).

The following consequence of Theorem 10 has been useful in the
geometric applications of valuation theory:

CoroLLARY OF THEOREM 10. Let {v.}, a € A, be a collection of sub-
rings of a field K, integrally closed in K and indexed by a set A, and let for
each o, a proper prime ideal q, in o, be given. Assume that the following
conditions are satisfied: (a)if v, <o, then q,No,= q,; (b) for any two rings
0, 0 (@, B€ A) there exists a third ring o, in the collection such that
0,0, and 0,0, Let O= U o, O= U q,. Then g is a valua-

tion ring if and only if there a'oes not exist a place ? of K which satzsﬁes
Jor each «, the following conditions: &P has center q, in o, and is of the
second kind with respect to o,.

From condition (b) it follows that © is a ring, integrally closed in K,
and (a) implies that the set £ is a proper prime ideal in ©. Any place
2 of K which has center £ in © has center q,in o, for each a € 4; and
conversely. The residue class ring O/ can be regarded, canonically,
as the union of the rings o, /q,. It follows that a place £ of K which has
center £ in O is of the second kind with respect to O if and only if #
is of the second kind with respect to each of the rings o, and the corol-
lary now follows from Theorem 10.

§ 5*s, The notion of the center of a place in algebraic geo-
metry. The concept of center of a place has been first introduced in
algebraic geometry, and in fact the theorems given in the preceding
section are merely generalizations of similar theorems concerning
algebraic varieties. We shall briefly review here the algebro-geometric
background of the material presented in the preceding section. For
further details, see Chapter VII, § 3.

If K is a field, the n-dimensional affine space A, X over K is the set of all
points (z,, 2, « * -, ,,) (i.e., ordered n-tuples) whose (non-homogeneous)
codrdinates 2y, 2, - - - , 2, are elements of K. We now assume that K
is an algebraxcally closed field and that it contains a ground field & If
2 is an ideal in the polynomial ring k[X;, X,, - - A (=k[X]) inn
lrldetermmates with coeflicients in the ground ﬁeld k the variety of A
is the set of all points (2N(=(21 23, - - -, 2,)) in 4K such that f(z)=0for
every polynomia! f(X) in %.  An algebraic aﬁ‘ine variety in A, X (defined
over k) is any subset of 4,KX which is the variety of some 1deal in k[X].
fVisa variety in A,X deﬁned over k, the polynomials in k[ X] which
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vanish at all points of 7 obviously form an ideal. This ideal, called the
ideal of the variety V, is the greatest ideal in A[X] whose variety is V.
It is clear that the ideal of a variety V coincides with its own radical and
is therefore (see Vol. I, Ch. IV, §4, Theorem 5) an intersection of
prime ideals. If the ideal of 1/ is itself a prime ideal, then V' is said to
be irreducible (over k) (cf. Ch. VII, § 3).

Let ¥ be an affine variety in 4K, defined and irreducible over the
ground field &, and let p be the prime ideal of ¥ in k[X]. The residue
class ring [ X]/v is called the codrdinate ring of V. We shall denote this
ring by R[V]. If x; denotes the p-residue of X;, then k[V]=
k[xy, x5, - - -, %,] (=k[x]). The point (x,, x,, - - -, ,) is called a general
point of V over k. 'The quotient field k(x) of k[x] is called the function
field of V, over k, and will be denoted by k(V). The dimension r
of V is the transcendence degree of k(1) over k. We have of course
0sr=n

Since the p-residues x; of the X, are not generally elements of K, the
general point (x) is not always actually a point of the space 4,X How-
ever, if K has transcendence degree =r over &, there always exist k-
isomorphisms of £(V) into K (since K is algebraically closed). If 7 is
one such isomorphism, and if x,7=z;, then also the point (24, 2,, - - -, 2,)
of 4K is called a general point of V" over k. It is now a standard pro-
cedure in algebraic geometry to assume once and for all an algebraically
closed field K which has infinite transcendence degree over k (a so-called
universal domain K). 'This guarantees that any irreducible variety V,
over &, in AKX (n arbitrary) carries general points (which are actually
points of the affine space 4,X).

Let 2 be a place of k(V')/k such that the residue field of P is contained
in K (which is not a serious restriction on &, at least if K is a universal
domain, for in that case every place of k(V')/k is isomorphic to a place
P satisfying the above condition). If & is finite on the coérdinate ring
and if, say, x,2 =2z, (2; € K), then the point (2) is called the center of the
place P on V. (It is obvious that (2) is indeed a point of V, for if a
polynomial f(X) belongs to the ideal of ¥ then f(x)=0 and hence
f(2)=f(x)2?=0.) The elements g(x) of k[}'] which vanish at the point
(2) form a prime ideal p, the prime ideal of (2) in k[V]. We have
g(x) € p if and only if g(x)2?=0, i.e., if and only if g(x) e Mp. Hence
the prime ideal of the center of P on the variety V is merely the center of P
in the codrdinate ring kR[V] of V.

By the dimension of a point P=(2,, %,, - - -, 3,), over k (in symbols:
dim Pk, or dim (2)/k) we mean the transcendence degree of k(z) over 4.
Two points (2) and (') in 4,X are said to be k-isomorphic if there exists
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a k-iscmorphism 7 of the field k() onto the field k(2’) such that
zr=2';, 1£i<n. For instance, any two general points of our irre-
ducible variety V, over &, are k-isomorphic, and any general point of V,
over R, has dimension r over k&, where r=dim V. We now list some of
the properties of the center of a place on V. (We remind the reader
that a place 2 of k(V) admits a center on an affine variety if and only if
2 is finite on k[V'].)

ProPerTY 1. A place 2 of k(V)/k is trivial if and only if its center on
V is a general point of V over k.

The proof is straightforward and may be left to the reader.

ProperTY 2. If Q is the center on V of a place & of k(V)/k then
dim Q/k<dim Z/k<dim V, and £ is trivial if and only if dim #/k=
dim V.

Obvious.

Given two points Q=(2;, 25, - - -, 2,) and Q'=(2,", 2,', - - -, 2,’) in
AKX, Q' is said to be a specialization of Q over k if there exists a specializa-
tion ¢ of the ring k2] onto the ring k[2"} such that ¢ is the identity on &
and zp=2'; Notation: Q->Q If Q5 then dim Q'Jk<
dim Q/k. If we have both Q= Q" and Q' > Q, then Q and Q" are k-
isomorphic points, and conversely. If O LY Q" and dim Q’/k=dim Q/k,
then again O and Q' are k-isomorphic points, for any proper k-homo-
morphism of the integral domain k[2] lowers the transcendence degree
of the domain. (See Vol. I, Ch. II, § 12, Theorem 29).

ProPERTY 3. Let P and 2 be places of k(V)[k and let P and Q be their
respective centers on V. If P A 2 then also P> 0.

Obvious.

ProPERTY 4. Let P and Q be points of V such that P Q. Suppose
that P is a place of k(V')/k which admits P as center on V. Then there
exists a place 2 of k(V)/k which is a specialization of P over k and has
center Q on V.

This is the analogue of Theorem 7, § 5, and the proof is the same.

If Q is a point of V and p is the prime ideal of Q in the codrdinate ring
k[V], then the quotient ring of k[V] with respect to b is called the local
ring of V at Q (or also briefly: the local ring of Q (on V')). This ring
shall be denoted by o(Q; V), and the maximal ideal in that ring shall be
denoted by m(Q; V).

PrOPERTY 5. If Q is the center on V of a place P of k(V)[k then
o(Q; V)<k(V)p and m(Q; V)=Mano(Q; V). Conversely, if these
two conditions are satisfied for a given point Q on V and a given place P of
k(V), then the center of P on V is a point k-isomorphic to Q. If only
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condition o(Q; V)< k(V)# is satisfied, then Q is a specialization, over k, of
the center of Z on V.

Obvious.

It follows that every point Q of V is the center of some place of
kR(V)/E.

PROPERTY 6. If Q is a point of V then the integral closure of o(Q; V)
is the intersection of all the valuation rings which belong to places P of
k(V)|k having center Q on V.

This is a particular case of Theorem 8, § 5.

To be able to speak of the center of a place 2 of k(V)/k also in the
case in which £ is not finite on k[V]), it is only necessary to adjoin to V'
its points at infinity and to consider thus the enlarged projective variety
V*. We shall discuss this question later in the next chapter (see
Ch. VII, § 4bis). At this stage it will suffice to say that if V is regarded
as a variety in the projective n-space, then every place of k(¥) has a well-
defined center on V. This is important, since it allows one to introduce
the concept of a birational correspondence in a purely valuation-
theoretic fashion. Two irreducible varieties ¥ and V', over k&, are
birationally equivalent if their function fields k(V') and k(V') are k-
isomorphic. In that case, after fixing a definite k-isomorphism between
k(V') and k(V"), we may identify these two fields. Assuming therefore
that (V' )=k(V’), we can set up a correspondence T between the points
of V'and V"' in the following fashion: a point Q of ¥V and a point Q" of V'’
are corresponding points if there exists a place 2 of k(V)(=k(V")) whose
center on V'is Q and whose center on V' is Q’. Such a correspondence
T is called a birational correspondence. 'The fact that every point of V is
the center of at least one place guarantees that in a birational correspon-
dence between two birationally equivalent varieties to every point of one
variety corresponds at least one point of the other variety.

§ 6. Places and field extensions. Let K be a field and K* an
overfield of K. It follows easily from our definition of a place that if
&P* is a place of K* then the restriction of 2* to K is a place of K. If
& and 2* are places of K and K* respectively, we say that 2* is an
extension of 2P if 2 is the restriction of 2* to K. Our object in this
section is to study the extensions in K* of a given place £ of K.

Lemma 1. If P* is an extension of P, then K. n K=Kgs. Con-
versely, if this last relation holds for given places P and P* of K and K*
respectively, then there exists an extension P* of P which is isomorphic
to P*. The relation K¥.0N K=Kgp implies Ma« N K=Myp and is
equivalent to “‘K%.> Kp and Map+»>Ms.”
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pPROOF. The first part of the lemma is self-evident. Assume now
that K}« N K=Kp, and let 2, be the restriction of #* to K. Then
Kp,=Kg, and hence & and &, are isomorphic places of K. Hence
P =2, f, where f is an isomorphism of the residue field 4, of £, onto
the residue field 4 of . Extend f to an isomorphism f* of the residue
field of #* and set # *=2*f*. Then 2* and 2,* are isomorphic
places, and 2 ,* is an extension of &, which proves the second part of
the lemma. Furthermore, it is clear that Msx N K=Mp, and this
proves one half of the last part of the lemma. Assume now that we
have K3+«> K2 and Ma+«> M4 for two given places & and Z* of K and
K* respectively. If x is any element of K, not in K, then 1/x belongs
to M2, hence 1/x € Mo+, and therefore x ¢ KZ.. This completes the
proof of the lemma.

Note in particular the case in which & is a trivial place of K (Z=an
isomorphism of K). If 2 is the identity automorphism of K, then the
extensions of @ to K* are the places of K*/K. It follows from
Lemma 1 that if 2 is an arbitrary trivial place of K, then any extension
of # to K* is isomorphic with a place of K*/K.

The existence of extensions to K* of any given place £ of K is assured
by the extension theorem (Theorem 5, § 4), where o, K and ¢ are now
to be identified with K», K* and & respectively.

We shall generally denote by 4 (or by 4*) the residue field of a
place Z of K (or of a place #* of K*). If Z is the restriction of Z*
in K, then 4< 4%, and the transcendence degree of 4* over 4 shall be
called the relative dimension of #* and shall be denoted by dimg Z*.
In the special case in which #* is a place of K*/K, we have 4=K, and
our definition is in agreement with our earlier definition of the dimen-
sion of #*/K.

LemMma 2. Let 2* be a place of K* and let P be the restriction of P*
to K. Let xy, x4, + -+ , X, be elements of K. and let £, &,, -+ -, &, be
their P*-values (in 4%). If the x; are linearly dependent over K, then the
&; are linearly dependent over 4.

PROOF. We have, by assumption, a relation of the form ax,+
apXy+ - -+ +a,x,=0, where the a; belong to K and are not all zero.
We select a coefficient a; which satisfies the following conditions: a;#0
aqd (a;/a;)P +# oo for i=1, 2, - - -, m (see Theorem 3, Corollary 2, § 3).

wviding the above linear relation by a; and passing to the Z*-values, we
find uyé) +upty+ - -+ ~u,é, =0, where u;=(a;/a;)? e d. Since the
“; are not all zero (u;, for instance, is 1), the lemma is proved.

CoroLLARY 1. The relative dimension of P* is not greater than the
Iranscendence degree of K*|K.
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For let {¢,} be a transcendence basis of 4*/4 and let x; be an element of
Ksuchthatx,#*=¢,. By assumption, any finite set of monomials in the
£, consists of elements which are linearly independent over 4. Hence, by
the above lemma, the corresponding monomials in the x; are also linearly
independent over K, i.e., the x; are algebraically independent over K.

CoroLLARY 2. If K* is a finite algebraic extension of K, of degree n,
then also 4* is a finite algebraic extension of 4, and we have [4*:4] <
[K*:K].

The integer [A4*:4) is called the relative degree of P* with respect to P
(or with respect to K).

Tueorem 11.  For any place P of K there exist extensions P* in K*
such that dimyg P* is any preassigned cardinal number 20 and < trans-
cendence degree of K*|K.

PROOF. Let {y,} be a transcendence basis of K*/K and let {#;} be a
set of indeterminates over 4, in (1, 1) correspondence with the set {y,}.
Let f be the (uniquely determined) homomorphism of the polynomial
ring Kg[{y,}] onto the polynomial ring 4[{u;}] such that y,f=u; and
f=P on Kg. By Theorem 5’, § 4, f can be extended to a place Z* of
K*. Then £* is an extension of &, and since the residue field of #*
contains the elements u; it follows that dim, &* is greater than or equal
to the transcendence degree of K*/K. It follows by Corollary 1 of the
preceding lemma that dimg P* is exactly equal to the transcendence
degree of K*|K.

We now observe that there also exist extensions 2* of Z having rela-
tive dimension zero. This follows directly from Theorem 5’, Corol-
lary 3 (§ 4).

To complete the proof of the theorem, let « be any cardinal number
between O and the transcendence degree of K*/K. We fix a subset
L={x;} of K* which has cardinal number « and which consists of ele-
ments which are algebraically independent over K. Let K’ be the sub-
field of K* which is generated over K by the elements x; of L. Since
K'[K has transcendence degree «, it follows by the preceding proof that
there exists an extension &' of 2 in K' such that the relative dimension
of #' (over K) is equal to a. Again by the preceding proof, there
exists an extension 2* of #' in K* whose relative dimension (over K')
is zero. Then it is clear that 2* is an extension of & and that the
relative dimension of 2* (over K) is equal to a. This completes the
proof of the theorem.

CoroLLARY. If K is a field of algebraic functions of r independent
variables, over a ground field k, there exist places of K|k of any dimension
s, 0<s<r.
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This follows from the preceding theorem if we replace K* and K by
K and k& respectively and take for 2 the identity automorphism of k.

§ 7. The case of an algebraic field extension. We shall now
study the case in which K* is an algebraic extension of K. Let & be a
place of K and let #* be an extension of # to K*.  We denote by K3
the integral closure of Kp in K*. If we denote by P* the ideal
M+ N K3, then the contraction of PB* to K» is a2 maximal ideal in K,
namely the ideal Ms of non-units of Kp. It follows from Vol. I,
Ch. V, §2, Complement (2) to Theorem 3, that B* is a maximal ideal
in K.

THEOREM 12. Let K* be an algebraic extension of K, let P* be an
extension of a place P of K and let K } be the integral closure of K5 in K*.
If B*=K3nMa«, then K3, is the quotient ring of K3 with respect
to P*. '

PROOF. It is clear that the quotient ring in question is contained in
K*%.. Now, let «#0 be any element of K3. and let gyo”+a,a"!
+ - +a,=0, a; €K, ay#0, be the minimal equation for « over K.
Let j be the smallest of the integers 0, 1, - - -, n, such that (a;/a;)% # oo,
i=0,1,---,n Then it is clear that (a,/a;)?=0, if i<j. If we set
h,=a;/a;, then we have bya"+bya"~1+ ... +b =0, and the b, are ele-
ments of K3, not all in B* (since b;=1). Since K} is integrally
closed, it follows from the lemma in § 5 that either « or 1/x belongs to
the quotient ring of K} with respect to $*. Were « not in this
quotient ring, 1/« would be a non-unit in that ring, whence we would
have (1/a)#* =0, aP*= o0, which is impossible. This completes the
proof.

CoroLLARY 1. If P,* and P,* are two non-isomorphic extensions of P,
then Mp» 0 K5#Mapx N K 5.

Obvious.

COROLLARY 2. If B* is any maximal ideal in K %, then the quotient
ning of K% with respect to B* is the valuation ring of a place P* of K*
which is an extension of 2.

For, by Theorem 4, § 4, there exists a place #* of K* such that
K3.2K% and MpD>P*. Since K3 is integrally dependent on Kg
il\n*d since. Mg is the only maximal ideal in Kp, it follows that
¥*N Kp=9Mgp. Therefore KX DKs and Mps>Mp. This shows
that 2% is, 1o within an isomorphism, an extension of 2 (§ 6, Lemma 1).

Since p*= K 3 01 Mg+, the corollary follows from the theorem just
Proved above,
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Before stating the next corollary we give the following definition:

DEerFINITION.  If K* is a normal extension of a field K, then two places
P*, P* of K* are said to be conjugate over K if there exists a K-auto-
morphism s of K* such that P * =sP *+

COROLLARY 3. Let K* be a finite normal extension of K and let P be
a place of K. If P* and P'* are extensions of P in K*, then P'* is iso-
morphic to a conjugate of P*.

Let $* and PB'* be the centers of Z* and Z'* in the ring K.
Since K} is integral over Kz and since B* and 8'* both lie over the
ideal My in Kg, it follows by V, § 9, Theorem 22, that R* and B'* are
conjugate prime ideals over K. Consequently some conjugate Z,* of
the place 2* will have center 8'* in K%, and hence £,* and Z'* are
isomorphic since, by Theorem 12, these two places have the same
valuation ring.

The above corollary can be extended to infinite normal extensions K*
of K. The proof is as follows:

Given the two extensions Z* and 2'* of 2 to K*, let M denote the
set of all pairs (F, s) such that: (1) F is a field between K and K* and is
a normal extension of K; (2) s is a K-automorphism of F'; (3) if Z; and
P’y are the restrictions of * and 2'* to F then &' p=5P,. If (F, s)
and (G, t) are two such pairs, we write (F, s) < (G, t) if F< G and s is the
restriction of ¢ to F. Then M becomes a partially ordered set. It is
clear that M is an inductive set and hence, by Zorn’s lemma, M contains
maximal elements. Let (F,, s,) be a maximal element of M. To prove
the corollary we have only to show that Fy=K*. Assuming the con-
trary, we take an element x in K*, not in F, and we adjoin to F the
element x and all its conjugates over K. We thus obtain a field F;

1 In § 2 (p. 6) we have defined conjugate algebraic places of a field K over
a ground field k. In the present definition we have introduced the concept of
conjugate places, with respect to a field K, of a normal extension of K. The two
definitions agree whenever they are both applicable, namely when K is a normal
algebraic extension of k and when we are dealing with places of K over k. In
fact, let #, and 2, be two places, over k, of anormal algebraic extension K of k.
If these places are conjugate in the sense of the present definition, then 1t is
obvious that they have the same residue field and are 1somorphisms of K*
onto that common residue field; they are therefore conjugate over k also in the
sense of the definition of § 2. (Observe that both places must be trivial, in
view of § 4, Theorem 5’, Corollary 1.) Conversely, assume that &, and 2,
are places of K /k (necessarily algebraic) which are k-conjugate in the sense of
the definition given in § 2, and let 4, and 4, be their residue fields. Since
both #; and &, must be trivial places, 4, and 4, are k-isomorphic normal
extensions of k. Since they are subfields of one and the same algebraic
closure k of k, they must coincide. Therefore if we set s=2,%,7!, then s is
an automorphism of K/k and have #,=s5%,, i.e,, #, and &, are also con-
jugate in the sense of the present definition.
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which is a normal extension of K and such that Fy< F;c K*. Let the
restrictions of Z* to F; and F, be respectively 2 and £, ; similarly, let
P',and Z’; be the restrictions of '* to F,, and F; respectively. We
fix an automorphism s, of F; such that s, is an extension of 54, and we
set " =5,"1P,. Since Py=s5,"1%, it follows that Z, and 2", are
both extensions of #,. By the finite case of the corollary we have
therefore that ", =72, where 7 is a suitable Fj-automorphism of F,.
Then &', =s5,7%,, showing that (Fy, s;7) € M. This is a contradiction
with the maximality of (F,, s,), since Fy<F; and s, is the restriction of
$47 to F 0

A similar argument could be used to prove that also Theorem 22 of
Vol. I, Ch. V, §9, holds for infinite normal algebraic extensions. On
the other hand, the above proof of the corollary already establishes
Theorem 22 in the infinite case, for every prime ideal is the center of
some place.

CoROLLARY 4. If K* is a finite algebraic extension of K and P is a
place of K, then the number of non-isomorphic extensions of P in K* is not
greater than the degree of separability [K*:K]..

This is an immediate consequence of Theorem 12, Corollary 3 if K*
is a normal extension of K. In the general case, it is sufficient to pass
to the least normal extension K,;* of K which contains K* and to ob-
serve that: (a) every extension 2* of & in K* is the restriction of an
extension of 2 in K;* (for Z* has an extension in K;*); (b) two exten-
sions of Z in K,;* which differ by a K*-automorphism of K,* have the
same restriction in K*; (c) if G and H are the Galois groups of K,*/K
and K,*/K* respectively, then the index of the subgroup H of G is
equal to the degree of separability [K*:K]..

In view of the intrinsic importance of the above corollary, we shall
give below another proof which makes no use of the theorems developed
in this section. The groof will be based on the following lemma which
expresses the independence of any finite set of places such that none is a
specialization of any other place in the set.

Lemma 1. If P, P,, -, P, are places of a ﬁeld K such that
Ko, P Ko, if i], then there exzstselements fl, §2, -+, & in K such that
£2, 20, ooandfgf =0ifi#j (4,5=1,2,---,9).

Proor. We first consxder the case s—2 Smce Ks & Kgp,, there
exists an element x in K such that 2, # 00, xP,= 0. If xP,#0, we
set & =1/x. If xP,=0, we set £;= 1/(x- 1). In a similar fashion we
can find ¢&,.

We assume now that s > 2 and we use induction with respect tos. By
our induction hypothesis, there exists an element x such that x2, #0, co,
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xP;=0;1=2,3,.-.,5s—1. We show that there exists an element y,
such that y 2, #0, 0, y2,=0, i=2,3,--+,s—1, and yP £ 0. If
xP, +# o, there is nothing to prove. If ¥ = co, we set y,=x/(x—1) if
xP,#1, and y,=x/(x+1) if x#,=1 and the characteristic of the
residue field of 2, is #2. If the characteristic is 2 and x2, =1, we
set y,=(x3+x2+x)/(x3+x+1).

In a similar fashion we find, for each 1=2,3,...,s, an element y;
such that .2, #0, 00, y2;# 0 and ¥,2;=0, if j#£1,i(1=2,3,-- -, s).
If we then set &,=y,y;---y,, we have £,2,#0, 0; £,2,=0,
i1=2,3,---,s. The existence of &,, &5, - -+, &, is proved in a similar
manner.

The above Corollary of Theorem 12 can now be proved as follows:

Let %, Z,%, - - -, .* be non-isomorphic extensions of & in K*,
Since each P * has relative dimension zero, no P * is a specialization of
any P;* if i#j. There exist then elements £, £,, - - -, £ in K* satis-
fying the conditions of the above lemma (with &; replaced by £ *).
We assert that for any integer e 0 the elements £2° are linearly inde-
pendent over K (here p is the characteristic of K; if p=0, we set pr=1).
For assume that we have a linear relation of the form a.¢,?*
+ay? + oo +a =0, where the g; are in K and are not all zero.
Upon dividing by one of the coefficients we may assume that one of the
coeficients, say a;, is equal to 1, while the remaining coefficients have
finite #-values. But then, passing to the 2 *-values, we find the absurd
relation 1=0.

Since for a suitable integer e the elements £,2° are all separable over K,
it follows that s < [K*: K], establishing the corollary.

We shall need later on the following approximation theorem which
expresses the independence of places in a much stronger form than does
Lemma 1.

Lemma 2. If Py, P, -+ -, P, are places of a field K, such that
Ko, Ko, if i#], then given s arbitrary elements a,, a,, - - -, a, belonging
to the residue fields of P, P, - - - , P respectively, there exists an element
u in K such that u?;=a;,i=1,2,-..,s.

PROOF. Using the elements £,,&,,---,&, of Lemma 1 we set
L;i=E&/(E,+ &3+ -+ +£). The s elements {; have then the following
properties: {#;=1, [P ;=0if i#j. We shall make use of the {’sin the
present proof, in the following fashion: instead of proving the existence
of an element u satisfying the conditions of the lemma, we shall prove
that foreachi=1, 2, . . ., s there exists an element », such that 4,2, =a;,
u P+ if i#j. For, once this is proved, the element u=u,{,+
uglo+ -+ +ul, will satisfy all our requirements.
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Let us prove, for instance, that there exists an element u, such that
u,Py=ay, u,P;#0 if j#1. We begin with the case s=2. Let 2, be
an arbitrary element of K such that 2,2, =a,. If 2,P,# 00, we set
u, =2y If 2;2,=0c0, then we may set u; ==2,/(1+2,{,).

We now assume that s >2 and we use induction with respect to s.
There exists then an element 2, in K such that 2,2, =a,, 2,2,;# ©,
j=2,3,---,5—1. IfalsozP #00, wesetu =2, IfzP =00, we
may set #y=2/(1+2,{,).

This completes the proof of the lemma.

We shall conclude our study of extensions of places in algebraic field
extensions by a theorem which is of importance for applications, since
it covers a situation which occurs whenever two integral domains are
given, one of which is integrally dependent on the other.

THEOREM 13. Let O be an integrally closed integral domain, and let
£* be an integral domain which is integrally dependent.on O. Let q be a
prime ideal in O and let o* be a prime ideal in O* which lies over o. If P
is a place of the quotient field K of O which has center g in O, then at least
one of the extensions of 2P to the quotient field K * of O* has center o* in O*.

PROOF. Since O* is integrally dependent on ©, K* is an algebraic
extension of K. We also observe that we may replace O* by its integral
closure ©* in K*, since there is at least one prime ideal in ©* which lies
over g* (Vol. I, Ch. V, §2, Theorem 3). Hence we may assume that
O* is integrally closed.

We first consider the case in which K* is a finite normal extension of
K. We fix an extension 2'* of & in K* and we denote by g'* the
center of Z'* in ©*. Since both © and O* are integrally closed and
since both q'* and g* lie over g, the prime ideals q'* and g* are conjugate
over K (Vol. I, Ch. V, § 9, Theorem 22). If, say, o'* =7(q*), where T
1s a K-automorphism of K *, then the place #* =r4'* is an extension of
2 and has center g*.

If K*is a finite extension of K, not necessarily normal, we consider the
least normal extension K’ of K which contains K* and we denote by
£’ the integral closure of O* in K’. There exists a prime ideal ¢’ in ©’
such that ¢’ n ©* = g*, and by the preceding case, there exists an exten-
ston 2’ of 2 in K’ such that M- n O'=4q’. Then if P* is the restric-
tion of 2’ to K*, the place 22* will be an extension of & with center g*.
_ Now, let K* be an arbitrary algebraic extension of K. Our theorem
IS equivalent with the assertion that K q*#(1), where K} is the
integral closure in K * of the valuation ring Kp. For, if there exists an
extension 2* of & which has center q*, then K F0* <=M+ and there-
fore 1¢ Kxq*. Conversely, if K $a*#(1), then the ideal K%q* in
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K} is contained in a maximal ideal $* of K. By Theorem 12,
Corollary 2, the quotient ring of K} with respect to B* is the valuation
ring of an extension Z* of . 'The prime ideal M4« of Z* contracts in
©* to a prime ideal which contains g* (since $*> ¢*) and contracts to
the ideal ¢ in ©. Hence q*=Mp+n O* (see Vol. I, Ch. V, p. 259,
complement 1 to Theorem 3), and thus g* is the center of 2*.

Now, the proof that KJa*s(1) is achieved by observing that if

h

K%aq*=(1), then 1= > a*q;*, a*€ K3, g; € a*, and from this rela-
i1

tion one concludes easily that there exists an intermediate ring O’ be-
tween © and £* with the following properties: the quotient field K’ of
£'1s a finite algebraic extension of K,and if ¢’ = q* N ©’'then K'#q" =(1),
where K’ is the integral closure of K in K’.  The relation K's ¢’ =(1)
is, however, in contradiction with the fact that our theorem holds true
for the finite algebraic extension K'of K. This completes the proof of
the theorem.

CoroLLARY. The assumption and notations being the same as in
Vol. I, Ch. V, § 13, Theorem 34 (the theorem of Kummer), given any place
P of K which has center » in R and given any irreducible factor f(X) of
F(X), there exists an extension ' of P to K' such that yP' is a root of
2

Apply the theorem to the case in which £*=R’, 9*=R'p + R'F(y).

§ 8. Valuations. Let K be a field and let K’ denote the multiplica-
tive group of K, i.e., let K’ be the set of elements of K which are dif-
ferent from zero. Let I'" be an additive abelian fotally ordered group.

DerFiNtTION. A4 valuation of K is a mapping v of K’ into I' such that the
following conditions are satisfied:

(a) wxy) = v(x)+v(y)
(b) v(x+y) 2 min {o(x), v(v)}

For any x in K', the corresponding element v(x) of I' is called the
value of x in the given valuation. The set of all elements of I" which are
values of elements of K’ is clearly a subgroup of I' and is called the
value group of v. The elements of I" which do not belong to the value
group do not interest us. We shall therefore assume that I' itself is the
value group of v, i.e., that v is a mapping of K’ onto I".

A valuation v is non-trivial if v(a) # 0 for some a in K'; in the contrary
case v is said to be a trivial valuation.

Condition (a) signifies that v isa homomorphism of the multiplicative
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group K’ onto the additive group I Hence (1)=0;v(—1)+o(—-1)=
2(1)=0, and hence v(—1)=0 since I'is a totally ordered group. More
generally, if an element w of K’ is a root of unity, say if w"=1, then
nv(w)=0, whence v(w)=0 (for I is totally ordered).

From o(—1)=0 it follows that v( —x) =v(x), and hence, by (b):

(b') v(x—y) 2 min {o(x), o(y)}

We also note the following consequences of the properties (a), (b)
and (b"):

(1 oy/x) = v(y)—ov(x), x#0
(2) o(1/x) = —o(x), x+#0
3) v(x) < o(y) = v(x+y) = o(x).

To prove (3), we first observe that v(x +) 2 v(x), by (b). On the other
hand, if we write x in the form (x+y)—y and apply (b’), we find
v(x) 2 min {o(x+ y), v(y)}. Hence v(x) 2 v(x + ), since, by assumption,
y(x)<o(y). Combining with the preceding inequality v(x+y)2 v(x)
we find (3).

The following are easy generalizations of (b) and (3):

4) 'v(’i x,-) 2 min {o(x,), v(x,), - - -, v(x,)} for all x; € K;

(5) v( > xi) = min {o(x,), v(x,), - - -, v(x,)} if the minimum is
i=1
reached by only one of the v(x;).
Relation (4) follows by a straightforward induction. To prove (5), let ¢

be the unique value of the index j for which (x,) attains its minimum.
We have

1

v(z xj) 2 min {o(x;)} > v(x;),
J#i J#i
and now (5) follows from (3).

Let v and o' be two valuations of K, with value groups I" and I"
respectively. We shall say that v and v’ are equivalent valuations if there
€X1sts an order preserving isomorphism ¢ of I"onto I such that v'(x) =
[v(x)]p for all x in K. We shall make no distinction between equivalent
valuations; we agree in fact to identify any two valuations of K if they
are equivalent.

If a particular subfield & of K has been specified as ground field, then
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a valuation v of K is said to be a valuation over k, or a valuation of K|k,
if v(c)=0 for all ¢ in &, c#0, i.e., if v is trivial on &.

The set of elements x of K such that v(x) 20 is clearly a ring. This
ring will be denoted by R, and will be called the valuation ring of v.

Since, for every x in K, we have either v(x) 2 0 or v(x) £0, i.e., either
(x)2 0 or v(1/x)Z 0 (by (2)), it follows that either x or 1/x belongs to
the valuation ring. This justifies the name ‘“valuation ring” (see
Theorem 1, §2).

The “divisibility relation in K with respect to R,,” i.e., the relation
y|x defined by the condition that there exists an element z in R, such
that x=1yz, is equivalent to the relation “o(x)Z2(v).” This follows at
once from (a).

In order that both x and 1/x belong to R, it is necessary and sufficient
that o(x)20 and —o(x)=0, i.e., that o(x)=0. In other words: the
multiplicative group of units in R, coincides with the kernel of the homo-
morphism v of K’ onto I.

The non-units in R, are therefore the elements y in K such that
o(y)>0. It follows directly from (a) and (b’) that the set of non-units
in R, is a prime ideal. We shall denote this prime ideal by M, and
refer to it as the prime ideal of the valuation v. Notice that any element
of K which does not belong to R, is the reciprocal of an element of 9%,
Since M, is the set of all non-units in R, it.is a maximal ideal in R, in
fact the greatest proper ideal in R,.

In the case of a non-trivial valuation, M, is not the zero ideal, and R,
is a proper subring of K. For a trivial valuation v we have R =K,
m,=(0).

Since M, is a maximal ideal, R /9, is a field. This field will be called
the residue field of the valuation v and will be denoted by D,, or simply
by D. The image of an element x of R, under the canonical homomor-
phism R, — R, /M, will be called the v-residue of x.

If v is a valuation of K over a ground field &, then A= R and & can be
canonically identified with a subfield of the residue field D of v. The
transcendence degree of D/jk is called the dimension of the valuation v
(over k).

It is obvious that equivalent valuations of K have the same valuation
ring and the same residue field. Conversely, if two valuations v and v’
of K have the same valuation ring, then they are equivalent. For let I'and
I'" be the value groups of v and o' respectively, and assume that
R=R,=R,. The two valuations v and ¢’ are homomorphisms of K’
onto I"and I" respectively. By assumption, they have the same kernel,
namely the set of units in R. Hence v~'¢’ is an isomorphism ¢ of I"
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onto I". The elements of positive value are the same in both valuations,
namely they are the non-units of R. Hence ¢ transforms the set of
positive elements of I" onto the set of positive elements of I and is
therefore order preserving. Since v’ =wvgp, our assertion is proved.

§ 9. Places and valuations. Let v be a valuation of K, with value
group I'. It has been pointed out in the preceding section that if x is
an element of K, not in R,, then 1/x belongs to R, (1/x belongs then even
to M,). Now, we know from § 2 that this property of R, characterizes
valuation rings of places of K. Hence every valuation v of K determines
a class of isomorphic places & of K such that K= R,. These places are
non-trivial if and only if v is non-trivial. If & is any place in the class
determined by a given valuation v, and if x is any element of K| then the
relations

xP =0, x# =0, P #0, 0

are respectively equivalent to the relations
xeMp, x¢Kp, xeKop—Ma,

and therefore are also respectively equivalent to the relations
ox) >0, vx) <0, vx)=0,

since K#=R, and Map=M,.

We now show that, conversely, every place P of K is associated (in the
above fashion) with a valuation of K. The case of a trivial place & is
trivial, and we shall therefore assume that & is non-trivial. Let E
denote the set of units in Ks (E=Ks—M5). Then E is a subgroup of
the multiplicative group K’ of K. Let I" denote the quotient group
K'|E and let us write the group operation in I" additively. Let v be
the canonical homomorphism of K’ onto I Then condition (a) of the
definition of valuations is satisfied for v. We now introduce a relation
of order in the group I. It will be sufficient to define the set I'y of
positive elements of I.  We define I's as the transform of Ms by v.
S}nce Mo is closed under multiplication, I'y és closed under addition.
Since Mg is an ideal in K and since E is a subset of K, it follows that
Mz is the set-theoretic sum of a family of E-cosets in K’. Hence Ma,
with the zero element deleted, is the full inverse image of I'y under v-1,
Or, in other words: if y € K', y ¢ Mg, then v(y) ¢ I'y. Now, let « be
any element of I"and let a=v(x), xe K'. Ifa eIy, thenxe Mp. In
that case, 1/x ¢ M» and hence —a=v(1/x)¢Ty. If ¢ '+ and «#0,
then x ¢ Mo and » ¢ E, whence x ¢ K». But then l/x e Mp and —a=
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v(1/x) e I'y. We have thus proved that Iy satisfies all the conditions
for the set of positive elements of an ordered group.

It remains to show that condition (b) of the definition of valuations is
satisfied. We have to show that if x, ye K’ and o(x)<7(y), then
»{x+y) Z v(x), or—what is the same—that v(1 +y/x)=0. But that is
obvious, since the assumption v(x) < 2(y) implies that y/x is an element
of K, and hence also 1+ y/x belongs to Kz.

Since by our construction of v the valuation ring of v is the ring Kg,
the proof is complete.

It is clear that if # is a place of K and v is the corresponding valuation
of K, then the residue fields of & and v are isomorphic. In particular,
if K contains a ground field & and if & is a place of K|k, then the residue
fields of £ and v are k-isomorphic, and hence Z and v have the same
dimension. Note that, for a given valuation v a particular place asso-
ciated with v is the canonical homomorphism of R, onto D, (=R,/I,).

Although places and valuations are closely related concepts, they are
nevertheless distinct concepts. The value of an element x at a place &
is, roughly speaking, the analogue of the value of a function at a point,
while the value of x in the corresponding valuation v is the analogue of
the order of a function at a point. We shall, in fact, adopt this function
theoretic teminology when we deal with places and valuations. If,
namely, & is a place and v is the corresponding valuation, then for any
x in K we shall refer to v(x) as the order of x at . If a=v(x) and « is
positive (whence xZ =0), then we say that x vanishes at & to the order «.
If o is negative (whence %’ = o0), then we say that x is infinite at & to
the order —«. The order of x at & is zero if and only if x##0, co.

It must be pointed out explicitly that the above definition of the order
of the elements of K at a given place & of K presupposes that among the
(infinitely many) equivalent valuations determined by & one has been
selected and fixed in advance. Without a fixed choice of v, the defini-
tion of the order is ambiguous. The ambiguity may remain even if
the value group I is fixed, for I" may very well possess non-identical
order preserving automorphisms.

It is well known that, with the exception of the additive group of
integers, every totally-ordered abelian group does possess such auto-
morphisms. Hence, it is only when the value group is the group of
integers that the order of any element of K at the given place & is deter-
mined without any ambiguity. There is, of course, one canonical
valuation v associated with a class of isomorphic places &, and that is
the canonical mapping of K’ onto K'/E, where E is the set of units of
Kp. However, in practice one replaces K'/E by some isomorphic
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ordered group of a more concrete type (for instance, by a subgroup of
the additive group of real numbers, if v is of rank 1; see § 10 below) and
when that is done then the ambiguity referred to above reappears.

If a particular subfield & of K has been specified as a ground field then
the valuations v of K/k are characterized by the condition that & is con-
tained in R,. It follows that the valuations of K|k are associated with
the places of K/k.

The following theorem seems, in some respects, to be an analogue of
the extension theorem for places (Theorem 5', § 4) but is actually a much
more trivial result:

THEOREM 14. Let o be an integral domain, K the quotient field of o,
and let vy be a mapping of o (the zero excluded) into a totally ordered
abelian group I satisfying the following conditions:

(1 vo(xy) = vo(x) +vo(),
(2 vo(x+y) Z min {vy(x), vo(¥)}-

Then vy can be extended to a valuation v of K by setting v(x|y) =vy(x) —
vo(y), and this valuation v is the unique extension of v, to K.

PROOF. If y/x=1y'[x' then xy’' =x"y, vo(x) + vo(¥') =vo(x") +vo(y), i.€.,
vo(%) — vo(y) =vo(x") —vo(¥"), and this shows that v is well defined and
is, of course, the unique valuation of K which coincides with v, on 4.
Furthermore, v satisfies conditions (a) and (b) of the definition of valua-
tions. For, we have:

.

55)
ol ==
Yy

vo(xx") — VoY) = vo(x) +ve(x") = [vo(y) +vo(y")]
[vo(x) — vo(¥)] + [wo(x") — vo(¥")]

9+(5)

i.e., condition (a) is satisfied. We also have:

5+5)
yy

oy’ + x'y) — vo( 3y’

v

min {vg(xy"), Vo(x'y)} —vo(yy’)

min {v( ;-‘) +oo(3y"), v(;i) + 'vo(yy’)} —vo(y¥')

= min o) o(5))

showing that condition (b) is also satisfied.
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By analogy with §5 we say that a valuation v of a field K is non-
negative on a subring 4 of K if the valuation ring R, contains 4, i.e., if
each element of 4 has non-negative order for v. In this case the set
A n M, of all elements of 4 which have positive orders for v is a prime
ideal v in A; it is called the center of vin A. The ideal p is also the
center of the (equivalent) places associated with v. It follows that if 4
is a subring of a field K and if p is a prime ideal in 4, then there exists
a valuation v of K having v as center in 4.

In the algebro-geometric case, when dealing with a valuation v of the
function field (V') of an irreducible variety V//k, and assuming that v
is non-negative on the codrdinate ring k[ /7], we shall mean by the
center of v on V the irreducible subvariety of //k which is defined by
the prime ideal M, N k[V']. 'Thus, while the center of a place £, which
is finite on k[V7], is a point Q of V, the center of the corresponding valua-
tion is the irreducible subvariety of }/ which has Q as general point
over k.

EXAMPLES OF VALUATIONS :

EXAMPLE (1). A finite field K admits only trivial valuations. In fact,
all its non-zero elements are roots of unity.

EXAMPLE (2). Let 4 be UFD, K its quotient field. Given a non-
zero element x in K, we consider the (unique) factorization

X =u H p”v("),
peEP

u denoting a unit in 4, and P a maximal set of mutually non-associated
irreducible elements in 4. For a given x#0 in K, there is always only
a finite number of elements p in P such that v,(x)#0, and the integers
v,(x) are all Z0 if and only if x € 4. The uniqueness of such a fac-
torization shows immediately that v,(xy)=v,(x)+v,(y). Denoting by
m, the integer min (v,(x), v,(¥)), the fact that x+y may be written in
the form a | p™» with a in 4, shows that o,(x+y) = min (v,(x), v,()).
In other words, for each p in P, v, is a valuation of K. Its valuation
ring is obviously the quotient ring 4 4,, and its center in 4 is the prime
ideal Ap. This valuation is called the p-adic valuation of K. Its value
group is the additive group of integers.

exaMPLE (3). Let R be a Dedekind domain, K its quotient field.
By Theorem 9, § 5, we know that if v is a non-trivial valuation of K
which is non-negative on R, then the valuation ring R, of v is the quotient
ring Ry of R with respect to a proper prime ideal p in R, and that in fact
for every proper prime ideal ¥ in R the quotient ring Ry is a valuation
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ring. Let then p be any proper prime ideal in R and let v, denote the
(unique) valuation of K whose valuation ring is Ry. In the course of
the proof of Theorem 9 we have seen that every non-zero element x of
Ry is of the form &#”, where ¢ is a unit in Ry and ¢ is some fixed element
of R which belongs to  but not to p2. In other words, we have shown
that Ry is a unique factorization domain, that ¢ is an irreducible element
in Ry and that every other irreducible element of Ry, is an associate of ¢.
It follows, as a special case of the preceding example, that if we set
v(et")=n, then v is a valuation of K and Ry is the valuation ring of
v. Therefore v=vp (up to equivalence). The center of vy in R is
obviously the prime ideal . This valuation v is called the v-adic
valuation of the quotient field K of R. We have therefore shown that
every valuation v of the quotient field K of a Dedekind domain R such that v
is non-negative on R is (or, is equivalent to) a v-adic valuation of K, where
v is a suitable prime ideal in R, and that the value group of v is (or is order
isomorphic with) the additive group of integers.

In particular, al! the non-trivial valuations of the field of rational
numbers, are equivalent to p-adic valuations, where p is a prime number.
Similarly, each non-trivial valuation of the field 2(X)/% of rational func-
tions of one variable is equivalent to a valuation of the following type:

(a) a p(X)-adic valuation, where p(X) is an irreducible polynomial in
k .

(b) the valuation defined by vy (f(X)/e(X))=deg. f(X)—deg. g(X).
(See Theorem 9, Corollary 2, § 5).

The above analysis can be applied to fields of algebraic numbers
(finite algebraic extensions of the field of rational numbers). If Kis such
afield and v is anon-trivial valuation of K, then the valuation ring R, con-
tains the ring J of ordinary integers and therefore R, must also contain
the integral closure of J in K, i.e., the ring o of algebraic integers in K.
Since o is a Dedekind domain (Vol. I, Ch. V, § 8, p. 284), v is a p-adic
valuation of K, Where p is a prime ideal in o, and the value group of v is
the additive group of integers. The center of v in J is a prime ideal Jp,
where p is a prime number and p N J=Jp. Given a prime number p,
there is only a finite number of prime ideals p in o such that p nJ=p
(they are the prime ideals of 0p). Hence, there is only a finite number
of mutually non-equivalent valuations v of K in which a given prime
number p has positive value v(p).

§ 10. The rank of a valuation. Let K be a field and let v be a
valuation of K. By the rank of v we mean the rank of any place & such
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that K= R, (see § 3, Definition 1). We proceed to interpret the rank
of v directly in terms of the value group I" of v.

A non-empty subset 4 of I' is called a segment if it has the following
property: if an element « of I" belongs to 4, then all the elements 8 of I
which lie between a and — « (the element — « included) also belong to 4.
A subset 4 of I' is called an isolated subgroup of I if 4 is a segment and a
proper subgroup of I'.

It is clear that the set of all segments of I is totally ordered by the
relation of set-theoretic inclusion. We shall say, namely, that 4, pre-
cedes 4, if the segment 4, is a proper subset of the segment 4,. We
proceed to prove that the ordinal type of the set of all isolated subgroups of
I is equal to the rank of v. This assertion is included in the theorem
stated and proved below.

If 4 is any subset of the valuation ring R,, we shall denote by Av the
set of all elements a of I" which are of the form o(x), x € 4, x#0, and by
— Av the set of elements —«, a € Av. We denote by I'; the comple-
ment in I” of the union of the two sets Av and — Av.

THeOREM 15.  If % is a proper ideal in R, (i.e., % #(0), R,), then 'y is
a segment in I'.  The mapping N — I'w transforms in (1, 1) order-reversing
fashion the set of all proper ideals % in R, onto the set of all segments of I
which are different from I'.  The segment 'y is an isolated subgroup of I’
if and only if % is a proper prime ideal of R,.

PROOF. If Ais a proper ideal in R,, the set Av is non-empty and con-
tains only positive elements of I'.  Hence I'y is non-empty (it contains
the zero of I') and is a proper subset of I'.

Since AR, <A, we have Av+1<=Wv. In other words: if @ € Av and
B> a, then B € Av. This shows that I'y is a segment.

Since % is an ideal, we have xE<¥ for all x in 4. Here E—the set of
units in R,—is the kernel of the mapping v of K’ onto I. Hence %
consists of E-cosets and is therefore the full inverse image of %o under
-1, Hence the mapping % — I'y is univalent. It is obvious that if
A and B are ideals in Rvand A> B, then ['y<=I'y. Hence the mapping
A — I'y reverses order.

Let 4 be an arbitrary segment of I, different from I', and let L be the
set of all positive elements of I' which do not belong to 4. We set
A=Lov-1, The fact that 4 is a segment implies that L+ I cL.
Hence AR,<A. Furthermore, if x, y € A and if, say, v(x) < v(y), then
»(x—y)Zv(x) € L, and hence v(x~y) € L (since 4 is a segment) and
x—y e A (since U=Lv-1). We have proved that % is an ideal. Since
L is non-empty and does not contain the zero of I', % is a proper ideal.
Thus everything is proved, except the last part of the theorem.
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We observe that an ideal % is prime if and only if its complement in
R, is closed under multiplication. Hence % is prime if and only if the
set of non-negative elements of I'y is closed under addition. But since
Ty is a segment, this property of the set of non-negative elements of
Iy is equivalent to the group property of I'nx. Hence I'y is a subgroup
of I' (necessarily isolated) if and only if % is a proper prime ideal of R,.
This completes the proof of the theorem.

In the sequel we shall also speak of the rank of any ordered abelian
group I'; we mean by that the ordinal type of the set of all isolated sub-
groups of I

THEOREM 16. The valuation ring R, is noetherian if and only if the
value group I' of v is the additive group of integers.

PROOF. We first show that if R, is noetherian then v must be of
rank 1. For suppose that v is of rank greater than 1. Since the null-
group is an isolated subgroup of I', there must exist an isolated subgroup
4 different from (0). Fix a positive element « in 4. Then a<2«
< ... <na< ---. Since 4 is a proper subgroup of I" we can find in
I'a positive element 8 which does not belong to 4. Since 4 is a segment
and since the elements na belong to 4, it follows that 8 > na, n=1,2, - - -,
We thus have in I" a strictly descending sequence 8, B—«, B—2¢, - - -
of positive elements. Such a sequence determines an infinite strictly
descending sequence of segments of I', and therefore, by Theorem 15,
we have an infinite strictly ascending sequence of ideals in R,. Hence
R, is not noetherian.

Let now v be of rank 1. If R is noetherian, there must be a least
positive element in I, say «. Then if 7 is any integer, no element of I"
can lie between na and (n+ 1)e, for in the contrary case there would also
be elements between 0 and «. Hence the set of all multiples na of «
(n=0, £1, £2,--.)isa segment. Since this set is also a subgroup of
T, it follows that this set coincides with I', for otherwise v would be of
rank >1. We %ave thus proved that if R, is noetherian, then I is iso-
morphic with the additive group of integers. The converse is obvious,
for the group of integers contains no infinite strictly descending sequence
of segments.

We give another proof of Theorem 16, which does not make use of
Theorem 15.  We first observe that the following holds in any valuation
ring R, : if an ideal % in R, has a finite basis, then % is a principal ideal.
Yor if {x,, x4, - - -, x,} is a basis of ¥ and if, say, x, is an element of the
basis having least value in v, then x;/x, € R,, and hence % is the prin-
cipal ideal (x,). Let us suppose now that R, is noetherian. By the
above remark, R, is then a principal ideal ring. Let ¢ be a generator of
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the maximal ideal M, of R,. Then any element of R, which is not
divisible by #is 2 unit. A familiar and straightforward argument shows
that no element of R, (different from zero) can be divisible by all powers
of t (if x=t"a,, a,eR,, n=1,2,--., then the principal ideals (a,),
(ay), - - -, (a,), - - - would form a strictly ascending chain). It follows
that every element x of R, x#0, can be put (uniquely) in the form az*,
where 720 and a is 2 unit. This shows that the principal ideals (%),
n=1,2,---,are all the proper ideals of R,. Hence the maximal ideal
(?) of R, is the only proper prime ideal of R,, whence v is of rank 1.
Furthermore, it is immediately seen that if K’ denotes, as usual, the
multiplicative group of the field K and E is the set of units in R,, then
the quotient group K'/E, written additively, is isomorphic to the group
of integers. The given valuation v is necessarily equivalent to the
valuation v obtained by setting v'(at*)=n, if a is a unit.

A valuation of rank 1 is said to be discrete if its value group is the addi-
tive group of integers. Thus, Theorem 16 states that a valuation ring
R, is noetherian if and only if v is a discrete valuation of rank 1.

COROLLARY 1. An integrally closed local domain in which the ideal of
non-units is the only proper prime ideal is a discrete valuation ring of
rank 1.

This follows from § 5, Theorem 9, Corollary 3.

CorOLLARY 2. If R is an integrally closed noetherian domain and y s
a mimimal prime ideal in R, then the quotient ring Ry is a discrete valuation
ring of rank 1.

For, the ring R, satisfies then the assumptions of the preceding
corollary (cf. Vol. I, Ch. V| § 6, Theorem 14, Corollary).

We add another important result concerning noetherian integrally
closed domains R. Let .S denote the set of minimal prime ideals in R.
If v € S, we denote by v, the unique valuation of the quotient field K
of R which is non-negative on R and has center p. By Corollary 2, the
valuation ring of v is Ry, and each vy is discrete, of rank 1.

CoroLLARY 3. Let K be the quotient field of an integrally closed
noetherian domain R. If wis any element of K, w#0, then (1) there is only
a finite number of prime ideals v in the set S such that vy(w)#0; (2) w
belongs to R if and only vp(w) 2 0 for all v in S; furthermore (3) w is a unit
in R if and only if vy(w)=0 for all p in S.

If we R, then Rw=p,M ap,mn ... npfl) where s=0, the p;
are minimal prime ideals in R, n;2 1 and s=0 if and only if w is a unit
(see Vol. I, Ch. V, § 6, Theorem 14, Corollary 1). If follows at once
that v, (w)=n;, i=1,2,.--,s, and vy(w)=0 if pe.S and p##yp,,
Po, - - - p,.  This proves (1) in the case in which = € R and therefore
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also in the general case. If we K, w#0, we write w=w,/w,, w; € R.
If vp(w,) Z vp(w,) for all p in S, then in view of the relations

Rw, = [ plople)
veS

Rw, = (] plwtew),

PesS
it follows that Rw, < Rw, and hence w,/w, € R. 'This proves (2). The
last part of the corollary is now obvious.

We now go back to the study of general valuations and we add first
some remarks about isolated subgroups, which we shall presently make
use of.

Let 4 be an isolated subgroup of I It is immediately seen that the
canonical homomorphism of I" onto I'/4 defines a total ordering in I'/4,
in the following fashion: an element of I'/4 shall be, by definition, non-
negative if it corresponds to a non-negative element of I From now
on, when we speak of I'/4 as a totally ordered group we mean that I'/4
has been ordered in the above fashion.

In the canonical homomorphism of I' onto I'/4, the isolated sub-
groups of I" which contain 4 correspond in (1, 1) fashion to the isolated
subgroups of I'/4. Since every isolated subgroup of I" either contains
or is contained in 4, it follows that if £ is the rank of 4 and n is the rank
of I'|4, then the rank of I is £ +.

In §3, we have defined specialization of places. The valuation-
theoretic interpretation of this concept leads to the notion of composite
valuations. Let v be a valuation of K, of rank >1. There exists then
another valuation v; of K such that R,<R,. Let & and &, be the
places of K which are defined respectively by the canonical homomor-
phism of R, onto R,/M, and of R, onto R, /M, . Then 2 is a proper
specialization of 2, and we have =22, where 2 is a place of
R, /M. Let be the valuation of R, [k, determined by . We
tben say that v is a composite valuation, that it is composite with the valua-
tions v, and ¥ and we write v=1v, o T.

Let % denote the prime ideal of ;. We know (§ 3) that B is also a
Prime ideal in R,. If, then, I'is the value group of v, B determines an
isolated subgroup 4 of I'" (see Theorem 15). We shall now prove the
following theorem:

THEOREM 17.  The value group I'y of v, and the group I'|4 are iso-
morphic (as ordered groups). Similarly, the value group I of © and the
group 4 are isomorphic.

PROOF. Let E and E, denote, respectively, the set of units in R, and
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R, respectively. We first observe that E, is the full inverse image of 4
under v-1. For if x is any element of E,, then x=2y/2, where y and 2
are elements.of R,, not in B (since R, is the quotient ring of R, with
respect to B). Then v(2) is a non-negative element of I" which does
not belong to Vo, and hence, by the definition of 4, v(z) must belong
to 4. Similarly for o(y). Since 4 is a group, it follows that v(x) € 4.
Conversely, if x is an element of K’ such that o(x) belongs to 4, then
neither v(x) nor o(1/x) belongs to Pv. Since B is the full inverse image
of PBv under v, it follows that neither x nor 1/x can belong to ‘B.
Hence x is a unit in R,. This establishes our assertion that E, is the
full inverse image of 4 under v-1.
We can therefore assert that

(a) the restriction of v to E, is a homomorphism of the multiplicative
group E, onto the additive group 4, and the kernel of this homomor-
phism is E.

Now, v and v, are homomorphisms of K’ onto I"and I'; respectively,
with kernels E and E,. Since E,DE, it follows that v-1v, is a homo-
morphism of I" onto I';. By (a), the kernel of this homomorphism is
precisely the isolated subgroup 4. Hence I'; and I'/4 are isomorphic
as groups. If « is a non-negative element of I', then the set av! is
contained in R,, hence also in R, , and therefore the element av-1v, is
non-negative. Hence the groups I'; and I'/4 are isomorphic also as
ordered groups and this completes the proof of the first part of the
theorem.

Now consider the product 2,4. This transformation into I is de-
fined for those and only those elements x of K for which 2,0, c0.
Hence the domain of 2,7 is E,, and the range of 2,7 is the value group
I’ of &. 'The transformation 2,7 is clearly a homomorphism (of the
multiplicative group E; onto the additive group I'). Its kernel consists
of those elements x for which 2, has value zero in €, i.e., of those ele-
ments x for which x?,##0, co. Since #,2 =%, we conclude that the
kernel of #,5is E. Comparing this result with (a), we conclude that I”
and 4 are isomorphic as groups. An element x of E, is mapped by v
into a non-negative element of 4 if and only if x belongs to R,. On the
other hand, an element x of E, is mapped by £, into a non-negative
element of I" if and only if x,2 # o0, i.e., if and only if x2 # oo, hence
again if and only if x€ R,. This shows that I" and 4 are isomorphic
also as ordered groups, and this completes the proof of the theorem.

COROLLARY. Rank of v=rank of o+rank of v,.

The only valuations encountered in most applications (and, in parti-
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cular, in algebraic geometry) are valuations of finite rank (see §3,
Definition 1, Corollary 1), and we shall now derive some properties of
such valuations.

An archimedean totally ordered (additive) group I is one satisfying
the following condition: if « and B are any two elements of I" and « >0,
then there exists an integer # such that na >B8. Let I" be archimedean
and let 4 be an isolated subgroup of I It follows at once from the
above definition that if 4 contains a positive element « then 4 coincides
with T, contrary to the fact that an isolated subgroup of I'is, according
to our definition, a proper subgroup of I Hence (0) is the only iso-
lated subgroup of I', and I'is therefore of rank 1. Conversely, suppose
that I' is a totally ordered group of rank 1, and let « be a positive element
of I The set of all elements + B, where 8 is a non-negative element of
I such that no>pB for a suitable 7 (depending on B), is a segment
and a subgroup of I', and this set does not consist only of the
element 0, for o belongs to the set.  Since I' is of rank 1, it follows that
the above set coincides with I, and hence I' is archimedean. We have
thus proved that an ordered group is archimedean if and only if it is of
rank 1.

The following well-known argument shows that every archimedean
ordered abelian group I' is isomorphic to a subgroup of the ordered additive
group of real numbers (and therefore valuations of rank 1 are frequently
referred to as real valuations).

We fix a positive element o of I.  If B is any element of I" we divide
the set of all rational numbers m/n (n > 0) into two classes C, and C,, as
follows: m/n € C, if ma<nB, and m/n € C, if ma2nB. The fact that I
is archimedean insures that neither C; nor C, is empty. It is then seen
immediately that the pair of classes C;, C, defines a Dedekind cut in the
set of rational numbers. If & is the real number defined by this Dede-
kind cut, we set ¢(B)=>b. It is then easily verified that ¢ is an order
preserving isomorphism of I' into the set of real numbers. Note
that ¢ depends on the choice of the fixed positive element « of and that
Plo)=1.

We have proved earlier (§ 7, Lemma 2) an approximation theorem
expressing the independence of any finite set of places, provided no
Place in the set is a specialization of any other place in the set. For
valuations of rank ! we have the following stronger approximation
theorem :

Turorem 18.  Let vy, vy, - - -, v, be rank 1 valuations of a field K,
with value groups I'y, Ty, - - -, T respectively. (We may assume that each
T consists of real numbers.) Given h arbitrary elements uy, u, - - -, uy of



46 VALUATION THEORY Ch. VI

K and h arbitrary elements o, oy, - - -, o of I'y, Ty, - - -, I}, respectively,
there exists an element u of K such that

(1) v{u—u) =0, i=12,---,h

prROOF. It will be sufficient to prove the following: given any
integer m, there exists an element x in K such that

2 v(x—u)zm, i=12--- h

For, assume that this has already been proved. We then fix an integer
m such that m>ea;, 1=1,2, .- -, h, and for each 7 we fix an element x;
in K such that v(x;)=«;. By assumption, there exists an element y in
K such that v(y—x;) 2 m,7=1,2,---, k. Since y=(y—x;)+x; and
vi(y—x;) >v;(x;), we conclude that v (y)=q; i=1,2, ---, A Now
let x be an element of K satisfying the inequalities (2) and let u=x-y.
We have wu—wu;=(x—u)+yv and v(y)=«;<mZv,(x—u;). Hence
v{u—u)=vy)=0; i=1,2,- -, h, ie., u satisfies relations (1).

Since the valuations v; are of rank 1, Lemma 1 of § 7 is applicable.
There exists therefore a set of elements %4, 7y, - -+, 7; in K such that
v{(n;)=0 and v,(n,)>0 if i#j, for 7, j=1,2,..., h. We replace the
elements %; by the following elements {; (compare with the proof of
Lemma 2, §7):

i =miftmy+me+ oo 4mp), 1=1,2,---,h

Then it remains true that v,({;)=0 and v,({;) > 0 if i 7, but furthermore
we have that the v;-residue of {; is equal to the element 1 of the residue
field R,,/M,,. Hence v ({;—1)>0, where 1 now stands for the ele-
ment 1 of K.

We now fix a positive integer 7 satisfying the following conditions:
(3) nvi(gi_1)+vt(ui) z m, i = 1’2"">h;
(4) n'vj(gi)""‘vj(ui) 2 m, 19&]; l,j = 1’ 2) M) h.

(Note. If for some 7 we have u;=0, then the corresponding equation

(3) (or (4)) imposes no condition on the integer n, for v,(0) is interpreted
then as + ©0.)

Consider the following elements £; of K:

E=1-(1=¢7, i=1,2,---,h
We have: v(¢;— 1)=nv(1-{" 2nv,(1-{;), whence, by (3):
) viu(¢;—1)] 2 m.

We also have: £;,={7f((;), where f is a polynomial with coefficients i1
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the prime ring. Hence, if i#j then vy (§;)2nv,({;), and therefore, in
view of (4):

(6) vi{u€;) 2m.

If we now set x=u&; +u,€,+ - - - L€, then it follows at once from
(5) and (6) that the element x satisfies the inequalities (2). This com-
pletes the proof of the theorem.

The above approximation theorem holds also for valuations of
arbitrary rank provided the valuations v,, v,, - - -, v, are independent in
the sense of the following definition: the valuations v,, v, - - -, v, are
said to be independent if no two of them are composite with one and the
same non-trivial valuation. We shall prove therefore the following:

THEOREM 18'. The approximation theorem (Theorem 18) remains
valid if the valuations vy, v, - - - , v, are independent (and not necessarily
of rank 1).

PROOF. It will be suflicient to prove the existence of an element w
in K such that the inequalities

(7) vi(w-ui) > oy i = 1) 2) T h)

hold (the ; and ; being arbitrary, as in Theorem 18). For assume that
this has already been proved. We then fix an element x; in K such that
v4(x;) = ; and an element y in K such that v,(y —x;) >0, i=1,2,-- - | h.
We have then v(y)=v,(y—x;+x;)=c;. We then determine an ele-
ment x in K such that v;(x—u;)>«; and we set u=x-+y. Then
v(u—u)=v(x—u;~y)=a; since v(y)=a; <vx—u;).

To prove the existence of an element w satisfying the % inequalities
(7) we proceed as follows:

We set ;;=a;—v(u;) if u;#0and o;;=0ifu;=0(,j=1,2,---, h).
Let 8;=max {e;;, &5, - -+, ;). If B;>0 then we denote by 4; the
greatest isolated subgroup of I'; which does not contain B; (4; exists: it
is the union of all the isolated subgroups of I'; which do not contain g;).
If B, <0 we take for 4; the zero of I';. If 4,%#(0) we denote by ¢’; the
valuation of K whose value group is the group I';=T7/4; and with
E’hich v; is composite. If 4;=(0), we set v’;=v;. Let B’; be the coset

44,

It is clear, by the definition of 4;, that if 8/;>0 then the zero of I';
is the only isolated subgroup of I"; which does not contain f’;. Now
any positive element y’ of I'"'; determines a smallest isolated subgroup
containing y': it is the subgroup of I'"'; consisting of al! the elements + &’
such that 820 and such that ny’ > 8 for some integer n. It follows
that for any positive element ' of I'; there exists an integer n (depending
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on ') such that ny' >pB', and this is true for i=1,2,.--,h. Going
back to the value groups I'; we can express this property as follows: if y
is any positive element of I';, not in A;, then there exists an integer n such
that ny > B;. Another fact that has to be taken into account is the fol-
lowing: If i#j then K/, $ K,/ .. For, in the contrary case, both v; and
v; would be composite with the non-trivial valuation ¢';. From this
fact follows, by Lemma 2, § 7, the existence of elements {;, {y, =+,
in K such that ¢/({;—1)>0 and v'}({;) >0 if j#i (1,j=1,2, -, h).
Hence, in view of the above mentioned property, we can find an integer
n such that

nv(l;—1)>B; nvi(l)>B; if j#4 4,7=12,.--+,h

From the definition of the elements B; it follows then that we have for all
7 such that #;#0:

no(li—1)+ou;) > «;
nv (L) +oi(u;) > ) i 5 # 4
Hence, if we consider the elements ¢;=1—(1-{7)" introduced in
the proof of Theorem 18, we find that if u;#0 then v,(u;¢;—u;) >¢;
and v,(4;¢;) > «;, and that therefore the element w=u, £, +u,+ -+ - +

u,é, satisfies the inequalities (7). This completes the proof of the
Theorem.

REMARK. Concerning the notion of independent and dependent valua-
tions we point out the following criterion: two valuations v and v of K are
dependent if and only if some proper prime ideal of K, coincides with a prime
ideal of K,s. 'The “only if” is obvious. On the other hand, if K, and K,
have in common a proper prime ideal p, then v is composite with a non-
trivial valuation v, such that 9, =p. Similarly, ¢ is composite with a
valuation o'y such that M, =p. From M, =M, follows K, =K',
v,=2; and hence v and ¢’ are dependent.

We add some final remarks concerning (A) discrete ordered groups of
finite rank and (B) the rational rank of a valuation.

(A) Let I" be a totally ordered (abelian) group of finite rank # and let
I'y=(), I'y,---,T,_; be its isolated subgroups: I'j<I'}j< --- <
I',_,<TI. Itisclear that the quotient groups I';,,/I';,i=0,1,--- , n—1
(I'y=T), are groups of rank 1. If each of these quotient groups is iso-
morphic to the group of integers, then the ordered group I' is said to
be a discrete group. A discrete ordered group of rank 1 is, then, a group

isomorphic to the group of integers. A valuation is called discrete if its
value group is discrete.
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We now observe, quite generally, that given a finite set of ordered
groups G,, G,,---, G, then the direct product G*=G; x G, % --- x G,
can be ordered lexicographically, as follows: a*=(a,, ay, - - -, a,)>
O(e, € G)), if the first ; which is not zero is positive. If H is an isolated
subgroup of G(1<s<m), then the elements a* of G* such that «;=
o= -+ =a,_;=0, a, € H, form an isolated subgroup of G*, and in this
fashion all the isolated subgroups of G* can be obtained. It follows at
once that the rank of G* is equal to the sum of the ranks of G, G,,_1, - - -,
G, (in this order).

With this observation in mind, we now show that a discrete totally
ordered group I', of rank n, is isomorphic to the direct product Ggyx
Gox - -+ x Gy (n times), where G is the group of integers. We sketch
the proof. Let ¢; be the isomorphism of I ,/I; onto G, where
r,,r,---,I,_ are the isolated subgroups of I' and where I',=1T".
Foreachi=0,1,2,--.,n—1, wefixin I, a positive element «,,_; such
that the I';-coset of «,_; is mapped by g; into the integer 1. Then each
element « of I" can be expressed in one and only one way as a linear
combination of «,, ay, - -, a, with integral coefficients: a=m,a,+
Moy + + -+ +m,a, It is then found that « >0 if and only if the first
of the non-zero coeflicients m; is positive. Hence the mapping ¢:
o — (m,, my, - - -, m,) is an order preserving isomorphism of I" onto the
direct product Gox Gyx - - - x G4 (n times).

It should be noted that the isomorphism ¢ which we have just con-
structed depends on the choice of the 7 elements «,_;. Suppose that
oy, oy, - -+, o, is another set of elements of I'" with the property that
o',_; €Iy, and the I';-coset of «’,_, is mapped by ¢; into 1, and let ¢’
denote the isomorphism similar to ¢ and relative to this new set of
elements o'y, o'y, - - -, &',.  Since &',_;—a,_; € I'; it follows that

’ h ’
Cpip = Cp i Qn i, piv1%n—is1t * TG Oy 1= 0,1,---,n-1

where the g,, are integers. If we then write a=m'ja';+m'ya,,
+ ... +m' ', then the following are the equations of the order pre-
serving automorphism ¢=1¢’ of Gyx Gyx - - - x Gy:

', _ ’ ' _ ' ' '
my = my; My = QoM +Mm, Mg = qgM +gsgm -+my €tc.

(B) In addition to the rank of a valuation v we also introduce the so-

called rational rank of v. If I'is the value group of vand a;, ay, - - - , @,
are elements of I', we say that the «’s are rationally dependent if there
exist integers ny, 1y, - - -, 1, not all zero, such that nja; +nya,+ - - - +

nyo,=0. In the contrary case, the «’s are said to be rationally inde-
pendent.
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DeFINITION.  The maximum number of rationally independent elements
of I is called the rational rank of v (the rational rank of v may be infinite).

LemMA. Let v be a valuation of Kk and let x,, x,, ..., x, be elements
of K, different from zero. If xy, x,, - - -, x, are algebraically dependent
over k, then v(x,), v(x,), - - -, v(x,) are rationally dependent.

PROOF. Let f(X,, X,, - -+, X,) be a non-zero polynomial in A[X]
such that f(x;, x5, - -+, x,)=0. As has been pointed out in §8, the
valuation axioms imply then that there must exist a pair of distinct terms
in the polynomial f(X), say aX,1.X,2 - - - X//s and bX 1 X2 - - - X s,
such that v(ax,1x,%2 - - - x,7s) = v(bx,/1x,%2 - - - x,75), where a, b are non-
zero elements of k. Since v(a) =v(b) =0, it follows that (7, —7)v(x) +
(fa—Jo)v(xg) + « -+ +(i,—j)v(x,)=0, and this establishes the lemma,
since the s integers z,—7, are not all zero.

CoroLLARY. If K|k is a field of algebraic functions of r independent
variables, then the rational rank of any valuation of K|k is not greater
than r.

NoTE. We observe that the rank of a valuation v is never greater than the
rational rank of  whenever the rational rank is finite. 'To show this we have
only to show the following:if I'y < I'y <--- <I_,; isa finite, strictly ascending
chain of isolated subgroups of I" and if for eachi=1,2, ..., & we fix an ele-
ment «; which belongs to I'; and not to I';_, (I',=I"), then «y, ay, - - -, o are
rationally independent. Assume then that we have a relation myo,+
Moay+ -« - +mya, =0, where the m; are integers, m,#0and g< 4. Then mya,
€I, 5, and since I',_; is 2 segment and mf;éO it follows that o, € I

a
S . . . . Laroed
contradiction. In particular, a valuation of rational rank 1 is necessarily a

rea] valuation. Its value group may be assumed to consist of rational num-
bers and for that reason a valuation of rational rank 1 is sometimes called a
rational valuation.

§ 11. Valuations and field extensions. Let K be a field and let
K* be an overfield of K. If v*is a valuation of K*, the restriction » of
v* to K is clearly a valuation of K (v may be trivial even if v* is non-
trivial). 'The valuation ring of v is then given by R« K, and the valua-
tion v* is said to be an extension of v. If v* is an extension of v and if
P* is any place of K* whose valuation ring is R+, then the restriction
P of P* to K is a place of K whose valuation ring is R,. It follows that
the results of §§ 6~7 on extensions of places, when translated into the
language of valuation theory, yield corresponding results on extensions
of valuations. However, in the valuation-theoretic interpretation of
these results it must be observed that isomorphic places are associated
with one and the same valuation, and corresponding formal changes
must be made in the statements of those results. Any reference to iso-



§11 VALUATIONS AND FIELD EXTENSIONS 51

morphic places should be replaced by a reference to one valuation, while
any mention of “‘non-isomorphic places’ should be replaced by that of
“distinct valuations”. In particular, we point out explicitly the fol-
lowing changes:

In §6, Lemma 1: The relation RN K=R, is not only a necessary
but also a sufficient condition for v* to be an extension of v.

In §7, Theorem 12, Corollary 3: The field K* is now a normal
algebraic extension of K, and the result is to the effect that if v is any
valuation of K, then any two extensions v,* and v,* of v in K* are con-
jugate over K(v,* and v,* are conjugate valuations of K*, over K, if
v,*=sv,*, where s is a K-automorphism of K*).

Our principal object in this section is to derive some partial but basic
results on extensions of valuations, in which the value groups of the
valuations come into play. We shall be mainly concerned with finite
algebraic extensions of K.

Let v be a valuation of a field K and let * be an extension of v in some
overfield K* of K. Let I' and I'* be the value groups of v and v*
respectively. It is clear that I" is (or can be canonically identified with)
a subgroup of I'*.

Lemma 1. If K* is an algebraic extension of K, then every element of
the quotient group I'*|I" has finite order (and the two groups I' and I'* have
therefore the same rational rank).

PROOF. Let o* be an arbitrary element of I'*.  We have to show that
there exists an integer s#0 such that sa* € I'. We fix an element 2 of
K* such that v*(z)=ca*. Let 2"+a,2" 1+ ... +4,=0(a;€K) be a
relation of algebraic dependence for z over K. At least two terms in
this relation must have equal value in v* (see § 8). Let, say, v*(a;z")=
vX(a;2"7), i#j, a;#0, a;#0(ag=1). Then (j—i)v*(2)=v*(a;/a;) €T,
and this proves the lemma.

Lemma 2. If K* is an algebraic extension of K, then the valuations v
and v* (or—equivalently—their value groups I' and I'*) have the same
rank,

PROOF. We have to exhibit an order preserving (1, 1) mapping of
the set of all isolated subgroups 4* of I'* onto the set of all isolated sub-
groups 4 of I We define such a mapping as follows: if 4* is any iso-
lated subgroup of I'*, let A=4* n I". It is obvious that 4 is a segment
and a subgroup of I', and to show that 4 is an isolated subgroup of I"we
have only to show that 4% I. We fix an element o* in I'* such that
a*¢ A* By Lemma 1, we have sa* € I for some integer s. On the
other hand, sa* ¢ 4* (since 4* is a segment and since a* ¢ 4*). Hence,
a fortiori, sa* ¢ A, showing that 4% I".
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We next show that our mapping 4* — 4 is univalent. We observe
that if «* is any element of 4%, then all integral multiples of «* belong
to 4*, while, by Lemma 1, some multiple sa*, s#0, belongs to I" and
hence also to 4. Conversely, if «* is an element of I'* such that so* € 4
for some integer s 0, then so* € 4* and therefore o* € 4* (since 4* is a
segment). We have thus shown that 4* is uniquely determined by 4
as the set of all «* in I'* such that sa* € 4 for some integer s#20. Hence,
our mapping 4* — 4 is univalent, and it is clearly order preserving.
Finally, if 4 is an arbitrary isolated subgroup of I', then it is im-
mediately seen that the set 4* of elements o* in I'™* such that se* € 4,
for some integer s #0, is an isolated subgroup of I'* and that 4* n I'=4.
Hence our mapping is onfo the set of isolated subgroups of I, and the
lemma is proved.

CoROLLARY. If K* is a finite algebraic extension of K then v* is dis-
crete if v is discrete (we recall that it is implicit in our definition of a dis-
crete valuation that any such valuation is of finite rank).

For, let n be the relative degree [K*:K]. The proof of Lemma 1
shows that if we let N=n!, then No* € I" for all «* in I'*. Let 4,* and
4,,,* be two consecutive isolated subgroups of I'*(4,* < 4, ,,*) and let
4, and 4,_, be the corresponding isolated subgroups of I The map-
ping o* — Na* (a* € I'*, No* € I') transforms 4;* and 4, ,* into 4, and
4, , respectively, and furthermore we know from the proof of Lemma 2
that No* € 4, if and only if «* € 4;*. Hence our mapping o* — No*
induces an order preserving isomorphism of 4, ,*/4* into 4;,,/4,.
Since the latter quotient group is, by assumption, isomorphic to the
group of integers, it follows that also 4, ,*/4,;* is isomorphic to the
group of integers, and hence the valuation o* is discrete.

Lemma 3. Let x,*, x,%, - - -, x,,* be elements of K* such that m ele-
ments v*(x;*) of I'* belong to distinct cosets of I Then the x* are
linearly independent over K.

m
PROOF. Assume that there is a relation of the form > wx*=0,
=1
where the u; are elements of K, not all zero. Then at least two terms
in this relation must have equal (and least) value in o*. Let, say,
o*(ux*) =0v*(ux,*), where s#¢ and uu,#0. Then v*(x*)—v*(x,*)
=v*(u,)—v*(u,) € I', in contradiction with our assumption on the v*-
values of the x;*.
CorOLLARY. If K* is a finite algebraic extension of K, of degree n,
then the index of the subgroup I' of I'* is finite and is not greater than n.
On the basis of this corollary we can now give the following definition:
DEFINITION. Let K* be a finite algebraic extension of K and let v and



§11 VALUATIONS AND FIELD EXTENSIONS 53

o* be valuations of K and K* respectively, such that v* is an extension of v.
Let T and I'* be the value groups of v and v* respectively. Then the index
e of the subgroup I' of I'* is called the reduced ramification index of v* with
respect to v, or relative to v (or with respect to K).

If K* is a finite algebraic extension of K, we can speak of the relative
degree of a valuation v* of K*, meaning by this the relative degree of any
place associated with v* (see § 6). If v is the restriction of v* to K| then
the residue field R, /M, of v is (or can be canonically identified with) a
subfield of the residue field R /M « of o*, and the relative degree of v*
js the relative degree [Ry«/M«:R,/M,]. We know that this relative
degree is at most equal to [K*:K] (§ 6, Lemma 2, Corollary 2).

The relative degree of v* shall be denoted by f. If K* is a separable
extension of K we also define the ramification index of v* relative to v as
the product ep, where p° is the inseparable factor of f.

It is easy to see that the above terminology agrees with terminology
introduced for Dedekind rings in the preceding chapter. For, assume
that we have the following special case: K is the quotient field of a
Dedekind domain R and v is the p-adic valuation of K defined by a
proper prime ideal p in R. If R’ denotes the integral closure of Rin K*,
then the valuation ring of v* contains R’. Since R’ is a Dedekind
domain (Vol. I, Ch. V, §8, Theorem 19), v* is necessarily a B-adic
valuation of K*, where B is a prime idea! in R’ lying over ». Let e,
be the reduced ramification index of P with respect to p. If & is an
element of p not in v2, then I' consists of all integral multiples of v(u).
On the other hand, since B occurs to the exponent e, in the factorization
of R'yp, it follows that u € Ve, u ¢ Per+?, showing that I' consists of all
multiples me,a*, o* € I'*, where m is an arbitrary integer. Hence e,
is the index of I'" in I'*, and thus the reduced ramification index of
with respect to p is also the reduced ramification index of o* with
respect to v. Furthermore, it is clear that the residue fields of v
and v* are isomorphic respectively with the residue fields R/p and
R/B.

We shall need a lemma on extensions of composite valuations.

LeEmMA 4. Let a valuation v of K, with value group I', be composite
with valuations v, and © (where v, is a valuation of K and ¥ is a valuation
of the residue field of v,), and let G be the isolated subgroup of I" which cor-
responds to this decomposition of v into v, and T. Let v* be an extension of
v to an overfield K* of K and let I'* be the value group of v*. There exist
isolated subgroups H* of I'* such that H* n I'=G, and if v*=v,* o * is
the decomposition of v* which corresponds to such a subgroup H* then v *
15 an extension of v, and ©* is an extension of 3. Conversely, if vy* is any
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extension of vy to K* and 0* is any extension of ¥ to the residue field of
v,*, then v* =v,* o T* is an extension of v to K*, and if H* is the isolated
subgroup of the value group of v* which corresponds to the decomposition
v, ¥ o O*, then H* n I'=G.

PROOF. We consider the smallest segment G* in I'* such that
G*> G (G*=set of all elements of I"* which are of the form + a*, where
0<a*=<« for some « in G). Then it is immediately seen that G* is a
subgroup of I'* and that it is a proper subgroup of I'*, since G is a
proper subgroup of I. Hence G* is an isolated subgroup of I'*, and
it is clear from the definition of G* that we have G*nI'=G and
that G* is the smallest of all the isolated subgroups H* of I'* such that
H*nI'=0G.

Let now H* be any isolated subgroup of I'* such that H* n I'=G,
and let v*=9,* o * be the corresponding decomposition of v*, where
v,* is then a valuation of K*, with value group I'*/H*, and 9* is a
valuation of the residue field of v,*, with value group H* (see § 10,
Theorem 17). We know from the proof of Theorem 17 that v*~p,* is
a homomorphism of I'* onto I'*/H*, with kernel H*. The elements
of I'* which are mapped by this homomorphism into non-negative
elements are those and only those which belong to the set I'.* u H*.
Hence R, « is the full inverse image of I'.* U H* under v*-*.  Similarly,
R, is the full inverse image of I+ U G under o2, Now, since v is the
restriction of v* to K and since (I'+* Y H*) n I'=I"+ U G, we conclude
that R, =R, , 0 K, showing that v,* is an extension of v,.

Let 2, and #,* denote the canonical homomorphisms R, — D,
(=R, /M,) and R, .— D, , respectively. The ring R, is the full in-
verse image of R; under £,-1, and similarly R« is the full inverse image
of Rzx under #,*-1,  Since R,=K n R,»and since we have just proved
that 2, is the restriction of #,* to K, it follows at once that R;= Ry« 0 D,
showing that T* is an extension of ©.

Conversely, assume that we are given a valuation v,* of K* which is
an extension of v, and a valuation 9* of the residue field of v,* which is
an extension of 9. If v*=v,* o 7%, then we can repeat the reasoning
of the preceding paragraph. This time we are given that R;= Ry« 0 D,
and from this we can conclude that R,= K n R, showing that v* is an
extension of v. Furthermore, we have that v*~v,* is a homomorphism
of I'* onto I'*/H*, with kernel H*, and that v~—'v, is a homomorphism
of I" onto I'/G, with kernel G. Since v~!v, is the restriction of v*~v,*
to I, it follows that H* n I'=G.

This completes the proof of the lemma.
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COROLLARY 1.  Assume that K* is an algebraic extension of K, and let
v* be an extension of a composite valuation v=v, o T of K. Then there is
only one decomposition v,* o T* of v* such that v,* and T* are extensions of
v, and T respectively.

For, it was shown in the course of the proof of Lemma 2 that if K*
is an algebraic extension of K, then for any isolated subgroup G of I"
there exists one and only one isolated subgroup H* of I'* such that
H*nI'=G.

COROLLARY 2. The notations being the same as in the preceding corol-
lary, assume that K* is a finite algebraic extension of K.  Then the reduced
ramification index of v* relative to v is the product of the reduced ramifica-
tion indices of v,* and T* relative to v, and O respectively.

For, the reduced ramification indices of v*, v,* and o* are equal
respectively to the orders of the following finite abelian groups: I'*/T’,
(I'*|G*)/(I'|]G) and G*/G. Since G* n I'=G, the group G*/G can be
canonically identified with a subgroup of I'*/I".  Using the well known
isomorphism theorem from group theory, we find that the groups
(I'*IIM)/(G*/G) and (I'*/G*)/(I'/G) are isomorphic (they are both iso-
morphic to I'*/(I', G*)). Hence the order of I'*/I"is the product of the
orders of G*/G and (I'*/G*)/(I'|G).

We are now ready to prove two basic results (Theorems 19 and 20
below) on extensions of valuations.

TueoREM 19. Let K* be a finite algebraic extension of K, let v be a
valuation of K of finite rankt and let v *, v,*, - - -, v,* be the exten-
sions of v to K*. If n=[K*:K] and if n; and e, are respectively the
relative degree and the reduced ramification index of v;* with respect to v
then

(1) enyteny+ - - +en, S n.

PROOF. (2) We shall first consider the case in which v is of rank 1.
In that case, the g valuations ,* are also of rank 1 (Lemma 2), and the
theorem of independence of valuations (§ 10, Theorem 18) is applicable
to the v;*. The value groups I', I';* of v, v;* can be assumed to consist
of real numbers. For each 7, we fix an element «;, in each of the ¢;
cosets of I'in I';* (s=1,2,---,¢;). We also fix n; elements «;, in K*
such that the v;*-residues of the u;, form a basis of the residue field of
v;* over the residue field of v (t=1,2,---,n,;). Next, using the inde-
pendence of the valuations v;*, we find elements x;, and y;, in K*

+ Later on, at the end of this section, we shall prove Theorem 19 also for
valuations of infinite rank, using an idea which we have found in some unpub-
lished notes of I. S. Cohen.
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(t=1,2,---,85s=1,2,.--,¢;5t=1,2,-- ., n,) satisfying the following
conditions:

(2) v }(x;,) = a;

(2 v*x) > max oy, oyp, v, @y, gyt e, 0, ), B f £ 4
(3) V(Y —u) > 05

(39 v ¥y > 0, j#L

We assert that the eyny + egny+ - - - +egng products x;, v;, (5;=1,2,-- -, ¢;
t;=1,2,---,n,) are linearly independent over K. The proof of this
assertion will establish our theorem in the case of valuations of rank 1.

Assume that our assertion is false and that we have therefore a relation
of the form:

4 Z AisieXis Vi, = 0,

i,s‘,t'

where the a;;, are elements of K, not all zero. We may assume that
these elements all belong to R, and that at least one of these elements is
a unit in R,. We may then assume, without loss of generality, that
v(ay1,)=0. We set

"l
(5) 3 = (tzialstylt)xls’ s=12,..-, €1
We now observe that the v,* value of any element v, of K*, of the form

n
2 by b € R, belongs to I'. For, if b, is one of the coefficients b,
=1

which has least v-value, we can write:

n
Y = bq tZl V1

where all ¢, are in R, and ¢,=1. Now, by (3) (for i=1), we have that
the v, *-residues of the n, elements y,, are the same as the v,*-residues
of the u;,, and hence these residues are linearly independent over the
residue field of 2. On the other hand, the v-residues of the ¢, are not

ny
all zero (since ¢,=1). It follows that the v *-residue of tzlctylt is

different from zero. Hence v,*(v,)=v,*(b,)=v(b,) € I', as asserted.
In view of this observation, we find from (5) that v,*(z,) — v *(x,,) € T

i.e., v,*(z,) belongs to the I'-coset determined by «,, in I'/* [see (2)].

Since the e, elements a;; of I';* belong to distinct I-cosets, it follows
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that the v,*-values of 2y, 25, - - -, 2, are distinct elements of I';* and
that consequently v *(2;+2,+ - -+ +2,)=min {v;*(21), v;*(2,), - - -,
v1*(2.))}. Now, since v(a;;;) =0, the reasoning used in the proof of the

n1
above observation shows that vl*( > amyu)=0 and that conse-
=1

quently v,*(2;)=a;;. Therefore v,*(z;+2,+ - - + 2,)Sayy, ie.,

(6 ( 2. alxltlxlslyltl) s o

sphy

On the other hand, we have by (2) and (3") (for m=1) that

(7) U (lz XZ aultl xs,yxt,) > 03.

=Y}
By (6) and (7) it follows that the v,* value of the left-hand side of (4) is
<ay,;, in contradiction with (4). This contradiction establishes our
assertion that the ejn; ~emmy+ - - - +em, products x;, y;, are linearly
independent over K.

(b) We now pass to the general case of a valuation v of finite rank
m >1 and we shall use induction with respect to m. We assume there-
fore that our theorem is true for any valuation of rank<m. Let
v=1v' o ¥ be a decomposition of v into valuations of rank <m. Let
o' %, v ,%, .-+, /% be the distinct extensions of v" to K* and let
Ta*, Teo®, -+ - 05, * (s=1,2,---, k) be the distinct extensions of ©
to the residue field of '*. We set v, *=0v'*0o 9, * By Lemma 4
and Corollary 1 of that lemma, the ¢;+¢,+ - - - + ¢, valuations v, * of
K* are distinct and represent all the extensions of v to K*, i.e., the set
{vir* v1o*, - - -, vy, *} coincides with the set {o,*, v, -+, 0,*}. We
denote by n,, and e, the relative degree and the reduced ramification
index of v, * with respect to v. What we have to prove then is the
following inequality:

n[\/]:-

S
Z €Mz, <

We observe that the relative degree of ,, * with respect to 7 is equal to

n, since the residue fields of ¥, * and & coincide respectively with the
residue fields of v, *and v. We ‘denote by &, the reduced ramification
index of o, 52, with’ respect to . We also denote by n’; and ¢’ respec-
tively the relative degree and the reduced ramxﬁcatlon mdex of v/ *
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with respect to 2’.  Since 2’ and 7 are valuations of rank <m, we have
by our induction hypothesis:

qS
(8) Z éstsnst: é n’:’
=1
h
(8) Sen,sn
s=1
Hence
(8”) Z Z e et st s n)

s=1t=1

and this is the desired inequality, since, by Lemma 4, Corollary 2, we
have e, =€’ ¢, . This completes the proof of the theorem.

We shall see in the next section that (a) if the residue field D of v is of
characteristic zero then the equality sign holds in (1) (§ 12, Theorem 24,
Corollary); and (b) if K* is a normal extension of K and the characteristic
p of D is different from zero, then the quotient nf(e;n,+en,+ - - - +e,n,)
is a power p° of p, where & is an integer =0 (§ 12, Theorem 25, Corollary).
The integer 8 may be referred to as the ramification deficiency of v (this
integer is defined only in the case of normal extensions K*). Here we
shall only show that if we assume that (a) is valid in the case of normal
extensions K* then its general validity is an immediate consequence.
For, let K be the least normal extension of K which contains K* and
let @, 9,5, - - - be the extensions of v;* to K. Let N=[K: K]
n*=[K:K*]. We denote by E,; and ¢,; * the reduced ramification in-
dices of ?,; relative to v and v;* respectxvely Similarly, we denote by
N;; and n;;* the two correspondmg relative degrees of 7;;,. We have

E; --e,e,J , Nijj=nn; ,ZZE N = zen Ze,, n; %, By assump-
tion, we have N= ZE N,J, and n*= ze n;* for i=1,2,-.-,¢
Hence N=n*Jen,, “whence >emn;=n, as  asserted.

We denote by R the valuation ring R, of v and by ® the maximal
ideal MM, of R,. Let R* denote the valuation ring of v;*. We set

©) R = ARX,
i=1
(10) 9* =N (RF*BnRY),
J#T
(11) R* = ﬁls’p* = ﬁle*‘B-
1= 1=

The g rings R;* are the only valuation rings in K* which belong to
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places of K* having center % in R. Hence by Theorem 8, § 5, R*is the
integral closure of R in K*. We also observe that

(12) P* = R*P.

To prove (12) we have only to show that P*< R*®, for the opposite
inclusion is obvious. Let x* be any element of $*, and let v, *(x*) =o;*.
Since x* € R;*%, it is obvious that we can find, for each j, positive ele-
ments in I" which are not greater than «;*. Therefore we can also find
a positive element in I" which is not greater than any of the «;*. Let g
be such an element: ¢;*28,7=1,2,..-,g. We fix an element x in P
such that o(x)=B. Thenv;(x*/x)20,7=1,2, - - -, g, whence x*/x € R*
and x* € R*9, as asserted.

It is clear that P* N R= Hence the ring R*/PB* can be regarded
as a vector space over the field R/B. We next prove the following
lemma:

LemMa 5. The assumptions being the same as in Theorem 19, except
that v may now have infinite rank, the dimension of the vector space R*[B*
(over the field R[R) is not greater than e,n,+ - - - +e.n,.

PROOF. The ring R* has exactly g maximal prime ideals P *=
M, *NR* i=1,2,..-,¢ and each valuation ring R;* is the quotient
ring of R* with respect to B8;* (Theorem 12, § 7). We know that given
any element o* of the value group I';* of v, * there exists an integer s # 0
such that sa* € I" (Lemma 1). Therefore, given any element x* of %,
we will have some integer s=1 such that v *(x*)eI". Let y be an
element of P such that v(y)=v*(x*). Then x*’[ye R* and so
x* e R*B n R*. Since, on the other hand, R;*P n R*< P, *, we have
therefore shown that 3;* is the radical of R*% n R*. It follows that for
i#j the ideals R*®B n R* and R*P n R* are comaximal (see Vol. I,
Ch. 111, § 13, Theorem 31). Furthermore, from (11) and (12) it follows
that $* is the intersection of the g ideals R*% nR*. Hence, by
Theorem 32 of 111, § 13, the ring R*/B* is the direct sum of the g rings
;*/B*. Since the H;* are ideals in R*, we have a direct decomposition
of the vector space R*/%* into the g subspaces $,*/B* (over the field
R/®), and in order to prove the lemma it will be sufficient to prove that
9;*/B* has dimension <e;n;.

Let us consider, for instance, the space $,*/%*. The subspaces of
9,*/B* correspond in (1, 1) fashion to the R-submodules of $,* which
contain f*. We first make some straightforward observations about
the two value groups I';*and I.  Let L, denote the set of non-negative
elements o* of I'y* such that a* < for all positive elements B of I".  If
ay* and a,* are two distinct elements of Ly, and if say a;* < a,*, then
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O<ay*—a*<ay*, and therefore, by definition of Ly, a,*—a,*¢ I
Thus, distinct elements of L, belong to distinct I'-cosets, and hence L, is a
finite set, consisting of at most e, elements.

If x* is any element of $,* then v,*(x*) € Ly if and only if x* ¢ B*.
For, if x* € $*=R*®, then it is clear that v,*(x*) = v,*(y), for some y
in B, and hence v, *(x*)¢L,, since v,*(y)e .. Conversely, if
v, %(x*) ¢ L,, then v,*(x*) 2 v,*(y), for some y in B, and hence x*=
(«*[v)y € R,*B n H*=R*P.

If follows from these remarks that if A* is any R-submodule of $,*
which contains B* as a proper subset then %* contains elements of least
value and that this value is an element of L,. We denote this minimum
by v *(U*).

If for a given element o* of L, there exist elements x* in $,* such
that v, *(x*)=a*, then the set of all elements y* of $,* such that
v,*(y*) 2 «* is an R-submodule A* of $,* which contains * as a proper
subset and is such that o, *(A*)=ca*. IfO0=a*<ea*< .- <a*(s<e,)
are those elements of L, which are v;*-values of elements of ,*, then we
obtain in this fashion a strictly descending chain of R-submodules of

H*:
HF=AK > AWr > o > AX > ALK = BX

where % * is the set of all y* in ,* such that v, *(y*) 2 ¢;*(7=1,2,---,5).
It is clear that for i=2, 3, .- -, s+1 the module %.* consists of all the
elements y* in ©,* such that v,*(y*) > «;_,*.

To prove the inequality dim $,*/B* <e,n,, it will be sufficient to
show that for 7=2,3,.-.,5s+1 we have dim %, */A*<n, (since
s<e;); here A, *AX (=A_*/B*/AX/PB*) is regarded as a vector
space over R/P. Let then a;*, x,*,- - -, x, ,1* be any n; - 1 elements of
A;_*. We have to show that there exist elements u;, u,, - - -, u, ,, in
R, not all in B, such that uyx*+ - - - +u, 1%, ,, €AF. We fix an
element y* in A;_,* of least value: v, *(y*)=«;_*=v,*;_,*), and we
set 2 *=x*[y*.  Then the 2;* are in the valuation ring of v,*, and since
the relative degree of »,* is 7, it follows that we can find elements
Uy, Uy, - -+, U, 1 in R, notall in P, such that v ¥ (w2 * +up2*+ - -+ +
U, 11%,,1%)>0. Then we have v *(upay* +upx,* + - -+ +u, 4%, %)
>v,*(y*)=0;_,*, and therefore wyx,*+ - - - +u, +1x, F€AX This
completes the proof of the lemma.

Of particular importance is the next theorem:

THEOREM 20. The notations and assumption being the same as in
Theorem 19, (in particular, it is now again being assumed that v has finite
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rank), assume also that the integral closure R* in K* of the valuation ring
R of v is a finite R-module. Then

(13) ey tegngt - - +en, =m,
and
(14) dim R*/R*B = n.
PROOF. Let {wy, w,, - - -, w,} be an R-basis of R* which has the least

number of elements. We assert that the w are linearly independent over K.
For assume that we have a relation of linear dependence: x,w,+
x,Wy+ -+ - +x,w, =0, where the x; are elements of K, not all zero. An
argument which has been repeatedly used before shows that we may
assume that the x; belong to R and that one of the x;is 1. If, say, x,,=1,
then already {w,, w,, - - -, w,,_;} is an R-basis of R*, a contradiction.

Any element x* of K* satisfies an algebraic equation with coefficients
in R (since K is the quotient field of R). If g, is the leading coefficient
of this equation then ayx* is integral over R, whence agx* € R*. This
shows that {w,, w,, - -+, w,} is also a basis of K*/K. Consequently
m=n.

If @, denotes the R*B-residue of w;, then @,, @,, - - -, @, span the
vector space R*/R*B(over R/PB). We assert that the n vectors %; are
linearly independent over R/3. We have only to show that if we have a
relation of the form x,w, + x,w,+ - - - +x,w, € R*B, x; € R, then the x;
necessarily belong to 8.  But this follows at once from the linear inde-
pendence of the w; over R, for we have, by assumption: x,w,+
XKWyt -+ +XW, =y W, + VoW + - - - +¥,w,, where the y; are suitable
elements of 9, and this relation implies x;=y,, i=1,2,-- -, n.

We have therefore proved that

(14) n = dim R*/R*®.
Since we have, by Theorem 19 and Lemma 5:
(15) dim R*/R*B < eyny+en,+ - - -en, < n,

the theorem is proved.

CoroLLARY. If v is a non-discrete valuation of rank 1 and if R* is a
finite R-module, then all the extensions of v to K* are unramified.

For the proof, we first show that

(16) R*p = (x*eK*u*x*) >0, i=1,2---,gh.
In fact, let x* be any element of K* such that v;*(x*)=8;>0, i=1,
2,... g Since the value groups I', I';* are now groups of real num-

bers and I' is non-discrete, there exist positive elements of I" in an
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arbitrarily small neighborhood of zero. Hence there exists an element
o of I such that O0<a<p;, 7=1,2,--.,g. Let x be an element of B
such that o(x)=«. Then o*(x*/x)>0, i=1,2,-.--,g, whence
x* € R*x< R*B. This establishes (16). We now make use of the proof
of Lemma 5. From (16) it follows that the set denoted by L, in the
proof of Lemma 5 consists now of the element zero only, and that conse-
quently the integer s is now equal to 1. It was shown in the proof of
Lemma 5 that dim ©,*/R*B <sn,. Hence dim ,*/R*B<»n,. Simi-

larly dim $*/R*B<n; i=1,2,---,g Hence dim R*R*P=
£

> dim 9*/R*B<n,+n,+ --- +n, Therefore, by Theorem 20,
i=1

we must have ¢, =e,= - - - =¢,=1.

The following example, due to F. K. Schmidt, shows that the finite-
ness assumption made in Theorem 20 (i.e., the assumption that R* is a
finite R-module) is essential, and that without this assumption the
strict equality (13) may fail to hold already in the case of a valuation v
which is discrete and of rank 1 (and whose valuation ring R, is therefore
noetherian):

Let ¥, be the prime field of characteristic p#0 and let

{£O’§1v""§n""}

be an infinite sequence of algebraically independent elements over k.
We set k=¥, (£, &1, -+, &, - - -) and K=k(x, y), where x and y are
algebraically independent over k.. Consider the formal power series

Qx) = EP+EPxPAH - o L ELXPA o

We assert that ¢(x) is not algebraic over the field k(x) (or, in algebro-
geometric terms: the branch y =¢(x) is not algebraic). For assume the
contrary, and let, say, f(X, Y) be a non-zero polynomial in £[.X, Y] such
that f(x, (x))=0. We may assume that X does not divide f(X, Y).
Then f(0, Y)#0, while f(0, £2)=0. Hence £, is algebraic over k,
where &k, is the field generated over J, by the coefficients of f. Let X*
be the highest power of X which divides f(X, X?Y +£.?) (whence,
necessarily, s >0) and let f(X, X?Y +£2)=X*f,(X, Y). We have

filx, Eyp+Eppxp+ oo £ PP L) = 0

and therefore f,(0, £,?)=0. On the other hand, the coefficients of
fX, Y) belong to k(£,), and since £, is algebraic over k,, it follows
that also &, is algebraic over ky. Proceeding in this fashion, we find that
all the ¢, are algebraic over k,, and this is impossible since &, has finite
transcendence degree over J,.
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We now define a valuation v of k(x, y), as follows:

If u=f(x, y) is an element of k[x, ¥], then by the preceding result the
power series f(x, ¢(x)) is not zero. If x” is the lowest power of x which
occurs in this series, we let v(u)=n. If 2 is an arbitrary element of
k(x, v), we write z in the form u,/u,, where u;=f{(x, y) € k[x, y], and we
let v(x)=v(u,)—v(u,). The value group of v is then the group of
integers, and so v is discrete, of rank 1. It is immediately seen that the
residue field of v is the field &.

Now we let K*=K(y*), where y*=+vy. Then K*=Fk(x, y*), and
it is immediately seen that the extension v* of v to K* is the valuation
which is defined by the ‘“branch”

y* — §0+§1x+§2x2+ e +§"xﬂ+ BN

in a fashion similar to that in which v was defined by the branch y=g(x).
(Note that since K* is a purely inseparable extension of K, v has a
unique extension to K*.) The two valuations v and v* have the same
value group and the same residue field (namely, the field ). Hence the
relative degree and the reduced ramification index of v* are both equal
to 1, while the degree [K*:K] is p. Thus (13) fails to hold in the
present case. In view of Theorem 20, we can conclude a priori that the
integral closure R* of R, in K*is not a finite R,-module. This can also
be seen directly as follows:

If R* has a finite R -basis, then a minimal R -basis of R* will contain
precisely p elements, say w,, w,, - - -, w, (see the proof of Theorem 20).
Let w;=a;y+a;y*+ --- +a;, ,y**%, a;€K. Since the value
group I' of v is the group of integers, there exists an integer p such that
all the products a;x* belong to R, From this it follows that
R*x*cR,+ Ry*+ --- + R,y**~1. Now, consider the element 2=[y*—
(§o+ €xx+ -+ - +Exf)][x+1. Tt is clear that 2 € R* (since v*(2)20).
Butzwe= —(§g+ £+ - -+ +Ex9)[x+y* x g R, + Ry*+ - - - + Ryy*»~1,
a contradiction.

An important case in which the finiteness assumption of Theorem 20
is always satisfied is the following: v is a discrete valuation of rank 1 and
K* is a separable extension of K. 'This follows from the following well-
known result: if R is any noetherian integrally closed domain having K as
quotient field, and if K* is a finite separable extension of K, then the
integral closure of R in K* is a fimite R-module (Vol. I, Ch. V, §4,
Theorem 7, Corollary 1).

It may also be observed that for discrete valuations v, of rank 1, the
converse of Theorem 20 is also true, i.e., if relation (13) holds, then R* is
a finite R-module. 'To see this, we go back to the case (a) of the proof of
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Theorem 19 and we show that if v is discrete, of rank 1, and if (13) holds,
then the myey +nye,+ - - - +mpe, products x, y, forman R-basis for R*.
We know that these products are linearly independent over K. If (13)
holds, the number of these products is equal to 7 (=[K*: K1) and they
therefore form a basis of K*/K. Now let 2* be any element of R* and
let
2* = i,:z‘,tlbis't'xi:iyiti‘ bisiti ek.
We have to show that the b,,, belong to R: Upon factoring out a
coefficient b, , of least value we can write 2* in the form: 2*=by*,
be K and
y* = Z Qs 2 Xis Viep
st
where the a;, , are elements of R, not allin B.  We now make use of the
considerations developed in the course of the proof of Theorem 19,
case (a) (p. 56). As group I" we can now take the group of integers,
and as group I';* the additive group of integral multiples of 1/e;. As
representatives of the e; cosets of I'" in I';* we take the rational numbers
o;;=(s—1)/e;, s=1,2,--- ¢;. By assumption, at least one of the
coefficients a;, , has order zero in v (and all have non-negative order).
If, say ©(a,,,)=0 then, as was shown in the course of the proof of
Theorem 19 (see the italicized statement immediately following in-
equality (7), p. 57), we have v,*(y*) = «,,, and hence v,*(y*)<1. On
the other hand, we have that v(b)(=v,*(b)) is an integer (since b € K).
Since v,*(b) + v,*(y*) =v,*(2*) 2 0, we conclude that o(b) is necessarily
a non-negative integer. Hence b € R, and since b, , =ba;, , it follows
that also the b, , belong to R, as asserted.

Note that this result has also been proved in Vol. I, Ch. V, §9
(Theorem 21).

NOoTE. We shall end this section by extending Theorem 19 to valua-
tions of infinite rank. We first observe that the proof of Theorem 19,
in the case of valuations of rank 1, is based solely on the fact that for
such valuations the approximation theorem of § 10 (Theorem 18) is
valid. However, we have seen that the approximation theorem is valid
more generally for independent valuations of any rank (Theorem 18,
§ 10). Hence we can assert that Theorem 19 is valid whenever the g ex-
tensions v*, v,*, - - -, v,* of v are independent. Our second observa-
tion is that in the inductive proof of Theorem 19 for valuations of finite
rank >1 we have actually proved the following: Let v=2v'09, let v',*,

v'y%, - - -, 0> be the extensions of V' to K* and let 9,,*, D%, - - -, T, *
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be the extensions of T to the residue field 4'* of v'* (s=1,2,---,h).
Then if Theorem 19 holds for v', K, K* and for 3,4',4' *(s=1,2,-- -, h;
A' =residue field of V'), the theorem holds also for v, K and K*. We shall
now make use of these two observations. We shall use induction with
respect to the number g of extensions of v, i.e., we shall assume that
Theorem 19 holds true in all cases in which we are dealing with a valua-
tion v which has fewer than g extensions. (For g=1 the proof of
Theorem 19 js valid as given, for in that case the approximation theorem
is not needed; or—more precisely—the approximation theorem is
trivial in the case of single valuations.)

We first introduce some notations and prove an auxiliary lemma. If
v is a valuation of a field K we shall denote by L(v) the set of all valua-
tions ¢’ of K such that R,<R,’<K. In other words, L(%) is the set of
all non-trivial valuations ¢’ such that v is composite with and is non-
equivalent to 2. We denote by E(v) the set of distinct (i.e., non-
equivalent) extensions of v to K*. We write v' <v if ¢’ € L(v) (note
that this partially orders the valuations according to increasing rank, or—
equivalently—according to decreasing valuation ring). 1f v’ <v and v*
is any element of E(v), then there exists a unique element v'* in E(2")
such that v'* <o* (Lemma 4, Corollary 1). This defines a mapping
@0 of E(v) into E(v"), and it follows directly from the second part of
Lemma 4 that ¢,* maps E(v) onto E(v'). If 9" <%’ <wv then it is im-
mediate that

v, v — v
Po Py = Py

For fixed v and a fixed extension v* of v to K*, the set of valuations
®,/(v*), v’ € L(v), coincides with the set L(v*). In fact, if v'* =g, ¥(v¥)
and ¢’ € L(v), then v'* < v* by definition of ¢,*, and hence v'* € L(v*);
conversely, if v'* € L(v*), i.e., if ¥'* <v*, then the restriction v’ of v'* to
K satisfies the relation v’ <o, and we have v'* € E(v'), whence v'*=
®,°(v*). Another way of expressing this fact is to say that for fixed v*
the mapping v’ — ¢,.*(v*) (Where v =restriction of v* in K) is a (1, 1)
mapping of L(v) onto L(v*). Each of the two sets L(v) and L(v*)
is totally ordered, and the above mapping of L(v) onto L(v*) is order
preserving, for it maps each element of L(2*) into its restriction
n K.

~ For each valuation v of K we denote by y(v) the number of elements
in the set E(v), i.e., the number of distinct extensions of v to K*. If
v'<v then from the existence of the mapping ¢,v it follows that
¥(v')Ly(v). Since 1Ly(v)STK*:K]), the function y can assume only
a finite number of values.
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LemmMA 6. Let v be a valuation of K such that the set L(v) has no last
element, and let m= max {y(v')}. Then y(v)=m.
v’ eL(v)

PROOF. We fix a valuation ¢’ in L(9) such that y(v'g)=m. For each
v’ in L(v) such that v’ <9’ the set E(v") has exactly m elements, and
therefore ¢, " is a (1, 1) mapping of E(v') onto E(v',). Let v* be an
extension of v to K* and let 2’ * be that extension of ¢, with which v* is
composite; in other words, let v'g* =g, (v*). 1f ' is any element of
L(v) such that v’ < ¢', then the corresponding element v'* of L(2*), i.e.,
the valuation v'* =g, %(v*) is uniquely determined by ¢’'y*, and by ¢/,
i.e., if v,* is another extension of v to K* which is composite with v’ *
then @, %(v,*) =g, *(v*), for we must have v'* =g, “(v'*), and ¢, ¥ is
(1, 1). We now observe that since L(v) and L(v*) are in (1, 1) order
preserving correspondence, also L(v*) has no last element and that
therefore

(17 Rr= (1 Ry~

v v
v*s vR<y*

We have just seen that the set of valuations ©'* in L(v*) such that
V' o* < v'*, where v'* =, “(v*), is uniquely determined by ©'*. Hence
it follows from (17) that there exists only one extension v* of v to K*
which is composite with a given valuation o'* belonging to the set
E(v'y). Since E(v',) contains m valuations, v has exactly m extensions.
Q.E.D.

We now proceed to the proof of Theorem 19 for a valuation v of
arbitrary rank. Let y(v)=g. We first observe that the case in which
the g extensions of v are independent valuations is characterized by the
condition that the mapping ¢,.* be (1,1) for any ¢’ in L(v), i.e., it is
characterized by the condition y(v")=g, for all ¥’ in L(v). We may
therefore assume that there exist valuations o' in L(v) such that
y(v')<g. Let L(v) be the set of all such valuations o’ and let
g'= max {y(v)}. Then g'<g. The intersection of all the valuation

v'e 1 v)

rings R, v' € L (), is again a valuation ring of some valuation v’ of K.
If L,(v) has a last element, then ¢', is the last element of L,(v) and hence
y(v'))=g". In the contrary case it is clear that L (v)=L(v',), whence
L(v',)has no lastelement. Itfollows then from Lemma 6 that y(v',)=g".
Thus we have y(v'|)=g"<g in both cases (showing, incidentally, that
v’y necessarily belongs to L,(v) and that consequently the second case
is to be ruled out), and Theorem 19 is valid for v',.

Since v, € L(v), we can write v=v'; o 9. Since v', has exactly g’

extensions to K* and since g’ < g, it follows by our induction hypothesis
\
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that Theorem 19 holds for ¢',, K and K*. Let ¢',* be any extension
of v'; to K*, let 4, 4’, and 4’,* be respectively the residue field of v, v',
amd v';* (whence 7 is a valuation of 4’;, with residue field 4, and
4',=4'*). We assert that the extensions of & to 4’;* are independent.
This will establish the validity of Theorem 19 for 9, 4’; and 4',*, and
hence, by the preceding remark, Theorem 19 will be established for o,
K and K*.

Let ¥',*, ¥’,* be two distinct extensions of ¥ to 4',* and assume that
there exists a non-trivial valuation '* of 4’,* with which both valuations
7', * and 9',* are composite. Set v*=v*0 &' X, i=1,2, and
7*=v"* o ¥'*. Then v,*, v,* are extensions of v, i.e., belong to E(v),
while &* is an extension of a valuation ¥ of K such thatv >3 > ¢/,.
Hence both E(v) and E(9) consists exactly of g elements. On the
other hand, it is obvious that both v,* and v,* are composite with &*,
and hence @z?(v,*) =@z%(v,*) (=9*). Thus @;® is not (1, 1), in contra-
diction with the fact that E(v) and E(J) have the same number of
elements.

§ 12. Ramification theory of general valuations. In Vol. I,
Ch. V, § 10 we have developed the ramification theory of prime ideals in
Dedekind domains. Now, if R is a Dedekind domain, with quotient
field K, and K* is an algebraic extension of K, then any proper prime
ideal p in R defines a discrete, rank 1 valuation v of K, whose valuation
ring is the quotient ring Ry (§ 2, Example 2), and the prime ideals which
lie over p in the integral closure R* of R in K* correspond to the exten-
sions of vin K*. Hence the theory developed in Vol. I, Ch. V, §10is
identical with the ramification theory of discrete, rank 1 valuations. In
this section we shall generalize that theory to arbitrary valuations.

Let K be a field, K* a finite normal and separable extension of K, and
let G be the Galois group of K* over K. We fix a valuation v of K and
we denote by 4 and I respectively the residue field and the value group
of v. If v*is an extension of v in K* and s is an element of G, then the
conjugate valuation sv* { = the automorphism s of K*/K, followed by the
mapping v* of the multiplicative group K'* of K* onto the value group
I'* of v*) is again an extension of v in K* (with the same value group
I'*), and we know (§ 7, Theorem 12, Corollary 3) that all the extensions
of v in K* are in fact, up to equivalence, conjugates sv* (s € G) of any
one of them. .

We fix an extension v* of v. As usual, R, and 9, will denote respec-
tively the valuation ring and the prime ideal of v. Similar notations
Ry« and M« will be used for v*. We shall find it convenient to denote
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by o*s the valuation s—'o* (s€ G). With this notation, we will have
Ryxs=s(Rx), Mxs=5(M,+) and

) o5 (s(x)) = v*(x), O # xeK*.

We denote by 4* and I'* respectively the residue field and the value
group of v*. Here 4* is a finite algebraic extension of 4, and I' is a
subgroup of I'*, of finite index. We set, in agreement with previous
notations:

(2) e = (I'*:I"), f=[d4*:4).

The integers e and f are the same for all the extensions of v. We de-
note by g the number of distinct (i.e., non-equivalent) extensions of .

We now introduce two subgroups G and G; of G called respectively
the decomposition group and the inertia group of v*: G, is the set of all s
in G such that o*s is equivalent to v* (i.e., has the same valuation ring
as v*), while G is the set of all s in G such that s(x) —x € M« for all x in
R,x. Itis obvious that G is a subgroup of G. It is easy to see that G,
is a subgroup of G,. For if s € G, then it follows from the definition of
G that we have s(x) € R« for any x in Rx, i.e., the valuation ring of v*s
is contained in the valuation ring of *. Therefore the valuation rings
of v* and o*¢ coincide (since all extensions of v have the same relative
dimension zero with respect to K; see italicized statement on p. 30
immediately following the proof of Lemma 1, § 7), s € G, showing that
G;<=G,. Furthermore, if s € G and x € Rx, then also y=s-1(x) is in
R * (since s € G), and s7Y(x) —x =y —s(y) € M«, whence s~1 € G; and
if 5,2€ Gy then for any x in R.x we have (st)(x)—x=1#(s(x)—x)+
(t(x)— x) € M, since both s(x)—x and #(x)—x are in M« and since
M )= M,». This proves that Gy is a group.

Moreover it is not difficult to see that G is an invariant subgroup of
G,. Forif se Gy, te G5 and x € R« and if we set #(x)=y (whence
y € Ryx) and s(y) — y =z (Whence z € M «), then (tst=1)(x) —x = (st~ 1) (y) —
x=t"Yy+2)—x=1t"Y2)e M« (since {{M «) = M +), and hence ts¢-* € G.

Let s be any element of G,. Then the valuation v*s defined by (1),
is, by definition of G, equivalent to v*. However, it is not difficult to
see—and that will be important for the sequel-— that v*s coincides with
o*, that we have therefore

3) v*(s(x)) = v*(x), (s€ G5 0 # xe K?*).

For, since v* and o*s are equivalent valuations, with the same value
group (see (1)), v*v*-1 is an order preserving automorphism @, of the
value group I'*.  Since s has finite period, also g, has finite period, and
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it is immediate that such an order preserving automorphism of an
ordered abelian group is necessarily the identity. Thus, p,=1 and
o*s=g*,

THEOREM 21.  The field 4* is a normal extension of 4. The group of
automorphisms of 4* over 4 is canonically isomorphic to the factor group
Gz/Gy.

PROOF. We first show that every automorphism s in G, defines an
automorphism § of 4* over 4. Given any element ¢ in 4%, there exists
an element x in R » whose v*-residueis . Ifs € G, then also s(x) € Ry».
If x’ is another element of R » with v*-residue £, then x' —x € M » and
hence also s(x')—s(x) € M+, since s€ G, It follows that the ov*-
residue of s(x), for given s in G, depends only on £&. We denote this
residue by §(£). It is immediate that the mapping ¢ — §(£) is an auto-
morphism § of 4*, and that § is an automorphism over 4, for if { € 4
then we can choose x in R, and have then s(x)=x. It is also clear that
the mapping s — § is 2 homomorphism of G into the group G(4*/4) of
automorphisms of 4* over 4 and that the kernel of this homomorphism
is the inertia group G, of v*. We have now to show that 4* is a normal
extension of 4 and that the mapping s — § sends G, onto G(4*/4).

Let ¢ again be any element of 4%, different from zero. Since the
places defined by the g distinct extensions of v are such that none is a
specialization of another, it follows from Lemma 2, § 7, that we can find
an element x in R,» having v*-residue £ and such that v,*(x) > 0 for each
of the g—1 extensions v;* of v which are different from ov*. Let
x,(=%), x5, - - -, x, be the roots of the minimal polynomial F(X)=
X?+a, ;X014 ... +a,of xover K. Since K* is normal over K, all
the x; belong to K*. For any x; we have x=s(x;), for a suitable s in
G(K*|K), and hence, by (1): v*(x)=v*(x;). Since v*(x)20 for any
s in G(K*/K) (by our choice of x), it follows that all the roots x; and all

the coeflicients a, of I(X) belong to R ». We have F(X)= ﬁ (X—x;),
J=1

and taking v*-residues on both sides we find that the roots of the poly-
nomial F(X)=Xe¢+4, Xe-'+ ... +4d, (@,=v*-residue of a) are the
v*-residues of x;, x,, - - -, x, and therefore belong to 4*. Since £ is
among these residues and since the coefficients a, of F(X) belong to
4, we have shown that all the conjugates of ¢ over 4 belong to 4*.
Hence 4* is a normal extension of 4.

If ¢, is any conjugate of £ over 4, and if say £,=v*-residue of x;, let
s be an automorphism of K*/K such that x;=s"%(x). Then v*(x)=
v*(x;)=0 (since £,#0), and hence v**=v* (since v,*(x) >0 for each
extension v,* of » which is different from v*)and s € G,. Furthermore



70 VALUATION THEORY Ch. VI

Y& =¢,. If we take now for £ a primitive element, over 4, of the
maximal separable extension of 4 in 4%, then our result that every con-
jugate of £ over 4 is of the form §(£), s € G, implies that the homomor-
phism s — § maps G, onto the group G(4*/4). This completes the
proof of the theorem.

In the sequel we shall denote by K, and K respectively the fixed
fields of G, and Gr; K is the decomposition field of v*, and K is the
inertia field of v* (relative to K). We shall denote by v, and v, respec-
tively the restriction of v* in K, and K, by 4, and 4 the residue fields
of the valuations v, and vg, and by I', and I'; their respective value
groups. Clearly 4, is a subfield of 44, and I', is a subgroup of I'y.
Furthermore, K is a normal extension of K, with Galois group G,/G,
since G is a normal subgroup of G,.

These definitions have a relative character, and it is easy to see how
the decomposition field or inertia field of v* is affected if we replace K
by another field L between K and K*. Namely, if we denote by L,
and L, respectively the decomposition field and the inertia field of v*,
relative to L, then L, is the compositum of K ; and L (least subfield of K*
which contains both K and L) and similarly Ly is the compositum of K,
and L:

4 Ly = (Kz L),

() Ly = (Kp, L).

"The proof is straightforward and consists simply in observing that the
decomposition group and inertia group of v* relative to L are obviously
equal respectively to G, n G(K*/L) and G, 1 G(K*/L).

THEOREM 22. (2) The valuation v* is the only extension of v, to K*,
and the decomposition field K, is the smallest of all fields L between K and
K* with the property that v* is the only extension, to K*, of the restriction
of v*to L. (b) The field 4% is purely inseparable over 4, 4 is separable
and normal over 4, and 4, coincides with A.

PROOF. Since all the extensions of v in K* are conjugates of v*, it
follows that v* is the only extension of v if and only if G,=G, i.e., if
and only if K,=K. If L is an arbitrary field between K and L, then
K* is also a normal separable extension of L, and therefore it follows,
by the same token, that v* is the only extension to K* of the restriction
v’ of v* to L if and only if L,=L, i.e., by (4), if and only if L2 K.
This proves part (a) of the theorem.

We have G(K*/K;)=G;, and therefore both the decomposition
group and the inertia group of o* relative to K, are equal to
G(=GznGr=GrnGy). If we now replace in Theorem 21 the field



§12 RAMIFICATION THEORY OF GENERAL VALUATIONS 71

K by the field K it follows that G(4*/4;)= G /G = (1), showing that
4* is purely inseparable over 4;.  On the other hand, we have already
observed that Gy is an invariant subgroup of G, and that consequently
Ky is a normal separable extension of K,, with Galois group G,/G;.
Hence, if we replace in Theorem 21 the fields K and K* by the fields
K and K respectively, we find that G(4,/4 ) is canonically isomorphic
with G;/Gy. Since [dr:4,]2[Ky: K l=order of G,/Gr, it follows
that [d7:4,]1< order of G(4,/4,), and hence [d;:4;}=order of
G(47/45), showing that 4, is a normal separable extension of 4.

We point out that in the course of this proof we have shown inciden-
tally that

(5) [47:47] = [Kr:Kg).

It remains to prove that 4,=4. Let ¢ be any elementof 4,. By the
cited Lemma 2 of § 7 we can find an element x in K, having v,-residue
¢ and such that v'(x) >0 for every extension ¢’ of v to K, different from
vz If x; is any conjugate of x (over K), different from x, then x=s(x;)
for some s in G, and we have necessarily s ¢ G since x;#x. By (1), we
have v*(x;)=v*5(x), and, furthermore, we have v*5(x) > 0 since v* # v*
(s being outside of G) and since therefore v*s induces in K, a valuation
different from v, (v* being the only extension of v, to K*). We have
found therefore that v*(x;) >0 for every conjugate x; of x which is dif-
ferent from x. Consequently the trace x+Zx; is an element y of K
whose v,-residue is ¢ (=wv,-residue of x). Therefore, £ €4 and
4,=4. This completes the proof of the theorem.

THEOREM 23.  The value groups I', I'; and 'y coincide.

PROOF. If we apply the inequality Ze,f; <n (§ 11, Theorem 19 and
Note on page 64) to the two fields K,, K7 and to the valuation v, of
K, we deduce at once from (5) that v, has only one extension to K (a
fact that we know already) and also that (I"y: I';)=1. This proves that
I'y=r;.

We shall first prove the equality I';=I" under the assumption that
the g extensions of v to K* are independent. It will be sufficient to
show that every positive element of I, is in I. Let « be a positive
element of I',. By the approximation theorem for independent valua-
tions (§ 10, Theorem 18') there exists an element x in K, such that
()=« and v'(x)=0 for every extension ¢’ of v to K, different from
v, (since from our assumption that the extensions of v to K* are inde-
pendent follows a fortiori that also the extensions of v to K, are inde-
pendent). The argument developed toward the end of the proof of the
preceding theorem shows that if x; is any conjugate of x over K,
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different from x, then v,(x;)=0. Hence the norm x-ITx; is an element
y of K such that v(y)=v,(x)+0=c. Therefore acI’ and I',=T.
This completes the proof of the theorem in the case in which the exten-
sions of » to K* are independent valuations.

In the general case we shall use induction with respect to the number
g of distinct extensions of v to K*, for if g=1 then K= K, (by Theorem
22, part (a)) and the equality I'=TI", is then trivial.

If v has rank 1 then the g extenstons of v to K* are also of rank 1 and
are therefore independent. We shall therefore assume that v is of
rank >1 and we may also assume that the g extensions of v to K* are
not independent. We shall make use of the results proved at the end
of the preceding section (§ 11, Note). From our assumption that the
g extenstons of v to K* are dependent valuations follows that y(2') is not
constantly equal to g as ¢’ varies in the set L(v). It was shown in § 11
that in that case there exists a decomposition v=1v" o ¥ of v satisfying
the following condition: y(v")=h<g, and if v',*, v')%, - - -, ¥/, * are the
extensions of v’ to K* then for each s=1, 2, - - -, & the extensions of &
to the residue field 4’ * of v’ * are independent.

To the decomposition v=29" o 7 there corresponds a decomposition
v*=9'* o §%, where v'* is one of the & extensions v';* of 2’ to K* and o*
is an extension of 7 to the residue field 4'* of v'*.  We denote by G,
and G respectively the decomposition group and the inertia group of
v'*, It is not difficult to see that we have the following inclusions:

(5) G, > Gy > Gy > Gy,

The inclusion G, 2 G, follows from the fact that v'* is the only exten-
sion of ¥’ such that v* is composite with ©'* and that, therefore, if s € G,
then we must have v'*=0'*, since v*(=9v*5) is composite with both
valuations ©'* and v'*s. The inclusion G;>G. follows from the in-
clusions R xS R+, M x> M, . Namely, if s € G, and x is any element
of Rx, then x € R« (since Rx< R, ), s(x) —x € M, (since s € G1.), and
s(x) —x € M* (since M» D M,,+), showing that G, < Gy.

We denote by K. and K. respectively the decomposition field and
inertia field of v. We have therefore, by (5'):

(6) K< K, <« K,< Ky < K;.

We denote by v,., vz, v, v4- the restrictions of v* in K., K, K, K;.
respectively, and by v',., v'4, ¢'5, v'7. the corresponding restrictions of
v'*.  The associated value groups will be denoted by I',., I';, - - - and
Iy, I, .. respectively.
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Since & < g, it follows from our induction hypothesis that Theorem 23
is valid for o’ and v'*, i.e., we have

™) I'=I'y =T,
where I is the value group of ©’. In view of (6), this also implies that
(8) r'=r,=1r,.

The decomposition v*=v"* o §* yields a corresponding decomposition
of vz

9) Vg = Uz o g,

where @, is the restriction of 7* to the residue field 4', of v',. By
Theorem 22, part (b), we have that 4’,. coincides with the residue field
4" of v'. Since T, is an extension of the valuation & of 4’, it follows
that 9, =9¢. This, in conjunction with (9) and equality (7), shows that
I'=I,. Tt is therefore only necessary to show that I',,=I,. Thus
we may replace the field K by the field K. We may therefore assume
that K is the decomposition field of v'* and that therefore o'* is the only
extension of ¢’ to K*. The valuation ¥ has then exactly g extensions
to 4’*, and by our choice of v’ these g extensions are independent valuations.

Let H be the isolated subgroup of I" which corresponds to the decom-
position v=v" o 9 (H=value group of ¢; I''=I"|H =value group of ¢').
Let similarly H, be the isolated subgroup of I'; which corresponds to
the decomposition v,=1v", 0 U, (here 7, is the restriction of J* to the
residue fields of v';). We have therefore H=H,nI (see §11,
Lemma 4). We know that I"=1I",, ie., I'|/H=I,/H, To prove
the equality I'=T, it will therefore be sufficient to show that

(10) Hy = H,

i.e., that the value group H of 9 coincides with the value group H, of
its extension 7 to the residue field of ©',. Since the extensions of
to the residue field of v'* are independent it follows a fortior: that also
the extensions of ¥ to the residue field of v’ are independent. Hence,
given a positive element « of H, we can find an element & of the residue
field of ', such that §,(%)=c and ¥’ ,(%)=0 for all other extensions of
¥’z of ¥ to the residue field of v',. If, now, x is an element of K,
whose v’ -residue is & then we will have v,(x)=« and v,(x)=0 for all
other extensions of v to K;. By an argument given earlier it follows
that if y=Ng_ x(x) then v(y)=a. This establishes the equality (10)
and completes the proof of the theorem.
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It is clear that the index of G in G is equal to the number g of exten-
sions of v to K*. Hence
(11) [K,:K] = g = (G:Gy).

We denote by f, the separable factor of the relative degree f="4*:41
and we set

(12) f = for,
where = 1s the characteristic of 4 if the characteristic is different from
zero and i1s 1 otherwise. Theorems 21 and 22 show that

For any s in G and for any element a of K*, a# 0, we denote by (a, s)
the v*-residue of s(a)/a. (By (3), this residue is different from oo and

0 if s € G, and hence, a fortiori, also if s is in G;.) We have the fol-
lowing relations

(14) (a,8) =1 if aeR,a¢M,seCy;
(14) (ab, s) = (@, 5)(b,5),) .
(14//) (a’ St) _ (a’ s)(a, t)'ja,beK*, S,tEGT

Relation (14) is evident, since s(a) —a=m € M,, s(a)la=1+m/a, and the
v-residue of m/a is zero if a ¢ M. Also relation (14") is evident since

s(ab)=s(a)s(b). As to (14”"), we write (s t)a(a)_f(_s@_)_)“@ and we note
#(s(a)) _
that =2+ Ha)
(whence s(a) €R,,—* s(a) ¢ Mm ) it follows, by (14), tha t( ()() ) has the same
s(a)

v*-residue as 5 since t€ G;. Relations (14') and (14”) show that

(s(;z)) and since the v*-residue of = ( ) is neither oo nor 0

the function (a, s) establishes a “pairing” between the group G, and
the multiplicative group of K*. For fixed s in G, the mapping
a— (a, s) is a homomorphism of the multiplicative group of K* into
the multiplicative group of 4*. We denote by K* and 4* these
multiplicative groups and we use the customary notation Hom (K*’, 4*")
for the set of all homomorphisms of K*' into 4*. This set
Hom (K*’, 4*') is a group in an obvious way (f f and g are two homo-
morphisms of K*' into 4*' we define fg by (fo)(a)=f(a)g(a), a € K*").
Hence, for fixed s in G the mapping a —(aq, s) is an element of
Hom (K*’, 4*"). If we denote this element by ¢(s):

(15) o(s): a—(a,s), aeK*,
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then (14") shows that the mapping

(15") ¢: Gr— Hom (K*', 4*")

is a homomorphism. Similarly, for fixed a in K*’, the mapping
s — (a, s) is an element of Hom (G, 4*'). If we denote this element

by ¥(a):

(16) Yla): s—(a,s), seGy,
then (14') shows that the mapping
(16") y: K*'— Hom (G, 4*)

is a homomorphism. We shall investigate the kernels of ¢ and # in
order to determine to what extent the pairing (g, s) is “faithful.”

The elements of the kernel of ¢ are those elements s of G for which
it is true that ¢(s) maps every element of K*' into the element 1 of
4*', ie., those elements s for which (a, s)=1 for any a in K*'. Now,

(a, s)=1 is equivalent to v* f@_l >0. Hence the kernel of ¢ con-
s q p

sists of those elements s of G, which satisfy the condition

an v*(s(x) —x) > v*(x), for all x in K*'.

These elements form therefore an invariant subgroup of G;. This
subgroup is denoted by G}, and is called the large ramification group of v*.

In the case of Dedekind rings treated in Chapter V, § 10, the large
ramification group Gy, is the inverse image in G of the subgroup G’
of GT/GV2 mentioned in V, § 10, Theorem 25. It is also the set,
denoted in V, §10 (p. 295) by H,, of all sin G, such that s(u) —u € M2,
where u is a generator of M «.

We now study the kernel of 4. If a € K then s(a)=a and therefore
(a,s)=1 for all s in G,. Hence the kernel of i contains the inertia
field K;. The kernel of 4 also contains all the units of the valuation
ring R, by (14). It follows now that the kernel of s contains all the
elements a of K* such that v*(a) € I', for if a is such an element and if &
is an element of K such that v*(a)=v*(b), then a=bc, with ¢ a unit in
R x, and since both b and ¢ are in the kernel of 4, also a is in the kernel.

The above consideration shows that (a, s) depends only on the pair
(&, §), where & is the I'-coset of v*(a) and § is the G,-coset of s.  Since
2% is a homomorphism of K*’ onto I'*, it follows that the pairing (a, s)
defines in a natural way a pairing between the (multiplicative) group
G1|G,, and the (additive) group I'*|I". 'The homomorphism g, given by
(15) and (15"), gives rise to an isomorphism

(18) #1: Gr/Gy— Hom (I'*/T, 4%')
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of G1|Gy, into the group of homomorphisms of I'*|I" into 4*', while the
homomorphism ¢, defined by (16) and (16’), gives rise to a homomor-
phism

(19) gy I'*|T— Hom (G1/Gy, 4%")

of I'*|I" into the group of homomorphisms of G,|G,, into 4*'.

We point out the special case in which I'*/I"is a cyclic group of order
e [see (2)] (we have this case, for instance, if v is a discrete valuation of
rank 1). If we choose a generator a of I'*/I" (for instance, a=the
I’-coset of the smallest positive element of I'*, if v is discrete of rank 1),
then any homomorphism 4 of I'*/I" into 4*' is uniquely determined by
the value h(a). Hence, if we set, for any ¢ in G;/Gy, i(c)=(F,(0))(x),
then 1 is an isomorphism of G|Gy into the multiplicative group 4*' (see
Vol. I, Ch. V, § 10, Theorem 25).

We denote by 7 the “characteristic exponent” of the residue field 4
of v, i.e., m is equal to the characteristic p of 4 if p# 0 and is equal to 1 if
p=0. The finite abelian group I'*/I" is the direct sum of a w-group
I (=the set of elements d such that the order of & is a power of ) and
a group I') whose order is prime to 7 (I"y=set of elements & such that
order of & is prime to 7). If we set

(20) e = ey, e, prime to m,

then = is the order of I, and e, is the order of I',. Since 1 is the only
element ¢ of 4*' such that the order of ¢ is a power of =, it follows that
every homomorphism of I'*/I" into 4*' is trivial on I".

We thus have a pairing between the multiplicative group G,/G,, and
the additive group Iy, defining an isomorphism of Gp|G, into
Hom (I, 4*'):

(21) @: Gp|G, — Hom ([, 4*")
and a homomorphism of ', into Hom (GG, 4*")
(22) J: Iy— Hom (G,/Gy, 4%").

We shall prove later on that @ and ¢ are actually isomorphisms onto. At
present we only note the following: since every element of I, has order
prime to m, also every homomorphism of I, has order prime to 7; hence
the order of the (finite) group Hom (I, 4*')* is prime to , and conse-
quently

(23) The order ¢’y of G1|G), is prime to m.
+ Any homomorphism of the group fo (which is of order ¢;) into the group

4*" maps I, into the set of e, roots of unity; since the latter set is finite, the
set Hom (fo, 4*’) is also finite.
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We note that in the case of characteristic zero I', coincides with I'*/I".
We now study the large ramification group G,.
THEOREM 24. Gy, is a m-group, i.e., a group whose order is a power of
m.  (In particular, Gy, = (1) if 4 has characteristic zero.)
Proor. We have only to show that if s € G}, and s has prime order ¢,
then g=m. Assume the contrary: g#m. Let L be the fixed field of s.
Then K* is a cyclic extension of L, of degree g. Let x be a primitive
element of K*/L and let X¢+q, ;X9'+ ... +a,, a;€ L be the mini-
mal polynomial of x over L. We may assume that @, ;=0 since g%
and since therefore we can replace x by x+a, ,/g. Hence we may
assume that the trace of x is zero. On the other hand, if we set s; =5,
i=0,1,---,¢—1, then the v*-residue of x%i/x is 1, since s; € G},, and
g—1

hence the v*-residue of > x%i/x is equal to ¢#0, a contradiction since
=0

the trace > x% is zero. This completes the proof of the theorem.

At this stage we can already obtain, as a corollary of Theorem 24, the
definitive result in the case mw=1 (i.e., in the case in which 4 has char-
acteristic zero):

CoROLLARY. If the residue field A of v has characteristic zero then the
groups Gp and I'*|T" are isomorphic. The ramification deficiency of v,
relative to K*, is zero, i.e., we have efg=n (n=[K*:K]).

In fact, if 4 has characteristic zero, then Gj,=(1) and hence &,, de-
fined by (18), is an isomorphism of G into the group Hom (I"'*/T", 4*').
This latter group is a subgroup of the group of characterst of the
abelian group I'*/I". Since I'*/I" has order e and since I'*/I" and its
group of characters are isomorphic groups, it follows that Gp is
isomorphic with a subgroup of I'*/I" and hence has order =<e.
Since n=gf-order Gy, it follows that n<efg, and therefore, by § 11,
Theorem 19, we must have n =efg, which proves all the assertions of the
corollary.

We now continue with the general case.

LeEMMA.  The homomorphism J defined in (22) is an isomorphism (into).

pROOF. We have only to show that if an element x of K*' is such

s(x . .
that Lx—)_l € M+ for every s in Gy, then there exists a power m* of =

such that mo*(x) e I.  Denote by = the order of G}, (Theorem 24)
and by K the fixed field of G;,. We set y=Ng» g (x). It is clear

that v*(v)=m“v*(x). On the other hand, by applying the operation
+ For properties of the group of characters of finite abelian groups see, for

instance, B. L. van der Waerden, Moderne Algebra, vol. 2 (p. 189), or E. Hecke,
Vorlesungen iiber die Theorie der algebraischen Zahlen, p. 33.
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s(x)

Nk x, to the relation 7—1 € M+, we easily get %y—)—l € M+ for

every s in G;. It follows that the conjugates y; of ¥ over K, may be
written in the form y;=¥(1+5,)(b; € M,+). Since [K,: K l=¢', (see
(23)), there are ', conjugates v;, and, by summation, we get

Tryxo(¥) = ¥(€'0+-b)

with b=> b, € M x. Since €’y is prime to =, it is 2 unit in R ». Hence
v*(¥)=v*(T(»)) € I'y, and therefore v*(v) € I'by Theorem 23. Q.E.D.
It follows from the lemma that the pairing -

h: Gp|/Gyx [y— 4%

defined by (21) and (22) is faithful in the sense that 1 is the only element
o of G1/Gy, such that h(o, &)=1 for every & in Iy, and that 0 is the only
element & of the additive group I'y such that k(s, «)=1 for every o in
Gr/Gy. On the other hand, 4 takes its values in the group U of ¢',-th
roots of unity contained in 4*; this group U is a cyclic group of order
prime to .

Now the theory of characterst for finite abelian groups shows that,
given a finite abelian group H, the only subgroup H', of its character
group H' which “separates” the elements of H (i.e., such that x(h)=1
for all y in H', implies £=1) is the character group H' itself. Thus, if
we regard G;/Gy, as a group of characters of I, it is the entire character
group of Iy, Similarly Iy is the entire character group of G;/G,,. In
particulart

THEOREM 25. The groups I'y and Gp|G, are isomorphic (whence
G1/Gy is abelian). Their orders ey and €'y are equal.

CoRrOLLARY. The product efg divides the degree n=TK*:K], and
nlefg is a power of m.

In fact, n=(G:G (G ,: G ) Gr:GyX Gy : 1) =gfeqn* =efgm =~ (the
notations are those of formulae (11), (12), and (20)). Since efg<n(§ 11,
Theorem 19), it follows that u—s—¢ is >0.

Finally, two series of subgroups of G, generalizing the higher rami-
fication groups, may be defined. For every ideal a in R,. we define
(24) Ga as the set of all s in G such that s(x)—x € a for every x in Rx;
(25) Ha as the set of all s in G such that s(x)— x € ax for every x in K*.

The following facts are easily verified (many proofs are as in Chapter
V, §10):

(a) H < Ga.

(b) Hm s =Gy, Gmx=Gr, Hp s =Gg =G

+ See op. cit. in the footnote of the preceding page.
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(c) If a<®, then Ga=Gy and H,< Hp.
(d) Ga and H, are invariant subgroups of G.
(e) The commutator of an element of H, and of an element of Hy is

in Hab.

(f) Let the value group I"* be isomorphic to a dense subgroup of the

group of real numbers, and be identified with such a subgroup.
If o is a positive real number, and if a is the ideal in R« defined
by v*(x)>«, then Go=H,. In fact take any x#0 in R «, any
real number ¢>0, and write x=x, - - - x, where 0<o* (x;)<¢
(this is possible for # large enough, since I'* is a dense subgroup
of the real line). The formula

n

s(x)—x = ; SQeq) -+ - $(_)(5(%,) = %)%ju1 0 - - %y

shows that, if s is in G, we have
v*(s(x) —x) = min; (v*(x) — v*(x;) = v*[s(x;) — x,1).

Taking s in G, this gives v*(s(x) —x) > v*(x) +a—e. As this is
true for every >0, we have o*(s(x)—x)=v*(x)+e, ie.,
s(x)—x eax, whence seH, Our conclusion follows then
from (a).

REMARK. In the case of a discrete valuation v* of rank 1,
the decomposition of x into a product of elements of order 1
shows, in a similar (and simpler) way that Gm?, < Hm};!.

() Let a be a principal ideal a= R »a, contained in (M+)2. For s in

(26)
27)

(28)

Ga and x in R x, we denote by B(x, s) the v*-residue of S(xzz— x

For fixed s, the mapping x — B(x, s) is a derivation of R (see
Chapter II, § 17) with values in the additive group of 4*:
B(x+y, s) = B(x, s)+B(y, s)
B(xy, s) = %-B(y, 5)+ 3B(x, 5)

(%, ¥ denoting the v*-residues of x, y). The proofs are straight-
forward. On the other hand, for fixed x in R, the mapping
s — B(x, s) is a homomorphism of G, into the additive group of
a4*:

B(x, ts) = B(x, s)+ B(x, t)

PROOF. We set s(x)=x+ay, and a=a'a" with a’, a" in M« (this is
possible since ae(M+)?). Then ay, =s(t(x))—x=s(x+ay,)—x=
ay,+s(a)s(y,) = ay, +ay, +5(a)[s(y) — y.] + [s(a) - aly,. Sincev*(s(a))=
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v*(a) (s € G), and since s(y,) —y, € Rxa<= M, the term s(a) - [s(y,)) —»,]
isin M xa. Similarly, since s(a) —a=s(a")s(a")—a’a" =s(a’)[s(a") —a"] +
a"[s(a’)—a’], the term (s(a)—a)y, belongs to M,a. Hence ay, =
ay,+ay, (mod M »a), and therefore y,, =y, +y, (mod M+).

In other words, we have a pairing B between G, and the additive
group of R x, with values in the additive group of 4*. The kernel of
the homomorphism ¢ of G, into Hom (R +, 4%) defined by ¢(s)(x)=

B(x, s) is the set of all s in G, such that @ € M« for every x in R x;

in other words, this kernel is Gam ». The image ¢(Ga) in Hom (R x, 4%)
is therefore a subgroup of Hom (R, 4%), which is isomorphic to
Ga/Gam » and therefore finite. If the characteristic of 4% is zero, no
subgroup of Hom (R +, 4%) is finite, except the subgroup (0), since such
a subgroup contains, with any element @30, all its multiples &+ 6,
6+60+86, - .- ; we therefore have Ga=Gam  in this case; more parti-
cularly, if v* is a discrete valuation of rank 1, then we get Gm?,=
Gml,= -+ - =Gu%= - - -, and this implies at once that G ={1} for
all n> 1 (since from s(x) —x € My, all # and all x follows that s(x) —x=0
for all x, whence s=1). If the characteristic p of 4* is #0, then every
element #0 of Hom (R, 4%) is of order p; therefore Go/Gam,+ is an
abelian group of type (p, - - -, p) (i.e., a direct sum of cyclic groups with
p elements).

On the other hand, the homomorphism ¢ of R« into Hom (G,, 4%)
defined by y(x)(s) = B(x, s), takes the value 0 on (M +)? by formula (27),
and also on R x N K(G.)(K(G,) denoting the fixed field of Ga), whence a
fortiori on Rx N K. We suppose that there is no inseparability in the
residue field extension, i.e., that 4% is separable over 4; then 4*=4, by
Theorem 22 (b), and this means that every element of R« is congruent
mod M« to some element of Rx N K;. [In the case in which I'* is
dense (i.e., has no smallest strictly positive element), we have M «=
(M,*)2, whence i takes everywhere the value 0. From what has been
seen above, it follows that Go= Gam . for every principal ideal a; we may
notice that, if b is a non-principal ideal in R x, then b =59 « (still under
the assumption that I'* is dense).]

In the case in which I'* admits a smallest positive element, say
v*(u) (u € M+), then the assumption that 4*=4, shows that every x
in R x may be written in the form x=2"+zu+x’, with 2, 2’ € Rx» n K,
and &' in (M,x)2. Denoting as usual by # the v*-residue of 2, formula
(27) shows that §(x)=y(2u)=Z-(u). Therefore the image Y(R,+) in
Hom (G, 4%) is the 4*-vector subspace of Hom (G,, 4*) generated by
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$(x); in particular we have §(z) =0 if and only if Go=Gam .. Further-
more (still under the assumptions that 4* is separable over 4 and that
I'* admits a smallest element >0), the mapping s — (x)(s)= B(x, 5)
defines an zsomorphism of Go/Gam, . onto an additive subgroup of 4*.

(h) Letstill a be a principal ideal R +a with ain M. For ¢ in Hy and
x#0 in K*, we denote by C(x, t) the v*-residue of fx)—x
The mapping C satisfies the following relations: =
(29 Clxy, 1) = C(x, )+ C(y, 1),
(30) Clx, ts) = Clx, )+ C(x, 1).

PROOF. If we set s(x)=x(1+ ax,), then C(x, s)is the v*-residue of x,.

From s(xy)=xy(l +ax,+ay,+a%x,y,) and from a®€ M +a, we deduce
formula (29). From

s(e(x)) = s()[L +s(@)s(x)]) = (1 +ax)[(1+a(l +aa)(1+a(x,),)x,)
= x(1 + ax,+ ax,)(mod. M +ax),

we deduce formula (30).

We have again a pairing, this time between H, and the multiplicative
group K*' of K*, with values in the additive group of 4*. Since
H.,< Gy, we have Hqo=(1) in characteristic 0 (Theorem 24), and we may
restrict ourselves to the case in which the characteristic p of 4* is #0.
It is easily seen that the kernel of the homomorphism ¢: Ha — Hom
(K'*, 4%) defined by @(s)(x)= C(x, s) is Ham,+. Thus we see as above
that Ho/Hom,» is an abelian group of type (p, p, - - -, p).

(1) Since G is a finite group, the mappings a — G,, a — H, take only
a finite number of values. Let, for example, G’ be one of the
values taken by Ga. If @ denotes any set of ideals in R » and we
set

b=«

aeP
we immediately verify that

Gb = n Ga.

aeP

Taking for @ the set of all ideals a for which Go=G’, we deduce
that this set has a smallest element o(G'). We obtain in this way
a finite decreasing sequence

a, > ap > - >a, > (0)
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such that the G, form a decreasing sequence of distinct sub-
groups of G. It follows from the construction that

Ga = Gal fOr a> ay

Ga = G“Z fOr al >a> a._;'

G, = Gaq for o,y >a>q,
Ga=() for a,>a.

The ideals ay, - - -, a, are called the ramification ideals of v* (and
generalize the ramification numbers defined in Chapter V, § 10).
An analogous sequence b, >b,> - .- >b, >(0), with analogous
properties, is defined by using the mapping a — H, instead of
a— G

§ 13. Classical ideal theory and valuations. Let R be a UFD,
and K its quotient field. With every irreducible element 2 in R, there
is associated the z-adic valuation of K(§ 9, Example 1, p. 38). We have
noticed already (§ 9, Example 2, p. 38) that the ring R and the family
(F) of all z-adic valuations of K enjoy the following properties:

(E,) Every valuation v in (F) has rank 1 and is discrete.

(E;) The ring R is the intersection of the valuation rings R, (v € (F)).

(E3) For every x#0 in R, we have v(x)=0 for all v in (F) except a finite
number of them (we shall say “for almost all v in (F)”).

(Ey) For every v in (F), the valuation ring R, is equal to the quotient ring
Ry, where p(v) is the center of v on R.

When we have a domain R and a family (F) of valuations of its
quotient field K which satisfy (E,), (E,), (E3), (E4), we say that R is a
Krull domain (or a finite discrete principal order), and that the family (F)
is a family of essential valuations of R. Property (E;) shows that a
Krull domain Ris integrally closed. 'The fact that every element of K is
a quotient of two elements of R shows that condition (Ej) is equivalent
with the seemingly stronger condition:

(E'3) For every x#0 in K, we have v(x)=0 for almost all v in (F).

Further examples of Krull domains may be given:

(a) Dedekind domains. A family of essential valuations in these
domains is given by the set of all p-adic valuations (§9, Example 3,
p. 38). A more general example is the following:

(b) Integrally closed noetherian domains. 1If R is an integrally closed
noetherian domain, then a family (F) of essential valuations of R is
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given by the p-adic valuations, where p is any minimal prime ideal in
R (Theorem 16, Corollary 3, § 10).
REMARK. A Krull domain need not be noetherian; for example,
polynomial rings in an infinite number of indeterminates, over a
field, are non-noetherian UFD’s.

The family (F) of essential valuations of a Krull domain R is uniquely
determined by R. More precisely:

THeoreM 26. Let R be a Krull domain, and (F) a family of essential
valuations of R. Then the valuation rings R, (v € (F)) are identical with
the quotients rings Ry, where v runs over the family of all minimal prime
ideals in R.

PROOF. Let v € (F), and let p(v) denote its center on R. Since the
quotient ring Ry is the valuation ring (E,) of a discrete, rank 1 valua-
tion (E,), p(v)Rpw is its unique proper prime ideal. Thus, taking
into account the relations between prime ideals in R and in Ry,
(Vol. I, Ch. IV, § 11, Theorem 19), p(v) is a minimal prime ideal in R.

Conversely we have to show that every minimal prime ideal p in R
is the center of some valuation v in (F). More generally we shall prove
that every proper prime ideal p in R contains the center p(v) of some
valuation v in (F). Suppose this is not so. Take an element x#0 in

. . .. 1
9. Since ¥# R, x is not a unit in R. Hence v(;) <0 for at least one

valuation v in (F)(E,). Denote by vy, - - -, v, the valuations v in (F)
such that v(x) >0 (E;). As was just pointed out, we must have n> 1.
Since no center p(v;) is contained in p, there exists an element y; € v(v;)
such that y;¢p. Since the valuations v; have rank 1 and since
v,(y;) >0, there exists an integer s(¢) such that v,(y®) > v,(x). Denot-
ing by y the product H 0, we have v,(y)=v,(x) for all 7, whence

v(y) = v(x) for all v in (F) since v(x) =0 for every v in (F) distinct from
vy, -+, v, Inother words, we have v(y/x) >0 for all v in (F), whence
y/x € Rby (E;). But, since p is a prime ideal, and since y; ¢ p, we have
y ¢ », in contradiction with the fact that y € Rx<p. Our theorem is
thereby proved.

We now characterize UFD’s and Dedekind domains among, Krull
domains. (From now on, all valuations have the additive group of
integers as value group.)

TueorReM 27. Let R be a Krull domain, (F) its family of essential
valuations. In order for R to be a UFD, it is necessary and sufficient that,
for every v in (F), there exists an element a, in R such that v(a,)=1 and
w(a,)=0 for every w#v in (F).
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PROOF. For the necessity we observe that if v is the g-adic valuation
of a UFD R (a being an irreducible element in R), we have v(a)=1,
and w(a)=0 for every other b-adic valuation w of R such that w#o.
Conversely, suppose the existence of the elements g, in R. These ele-
ments are irreducible, since, from @, =xy with x and y in R, we deduce
v(x)+o(¥)=1 and w(x)+w(y)=0 for every w#v in (F), whence
w(x)=w(y)=0 and either v(x)=0 and v(y)=1 or v(x)=1 and v(y)=0;
therefore either x or y is a unit in R since it has values 0 for all valuations
in (F) (use (E,)). Secondly, for every element x in R we can write
x=u-]] a®; from this we deduce that v(u)=0 for all v in (F), i.e.,

that « is a unit in R (since « and 1/u belong to R by (E,)). Lastly sucha
representation x=u- | [ @,"® (u: unit in R; the n(v) almost all zero) is

necessarily unique, since v(x) =v(x) + n(v)v(a,)+ 2. n(w)v(a,) and since
w#U

therefore o(x) is equal to 7(v) by the hypothesis made on the elements q,.
These facts show that R is a UFD.

THEOREM 28. Let R be a Krull domain, (F) its family of essential
valuations. In order for R to be a Dedekind domain it is necessary and
sufficient that the following equivalent conditions hold:

(2) Every proper prime ideal in R is maximal.

(b) Every proper prime ideal in R is minimal.

(c) Every non-trivial valuation of the quotient field of R which is finite on
R is essential.

PROOF. The equivalence of (a) and (b) is trivial. If (b) holds, then
any non-trivial valuation ¢ of the quotient field K of R which is finite on
R has a minimal prime ideal p as center, and its valuation ring contains
the quotient ring Rp. As Ry is the valuation ring of a rank 1 valuation
(Theorem 26), it is a maximal proper subring of K (§3, p. 10), thus
proving that R, is the valuation ring of v, and that (c) holds. Con-
versely, if (c) holds, every proper prime ideal in R is minimal by
Theorem 26, since it is the center on R of some non-trivial valuation
(§4, Theorem 5).

We have already seen that condition (a) is necessary (Vol. I, Ch. V, § 6,
'Theorem 10). For proving the sufficiency of the equivalent conditions
(a), (b), (c) we are going to prove first that every proper prime (therefore
maximal) ideal p in R is invertible. We take an element x#0in p. For
any prime ideal a in R, we denote by v, the (essential) valuation having
aascenter. Then x1 J] a%® (this product makes sense, by condition

a
(E3)) is a fractionary ideal b such that min ve(y)=0foralla. Therefore
y€b
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b is an integral ideal, necessarily equal to R, for b is not contained in any
maximal ideal a. Consequently we have Rx=]] ava®, so each a is
invertible provided zq(x)>0 (Vol. I, Ch. V, § 6, lemma 4). In particular
p is invertible.

We now prove that every integral ideal a in R is invertible, and this
will show that R is a Dedekind domain by Theorem 12 of Vol. I, Ch. V,
§6. In fact, let us denote by vy(a) the smallest value taken by v, on q,
and consider the ideal a’=]] vup@. It is clear that we have aca’.

p
Since a’ is invertible (as a product of invertible ideals), we can consider
the ideal b=aa’-!; this 1s an integral ideal since a<a’, and we have
a=a'b. Since we have v,(b)=0 for every p, b is necessarily equal to R,
as it is not contained in any maximal ideal a. Therefore a=a’, and a
is invertible. Q.E.D.

We now study the behavior of normal domains under two simple
types of extensions.

Given a field K and a valuation v of K, we consider the polynomial
ring K[X] in one indeterminate over K. If P(X)=a,+a, X+ - - - +
a, X" a; € K, we set v'(P(X))=min,;,(v(a;)). Itisclear that we have
(P(X)+Q(X)) 2 min {¢/(P(X)), v'(Q(X))}, and o (P(X)-Q(X))>
v (P(X)) + v (Q(X)). To prove the equality v'(P(X)-Q(X))=
v'(P(X))+v'(Q(X)), we consider, in P(X)=a,+a,X+ --- +a,X" and
in Q(X)=by+b,X+ --- +b,X? the smallest indices ¢, j for which
2(a;) and v(b;) reach their minima. Then the coeflicient of X**/ in
P(X)Q(X) is the sum of @;b; and of terms whose order for v is
strictly greater than o(a;)+(b;); the order of that coefficient is thus
v(a;)+v(b;) =v'(R)+2'(Q), showmg that o (PQ) <v'(P)+2'(Q). It
follows from Theorem 14 (§ 9) that ¢" has a unique extension to a valua-
tion of the rational function field K(X). We shall also denote by ¢’
this valuation of K(X), and we shall call it the canonical extension of v to
K(X). We notice that v and ¢' have the same value group, hence also
the same rank.

THEOREM 29. Let R be an integrally closed domain and K its quotient
field.  Let (F) be a family of valuations of K, the valuation rings of which
have R as intersection. Denote by (F') the family of the canonical exten-
stons v' of elements v € (F) to the rational function field K(X). Denote
by (G) the family of all a(X)-adic valuations of K(X) (a(X): irreducible
polynomial in K[X)). Then
(a) The polynomial ring R[X] is the intersection of all valuation rings R,
where v € (F') U (G), and is therefore integrally closed.

(b) If R is a Krull domain, and if (F) is its family of essential valuations,
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then R[X) is a Krull domain, and (F') S (G) is its family of essential
valuations.
(c¢) If Ris a UFD, then R[X] is also a UFD.

PROOF. (a) The intersection QG) R, is the polynomial ring KTX7, by

w e

definition of the a(X)-adic valuations. Now, if a polynomial P(X)=a,+
a, X+ - -+ +a,X" (a; € K) satisfies the inequality v'(P)>0 for every v’
in (F'), then we have min (v(q,))>0 for all v in (F), i.e., v(a;)=0 for
every vand every £, and this is equivalent to saying that ¢; € R for every 1.
This proves (a).

(b) Suppose that (F') is the family of essentia! valuations of the Krull
domain R. We have to show that the set (F') U (G) satisfies conditions
(Ey), (Ey), (E3), (E4) with respect to the ring R[X]. Condition (E,) is
trivial. Condition (E,) has been proved in (a). As for (E,), given a
polynomial P(X)=ay+a, X+ - - - +a,X" there is only a finite number
of a(X)-adic valuations w in (G) for which w(P) >0, since P has only a
finite number of irreducible factors (in K[X]); on the other hand, if a;
is a non-zero coefficient of P(X), the valuations ¢’ in (F') for which
v'(P) >0 are among those for which v(a;) >0, by definition of ¢, and
these latter valuations are finite in number according to (E;) as apphed
to R. It remains to show that (E,) holds.

Consider, first, an a(X)-adic valuation w e (G). Its center p(w) in
R[X] is the set of all polynomials in R[X] which are multiples of a(X)
(in K[X]). Since this prime ideal p(w) does not contain any constant
polynomial #0, the quotient ring (R[X1),,, contains K[X]. By the
transitivity of quotient ring formations (Vol. I, Ch. IV, § 11, p. 231), this
quotient ring is equal to (K[X1]),, where ¥ is the (prime) ideal generated
by p(w) in K[X]. But, since this ideal is the ideal generated by a(X),
the quotient ring we are dealing with is equal to (K[X1)(,(xy,, and this
latter ring is the valuation ring of w, by the structure of the a(X)-adic
valuation.

Consider now a valuation ¢’ in (F’), extending canonically the valua-
tion v (e(F)) of K. Its center p(v') on R[X] is the set of all poly-
nomials ag+a, X+ --- +a,X" for which v(a;)>0 for every i. Since
the valuation ring R, of v is a quotient ring of R, the quotient ring
(R[X1)y() contains R, and therefore contains also R,[X]. If we denote
by a an element of R, such that v(a) =1, and if we write every element
of K(X) under the form a?P(X)/Q(X) where P and Q are polynomials
over R, such that v'(P)=v'(Q)=0, the elements of the valuation ring of
v’ are those for which ¢>0. In other words, this valuation ring is
(R,[X]),, where p is the prime ideal in R [X] generated by a. Now,
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this prime ideal p is obviously the extension to R [X] of the center p(2")
of ' in R[X]. Thus, the valuation ring we are investigating, is, by the
transitivity of quotient ring formations (Vol. I, Ch. IV, § 11, p. 231) equal
to the quotient ring (R[X1),. The proof of (b) is now complete.

(c) We use the characterization of UFD’s by Theorem 27. For o'
in (F'), we take an element a4, in R such that v(a,)=1 and #(a,)=0 for
every u#vin (F). If we consider a, as a constant polynomial in R[X],
we have v'(a,)=1, #'(a,)=0 for every «'#%" in (F'), and w(a,)=0 for
every w in (G), since q, is a constant polynomial. For the a(X)-adic
valuation w in (G), we take for q, a constant multiple of a(X), all the
coefficients of which are in R and are relatively prime; we then have
w(a,)=1, u(a,)=0 for every u#w in (G), and v'(a,)=0 for every v’ in
(F') since the coefficients of g, are relatively prime and cannot have
strictly positive orders for ». Thus also (c) is proved.

REMARK. Observe that (c) has already been proved (Vol. I, Ch. I,
§ 17, Theorem 10) by elementary methods.

THeoREM 30. Let R be an integrally closed domain, K its quotient
field and (F) a family of valuations of K, the valuation rings of which
have R as intersection. Let K' be a finite algebraic extension of K, R’ the
integral closure of Rin K', and (F') the family of all extensions to K' of all
valuations belonging to (F). Then:

(2) R’ is the intersection of the valuation rings of the valuations belonging
to (F').

(b) If Ris a Krull domain, and if (F) is its family of essential valuations,
then R’ is a Krull domain and (F') is its family of essential valuations.
(¢) If R is a Dedekind domain, so is R'.

PROOF. (a) It is clear that R’ is contained in the intersection I of
the valuation rings of the valuations belonging to (F'). Conversely
consider an element x of K’ such that2'(x)>0forall o’ in (F’). Let K"
denote the smallest normal extension of K containing K', and let (F")
be the family of all extensions to K" of valuations belonging to (F).
We obviously have 2"(x)>0 for all 2" in (F”). Since (F”) contains,
together with 2", all the conjugates of ©” over K, we have v"(x,;)>0 for
every " in (F") and for every conjugate x; of x over K. Now the
coefficients a; of the minimal polynomial of x over K are sums of pro-
ducts of conjugates of x. Thus the valuation axioms show that we have
v"(a;)20 for all v" in (F"), i.e., ©(a;) 20 for all v in (F). This means
that the coefficients a; belong to R.  Therefore the minimal polynomial
of x over K yields an equation of integral dependence of x over R, and

assertion (a) is proved.
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(b) If v e (F) is a discrete, rank 1 valuation, any extension ¢’ of v to K’
is also discrete, of rank 1 (§ 11, Lemma 2, and Corollary); thus (F')
satisfies condition (F,). That (F’) verifies (E,) follows from assertion
(a). Concerning (E3), consider an element x#0 in R’ and an equation
of integral dependence x"+a, x""1+ ... +q,=0 of x over R. We
may suppose aq,#0; otherwise we would divide by x. If we have
v'(x) >0 for 2" in (F'), we must have v'(q,) >0. But the valuations v’
in (F') for which ¢'(a,) >0 are the extensions of the valuations v in (F)
for which v(ay) >0 (a, € R). Since the latter are finite in number, by
(E,) as applied to (F), and since a valuation v of K has only a finite
number of extensions to K’ (§ 7, Corollary 4 to Theorem 12), the
number of valuations ©’ in (F') for which v'(ay) >0, is finite, whence
also the number of valuations ¢’ in (F') for which v'(x) >0 is finite.
Thus (F') satisfies (E,).

We now check (E,). Let 2" € (F’) be an extension of v € (F), and

denote by p(v’) and p(v) the corresponding centers in R’ and R respec-
tively. 'The valuation ring R, of v is the quotient ring R, =Ry,
where M denotes the complement of p(v) in R. The integral closure
(R,) of R,=R,, in K’ is the quotient ring R}, (Vol. I, Ch. V, §3,
Example 2, p. 261). Since »(v') N R=1(v), this integral closure is a
subring of R',,,y. Now, the valuation ring of » is the quotient ring of
(R,)' =R}, with respect to the maximal ideal m’ which is the center of
v in (R,) (§7, Theorem 12). By the transitivity of quotient ring
formations (Vol. I, Ch. IV, § 10, p. 226), this valuation ring is therefore
equal to R'y,, and this completes the proof of (b).
(c) We use the characterization of Dedekind domains given in Theorem
28. If R’ contains two proper prime ideals ’, 9" such that ¥’ < ¢/, then
p’ N R and a’ n R are proper prime ideals in R such that p’ n R< q' N R
(Vol. I, Ch. V, § 2, Complement 1 to Theorem 2, p. 259). This contra-
dicts the fact that R is a Dedekind domain.

REMARK. Another proof of (c) has been given in a previous chapter
(Vol. I, Ch. V, § 8, Theorem 19).

§ 14. Prime divisors in fields of algebraic functions. We recall
(Vol. I, Ch. II, § 13) that a field K, containing a ground field &, is said to
be a field of algebraic functions over &, or, briefly, a function field over
k, if it is finitely generated over k. In this section we shall study prime
divisors of a function field K /&, i.e., the places or the valuations of K /&,
which have dimension 7 —1 over &, where 7 is the transcendence degree
of K/k. For our immediate purpose it will be more convenient to
treat prime divisors as valuations rather than as places.
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We have already proven the existence of prime divisors; their existence
is a special case of a more general theorem proven in §6 (Theorem 11 and
its Corollary). Of considerable importance is the following theorem:

THeoreM 31.  Any prime divisor v of a function field K[k is a discrete
valuation of rank 1, and the residue field D, of v is itself a function field
(of transcendence degree r—1 over k). Furthermore, the valuation ring
K, of v is the quotient ring of a finite integral domain R (having K as
quotient field) with respect to a minimal prime ideal of R.

PROOF. It is obvious that v must have rank 1 since » has maximum
dimension r—1 and cannot therefore be composite with any other
valuation of higher dimenston (see § 3, Definition 1, Corollary 1, p. 10).

We fix r—1 elements x,, x5, - - -, x,_, in K whose v-residues in D,
are algebraically independent over k. Then it is clear that these ele-
ments x; are also algebraically independent over % (§ 6, Lemma 2; see
also proof of Corollary 1 of that lemma). We extend {xy, x4, - - -, %,_}
to a transcendence basis {x;, - - -, x,} of K/k and we denote by ¢’ the
restriction of v to the field k(x) (=k(xy, x5, - - -, x,)). Since K is an
algebraic extension of k(x), it follows that » and ©" have the same dimen-
sion (§ 6, Lemma 2, Corollary 1). Hence ¢’ is a prime divisor of k(x)/k.
We first show that our theorem is true for v’ and for the purely trans-
cendental extenston field k(x) (=A(x,, x5, - - -, x,)) of k. For this pur-
pose we first observe that 1t is permissible to assume that v’(x,) 2 0, since
we can replace x, by 1/x,. Under this assumption, 2’ is non-negative
on the polynomial ring R’ =k{x,, x,, - - -, x,]. If v’ is the center of v’
in R’, then the integral domain 2[x]/p" has transcendence degree r — 1 over
k (since the v-residues of x4, x,, - - -, x,_, are algebraically independent
over k). Ifypisa prime ideal in R' such that p’ > p then, by Theorem 29
of Vol. I, Ch. II, § 12, we have tr.d. R'/p’ < tr.d. R'[p, i.e., r—1<tr.d.
R'[p <r, where all the transcendence degrees are relative to k. Hence
tr.d. R'/p=r=tr.d. R’, whence—again by the just cited theorem, » =(0).
Hence p’ is a2 minimal prime ideal in R’. Since R’ is noetherian and
integrally closed, it follows that R’y is a discrete valuation ring of rank 1
(§ 10, Theorem 16, Corollary 2). Since R’y is contained in the valua-
tion ring of v and since R’ is a maximal subring of k(x), it follows that
R’,. is the valuation ring of 2. Thus ¢’ is discrete of rank 1, its residue
field is the quotient field of the finite integral domain k[xy, x4, - - -, %,]/¥’,
and its valuation ring is the quotient ring of the polynomial ring
k[x,, x5, - -+ -, x,] with respect to the minimal prime ideal p’; so the
theorem holds for »’. (Observe that »’ is a principal ideal (f) in the
UFD k[x,, x,, - - -, x,] and that therefore 2’ is merely the f-adic valua-
tion of k[x].)
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The theorem can now easily be proved for v and K as follows:
(1) since K is a finite algebraic extension of k(x) and v is an extension
of ¢/, also v must be discrete (§ 11, Lemma 2, Corollary) and of rank 1
(§ 11, Lemma 2). (2) The residue field of v is a finite algebraic exten-
sion of the residue field of ¥’ (§ 6, Lemma 2, Corollary 2) and 1s therefore
also a finitely generated extension of k. (3) If R denotes the integral
closure of k[xy, x,, - - -, x,] in K, then clearly v 1s non-negative on R, the
center  of v in R is a prime ideal of dimension r—1 and is therefore a
mimimal prime ideal in R; thus, since R is a finite integral domain, hence
noetherian, it follows, again by Theorem 16, Corollary 2 (§ 10) that
K,=R,. This completes the proof.

We note the following consequence of our theorem:

CoOROLLARY. If a valuation v of a field K|k of algebraic functions of r
independent variables has dimension s and rank r—s, then v is discrete, and
its residue field D, is a field of algebraic functions of s independent variables.
In particular, every valuation of K|k of maximum rank r is discrete.

For, let v=9" o ¥, where " has rank r —s—1 and 7 ts a rank 1 valua-
tion of the residue field D, of v'. The dimenston of v’ is <7—rank ¢/,
i.e., dim v’ £s+1, and since 7 is non-trivial it follows that dim o' =s+1,
while dim o=s. Using induction from s+1 to s, we may assume that
v’ is discrete and that D, is a field of algebraic functions of s+ 1 inde-
pendent variables. Then 7 is a prime divisor of D, /k, hence also ¢
and v are discrete. If v has rank 7, then its dimension cannot exceed
zero, and so v must be discrete.

The converse of the last part of the theorem is also true, but before
stating and proving it we must first prove a lemma which will be used
several times in this section and which will form the cornerstone of the
dimension theory developed in the next chapter (VII, § 7).

Let R=k[x,, x,, - -+, x,] be a finite integral domain, of transcendence
degree 7, and let p be a prime ideal in R, different from R. Then the
canonical homomorphism R — R/p is an isomorphism on k, and we
may therefore regard k as a subfield of R/v. We define the dimension
of the prime ideal p, in symbols: dim p, as being the transcendence
degree of R/p over k.

By definition, we have always dim p=0 if p#£R. It is sometimes
convenient to attach the dimension —1 to the unit ideal R. It is clear
that a prime ideal of dimension O is maximal. The converse will be
proved in the next chapter (VII, § 3, Lemma, p. 165).

If p and p’ are two prime ideals in R, both different from R, and if
p<p’, then the canonical homomorphism of R/p onto R/p’ is proper
and therefore the transcendence degree of R/p is greater than the trans-
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cendence degree of R/»’ (Vol. I, Ch. II, § 12, Theorems 28 and 29).
We have therefore proved that

(1) “p < 9’7 = “dimp > dim".”

In particular, since the prime idea! (0) has dimension r, it follows that
every proper prime ideal has dimension less than r and that every prime
ideal of dimension r—1 is minimal. The lemma which we wish to
prove and which is fundamental in the dimension theory of finite
integral domains is the converse of the second part of the last assertion:

LemMAa. If v is a minimal prime ideal in a finite integral domain
R=Fk(xy, x5, - -, x,), of transcendence degreer, then » has dimension r —1.

PROOF. Assume first that x,, x,,---, %, are algebraically inde-
pendent over &, whence r=7 and R is a polynomial ring in n variables.
Since R is a unique factorization domain, b is a principal ideal, say
p=Rf, where fis an irreducible element of R (Vol. I, Ch. IV, § 14, state-
ment following immediately the definition of minimal prime ideals,
p. 238). The polynomial f=f(xy, x5, -- -, x,) must have positive
degree since v#(1). Hence at least one of the elements x; actually
occurs in the formal polynomial expression of f. Let, say, x, occur in
f- Then p contains no polynomial which is independent of x,, since
p=Rf. It follows that the p-residues of x,, x, - - -, x,_; are algebraic-
ally independent over k. This shows that dimp=n—1, whence
dim p=n—1 since v #(0).

If r<n, we consider first the case in which the ground field % is
infinite. We use then the normalization theorem (Vol. I, Ch. V, § 4,
Theorem 8) and we thus choose r elements 2y, 2,5, - - -, 2, in R such
that R is integrally dependent on R'=k[2,, 2, ---,2,] We set
p’=pn R’. Then R’ is a polynomial ring in r variables. Since R’ is
integrally closed and p is minimal in R, p’ is necessarily minimal in R’
(Vol. I, Ch. V, §3, Theorem 6) and hence, by the above proof, we
have dim »'=r—1. Consequently, by Vol. I, Ch. V, §2, Lemma 1,
dim b=r— 1.

If % is a finite field we consider an algebraic closure K of the field
k(xy, x4, - - -, x,) and we set R=E[x,, x,, - - -, x,] where k is the algebraic
closure of £ in K. Since R is integrally dependent over R=
k[xy, x,, - - -, x,], there exists at least one prime ideal in R which lies
over p (Vol. I, Ch. V, § 2, Theorem 3). Let b be such a prime ideal.
Then also b is minimal in R (Vol. I, Ch. V, §2, Complement 1 to
Theorem 3, p. 259). Now, it is clear that the transcendence degree of
R over k is the same as the transcendence degree of R over k (using a
transcendence basis {2, 2,, - - -, 2,} of R[k, 2; € R, and the transitivity
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of algebraic dependence, we see at once that 2z, %, ---,2, are
algebraically independent over & and form a transcendence basis of R/E).
Since k is an infinite field, we have, by the preceding case, that dim b =
r—1. Consequently, again by Lemma 1 of Vol. I, Ch. V, §2,
dim p=r—1, and the proof of the lemma is complete.

CoRrOLLARY. If R is a finite integral domain (over a ground field k)
and if a prime ideal p in R is such that the quotient ring R, is a valuation
ring, then the associated valuation v of the quotient field K of R is a prime
divisor of K|k and p is a minimal prime ideal in R.

For, since R, is noetherian, the valuation v is discrete, of rank 1
(§ 10, Theorem 16) and R, is a maximal subring of K; therefore pR,
is (not only a maximal but also) a minimal prime ideal of R,, showing
that p is a minimal prime ideal in R. By the preceding lemma, we have
therefore dim p=r—1, if r is the transcendence degree of R/k, and
hence v is a prime divisor of KJ/k.

Let V be an affine variety in an affine n-space, such that " is defined
and is irreducible over k and K is k-isomorphic with the function field
k(V)of Vlk. We shall identify K with k(V). If 2 is a prime divisor+
of K/k which is finite on the codrdinate ring k[V'] of V, then & has a
center on V, and this center is a subvariety W of V, defined and irredu-
cible over k. The dimension of W is at most equal to r— 1.

Tueorem 32.  If Wis an (r— 1)-dimensional irreducible subvariety of
V|k, then the set of prime divisors of K|k (=k(V)[k) which have center W
on V is finite and non-empty. If P is any prime divisor of K|k having
center W, then the residue field of P is a finite algebraic extension of the
function field k(W) of W/k.

PROOF. There exist prime divisors of center W, since there exist
non-trivial valuations of K/k having center W and since any such valua-
tion must have dimension r—1 and must therefore be a prime divisor.
We shall now show that there is only a finite number of prime divisors
with center W.

Let K=*k(x,, x5, - - -, x,), where the x; are the non-homogeneous
cobrdinates of the general point of I’/k. Let g be the prime ideal of W
in k[x]. Since dim W=r—1, we may assume that the g-residues of
Xy, X9, ++ -, X,_; are algebraically independent over k. Then x,,
Xy, -+ -, X,y are also algebraically independent over k, and we may
furthermore assume that x,, x,, - - -, x, are algebraically independent
over k. From our assumptions it follows that in the polynomial ring
k[x, x5, - -+, x,] the prime ideal q,=qnklx}, x5, ---, %] is (r—1)-

+ Without fear of confusion we are using here the same symbol & for prime
divisors as was used for places in the beginning of the chapter.
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dimensional, hence minimal. Let £, denote the gg-adic valuation
of the field A(x;, x5, ---,%,); then £, is the only valuation of
k(xy, X9, - - -, x,)[k which has center q, in A[x;, x5, ---,%,]. Any
prime divisor of K/k which has center W on V" has center q in
k[xy, %5, - - -, %,], hence has center a, in A[x,, x5, - -+, %,]; in other
words: any prime divisor & of K[k with center W on V must be an
extension of £, Since K is a finite algebraic extension of
k(xy, x5, - - -, X,), P has only a finite number of extensions to K, and
this proves the finiteness of the set of prime divisors of K/k having
center W. If & is any prime divisor of that set, then the ring k[x]/q
can be canonically identified with a subring of the residue field 4 of 2.
Hence, the quotient field of that ring, i.e., the field A(1¥), is a subfield
of 4. Since 4/k is a function field, of transcendence degree r—1,
and since also A(WW)/k has transcendence degree r—1, the theorem is
proved.

There is an important case in which there is only one prime divisor
of K[k whose center is the given irreducible (» —1)-dimensional sub-
variety Wof V/k. 1f Wis an irreducible subvariety of V/k and p is the
prime ideal of ¥ in the codrdinate ring R=~A[x,, x5, - - -, x,] of V/k,
then we mean by the local ring of W (on V') the quotient ring R,. We
denote this ring by o(W; V). We say that V/k is normal at W if the
local ring o(WW; V') is integrally closed (in this definition /¥ may be an
irreducible subvariety of any dimension <7—1). If Q is any point of
V and W is the irreducible subvariety of ¥ which has Q as general
point, we say that V' is normal at Q if it is normal at W. That means
then that the local ring o(Q; V') is integrally closed. If f denotes the
conductor of the cobrdinate ring R=*~[x] in the integral closure of R
(Vol. I, Ch. V, §5) and if F is the (proper) subvariety of V' which is
defined by the ideal f, then the irreducible subvarieties W of V/k such
that V/k is not normal at W are precisely the subvarieties of F' (Vol. I,
Ch. V, §5, Corollary of Lemma). In particular, since dim Fs7r—1,
there is at most a finite number of irreducible (r — 1)-dimensional subvarieties
W of V/k such that V|k is not normal at W.

THeoreMm 33. If W is an irreducible (r — 1)-dimensional subvariety of
Vik such that V[k is normal at W, then there is only one prime divisor of
K[k which has center W on V. The valuation ring of that prime divisor
coincides with the local ring o(W; V'), and its residue field coincides with
the function field k(W) of W|k.

The proof is imimediate: the ring o(W; V) is an integrally closed,
local domain which has only one proper prime ideal (since W has
dimension -1, whence o(W; V)=R,, where » is a minimal prime
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ideal in R), and thus the theorem is a direct consequence of Theorem 16,
Corollary 1 (§ 10).

Note that the first part of Theorem 33 is a special case of Theorem 16,
Corollary 2 (§10), concerning minimal prime ideals in noetherian
domains.

A variety V/k is said to be normal, or locally normal, if it is normal at
each of its points. It is clear that if the codrdinate ring k[x] of V is
integrally closed, then I/ is normal. We shall prove now the converse:

THEOREM 34.  If an affine variety V is normal then the coordinate ring
R of V is integrally closed.

This theorem is included in the following, more general and stronger
result:

TueoreM 34'. If R is an integral domain and M denotes the set of
maximal prime ideals of R then

R = ) Rn.
meM

For, the assumption that V' is normal signifies that Ry is integrally
closed for any prime ideal p in the codrdinate ring R of ¥V, and hence
Theorem 34 is indeed a consequence of Theorem 34’. To prove
Theorem 34’ we first prove a lemma:

LEMMA. Let R be an integral domain, N an ideal in R and x an ele-
ment of R. If for every maximal ideal m in R it is true that x belongs to
the extended ideal R, then x € .

PROOF. Let m be any maximal ideal in R. The assumption
x € R signifies that there exists an element 2y, (depending on m), not
in m, such that xz, € A.  Inother words: A:Rx+m. The assumption
that x € R for all maximal ideals m signifies therefore that the ideal
A:Rx is contained in no maximal ideal of R. Hence A: Rx=(1),
whence x € ¥, as asserted.

REMARK. The lemma remains valid if R is any ring with identity
(and not an integral domain), provided the condition x € R, all m, is
replaced by the condition pm(x) € Ru-@m(), where pm is the canonical
homomorphism of R into Rm (see Vol. I, Ch. IV, §9). The proof is
similar to the one given above, and may be left to the reader.

Using the above lemma we can easily prove Theorem 34, as follows.

We have only to prove the inclusion {] Rm< R, for the opposite inclu-
mem

sion is obvious. Let z€ {7} Rw and write s in the form z=x/y, with
meM

x,v€ R. We have the assumption: x € R -y, forall min M. Hence,
by the lemma (as applied to the ideal % =Ry) we conclude that x € Ry,
whence 2=x/ye R. Q.E.D.
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A prime divisor £ of K[k which is finitet on the codrdinate ring 2[V]
of V/k is said to be of the first kind or of the second kind with respect to V
according as the dimension of the center of Z on V is equal tor—1 or is
less than r—1. This distinction between prime divisors of the first
and of the second kind is classical. If r > 1, then the prime divisors of
Kk which are of the first kind with respect to V fall very short of ex-
hausting the totality of prime divisors of K/k which are finite on k[V].
We have in fact the following theorem:

THEOREM 35. If W is any proper subvariety of V, defined and irreduc-
ible over k, then there exist prime divisors of K|k having center W on V.
If we denote by My, the set of all these prime divisors then
(1) | Kz = integral closure of o(W; V).

P eMy,

PROOF. If dim W=r—1, then everything has already been proved:
My, is non-empty, by Theorem 32, and (1) follows from Theorem 8,
§ 5, since every valuation of K[k with center W is necessarily a prime
divisor. If dim W<r—1, all the elements of My, are prime divisors of
the second kind with respect to V, and our theorem asserts not only that
My, is non-empty but also that the set My, is sufficiently ample as to
insure that the intersection of the valuation rings Ka, 2 € My, is the
same as the intersection of all the valuation rings of valuations v having
center W (this latter intersection being equal to the integral closure of
the local ring o( W, V), by Theorem 8, § 5).

Let p be the prime ideal of W in the ring R=Ek[V], and let {w,,
Wy, - + -, wy} beabasis of p.  We consider the following 4 rings R';:

R, = R[-w—l’ﬁm i=1,2--+,h
w; w; Wi
We note that R";p=R’;-(w,y, w,, -+ -, w,)=R';-w;.

We assert that for at least one value of 7, 1<i<h, it is true that
R w;nR=p. To see this we fix a valuation v of k&(V)/k which has
center p in R, and we fix an index 7 such that v(w;)=min {v(w,),
v(w,), - - -, v(wy)}. Then the valuation ring R, contains R’;. Let p,
be the center of v in R';. We have R';w,<p, since »(w;)>0, and
clearly p, n R=p. Since R';w; N R>p, it follows that R'.w, n R=p,
as asserted.

+ Strictly speaking we should say ‘“‘non-negative”, since in our terminology
a prime divisor is-a valuation. However, in the present geometric context the
term “finite” is more suggestive, since if the affine variety V is thought of as
part of a projective variety V' then to say that £ is non-negative on k[V] is

the same as saying that the center of & is not a subvariety at infinity (of V')
(see end of this section).
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We give another (indirect) proof of the above assertion, which does
not make use of the existence theorem for valuations. Assume that
our assertion is false and that consequently there exists for each i=1,
2,---,h an element &; in R such that §;¢p and £, € R w,. Let
E=¢€,--- & Then also é¢p and e R w;, i=1,2,---,h We
can therefore write ¢ in the form & =w;p,(w,, w,, - - -, w,)/w,”i, where
@; is a form in wy, w,, - - -, w,, of degree v;, with coefficients in R.
Letting v=max {v;}, we have

gwiu_l = lﬁi(wl’ Woy = = * wh)’ i = 1’ 2) ] h’

where i; is a form of degree v, with coeflicients in R. It follows that

the product of ¢ with every monomial w,w,% - - - w,% of degree
o +oyt - - +a,=(@w—2)+1=N is equal to a form of degree N+ 1
inw,, w,y, - - -, w,, with coefficients in R.  This implies that £pN < pN+1,

Since £ ¢ p, this relation implies the relation m¥=m¥+1 where m is
the maximal ideal in the quotient ring Ry, in contradiction with Vol. I,
Ch. IV, § 7, Theorem 12, Corollary 1, since R is a noetherian integral
domain and since p is a proper prime ideal in R.

For simplicity of notations, assume that we have R ;w,nR=p.
This relation implies at any rate that w, is a non-unit in R’, and that at
least one isolated prime ideal p’, of R’;w, must contract to p in R. By
the principal ideal theorem (Vol. I, Ch. IV, § 14, Theorem 29), p’, is 2
minimal prime ideal in R’,, and since R', is a finite integral domain it
follows that p’; has dimension 7—1 (see Lemma). Consider now any
valuation v of k(V')/k which is finite on R’ and has center »’,. Thenwvis
necessarily a prime divisor since dim p',=7r—1. A4 fortiori, v is also
finite on R. Its center in R is clearly the prime ideal »’, N R, i.e., p.
Thus o is a prime divisor of &(V')/k which has center Won V, and this
proves the first part of our theorem.

[The device used in the preceding proof, namely the transition from
the ring R to any of the rings R’;, is frequently used in algebraic geo-
metry; that device, interpreted geometrically, consists in applying to
the variety V' a special birational transformation: a monoidal trans-
formation of center W (see Oscar Zariski, “Foundations of a general
theory of birational correspondences,” Transactions of the American
Mathematical Society, vol. 53, p. 532).]

We now proceed to the proof of the second part of the theorem. Let
z be any element of 2(V) which is not contained in the integral closure
of the quotient ring Ry(=o(W; V)). Weset y=1/2, R’ =R[y]. Since
2 does not belong to the integral closure of Ry, there exists a valuation v
of k(V')/k which has center p in R and such that v(2)<0 (§ 5, Theorem
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8). Then v(y) >0, v is finite on R’, and if p" denotes the center of v in
R’ then yeyp’ and ' n R=vp. By the first part of the theorem, as
applied to R’ and ' instead of to R and v, there exists a prime divisor
v* of k(V')/k which is finite on R’ and has center »’. Then v* is also
finite on R, has center v in R (since »’ N R=p) and furthermore v*(z) <0
since ¥ € p" and thus v*(y) >0. Thus, we have found a prime divisor
of center W such that the valuation ring of that prime divisor does not
contain z. This establishes (1) and completes the proof of the theorem.

We now go back to the prime divisors of K/k which are of the first
kind with respect to V. We denote by S the set of these prime divisors.
Let R be the integral closure of the codrdinate ring R=k[V] of V/k.
Every prime divisor v in S is also finite on R, the center of v in Ris a
minimal prime p in R, and the quotient ring R; is the valuation ring of
v. Conversely, if p is any minimal prime ideal in R, then R; is a dis-
crete valuation ring of rank 1 (Theorem 16, Corollary 2, § 10) since R
is noetherian, and if v; is the associated valuation, then the center p n R
of v in R is a minimal prime ideal; in other words, the center of v on
V is of dimension r—1, and v; is a prime divisor of the first kind with
respect to V. Thus the set S is given by the set of all v; where b
ranges over the set of all minimal prime idealsof R. From Theorem 16,
Corollary 3 (§ 10) we can now derive a number of consequences. In
the first place, we have

2 N K, = R.
veSs

If w is any element of the function field K of V/k, w#0, then, for any
v in S, v(w) is an integer, and there is only a finite number of prime
divisors v in .S such that v(w)#0. We refer to v(w) as the order of w at
the prime divisor v, and we say that v is a prime null divisor or a prime
polar divisor of w according as v(w) >0 or v(w)<0. Any function w in
K, w0, has at most a finite number of prime null divisors and polar
divisors in the set S, and the functions w having no polar prime divisors
of the first kind with respect to V' are those and only those functions
which belong to the integral closure of the coérdinate ring R of V/k.

The situation is particularly simple if V//k is a normal variety. In
this case, every element v of S can be denoted without ambiguity by the
symbol vy, when W is the center of v on V, since WV, which is of dimen-
sion r— 1, uniquely determines the prime divisor vp,. We then intro-
duce the free group G generated by the irreducible (r—1)-dimensional
subvarieties of V/k and we call the elements of this group, divisors. A
divisor I"on V is therefore a formal finite sum I'=Zm,;W,, where the W,
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are irreducible (r—1)-dimensional subvarieties of V'/k and the m; are
integers. We write I'>-0 if all the m; are non-negative, and we say
then that I" is a non-negative divisor. We write I'>0 (I"—a positive
divisor) if I'>0 and I'#0. If now w 1s any function in K, w#0, then
we can associate with w a well-defined divisor on 7, namely the divisor

3) (®) = Zug(w)- W,

where the sum is extended to all the irreducible (r — 1)-dimensional sub-
varieties of V[k (the above sum is, of course, finite since the number of
W’s for which vy (w)#0 is finite). The divisor (w) defined in (3) is
called the divisor of the function w. Then (w)>0 if and only if we R
and (w)=0 if and only if w is a unit in R.

The above definitions refer to the affine variety V. That a function
w may have no polar prime divisors on J” without being a “constant”
(i.e., without belonging to the ground field % or to the algebraic closure
of k in K) is due precisely to the fact that our definitions refer to an
affine variety V/k. In this frame of reference one loses track of the
prime divisors ‘““at infinity.” The “‘correct” definitions are obtained
if one deals with projective varieties. We shall do that in the next
chapter (VII, §4). However, even without introducing explicitly pro-
jective spaces and varieties in the projective space, we can arrive already
here at the desired ““correct” definition of the divisor of a function in
the following fashion:

If n is the dimension of the affine ambient space of our variety I, let

Xy, X, - - - , X, be the cobrdinates of the general point of V'/k. We set

. ox . x 7

xlt=_1, x2’=—2,---,x‘~_1’=—‘—1,
i X3 X3
1 X; X

. +1 .
xi’ = —y x‘.+1’ = —y e, xﬂ’ = 7
X; X; i

and we denote by V; the affine variety whose general point is
(x4%, 5%, - -+, x,7). We set

Ry = R = k[xy, %5, -+, &), Ry = klay?, 057, - - -, 0,7] = k[V].

The n+1 rings R, have K as common quotient field (whence the n+ 1
varieties V/; are birationally equivalent). We denote by S; the set of
prime divisors of K/k which are of the first kind with respect to V/; (we
set Vy="V") and by S* the union of the n4 1 sets S;. We note the fol-
lowing: the only prime divisors v in the set S, i#0, which do not belong to
S, are those at which x;# has positive order (or equivalently: o(x;)<0),



§15 EXAMPLES OF VALUATIONS 99

In fact, if o(x;) <0, then v is not finite on R, and therefore v ¢ S;,. On
the other hand, if v € §; and v(x;) 2 0, then also v(x;)20,7=1,2,- - - , n,
for x;=1x;-x; if j#7; whence v is finite on R,. Furthermore, we must
now have o(x;)=0 (since v(x;?) is non-negative), and hence the v-
residue of ; is different from zero. The relations x; =x;-x, (j#17) show
therefore that the field generated over k& by wv-residues of the
xf(j=1,2,---,n) coincides with the field generated over k by the
residues of x4, x,, - - -, x,. This shows that the center of v in R also
has dimension 7—1, whence v €.S,. We have therefore shown that
there is only a finite number of prime divisors in S* which do not
belong to S,. These are the prime divisors “at infinity” with respect
to V.

We now can proceed as we did in the case of an affine variety, except
that the set S* now replaces the set So(=S). If now a function win K,
w #0, has no polar divisors, i.e., if we have v(w) 2 0 for all v in S*, then w
must be a constant, i.e., w is algebraic over k. For, w must then belong
to the integral closure of each of the n+ 1 rings R;. On the other hand,
given any valuation v of K/k, the valuation ring K, must contain
at least one of the n+1 rings R;: namely, if all v(x,) are 20 then
R,> R,; otherwise if, say, v(x;)=min {o(x,), - - -, v(x,)} then K,D>R,.
It follows that w belongs to all the valuation rings K, such that
K, >k, and hence w must belong to the integral closure of k in K| as
asserted.

It would now be easy to develop the concept of a divisor and of the
divisor of a function, with reference to the set of #+ 1 affine varieties V,
especially if each V; is 2 normal variety. However, we shall postpone
this to the next chapter (see VII, § 4bis).

§ 15. Examples of valuations. All the examples of valuations en-
countered in the preceding sections were discrete, of rank 1 (e.g., p-adic
valuations of Dedekind domains, prime divisors of function fields, etc.).
We shall give in this section a number of examples of valuations of
various types, in particular examples of non-discrete valuations of
rank 1. The algebraic function fields of transcendence degree r>1,
over a given ground field %, represent the best source of such illustrative
material, and we shall in fact work exclusively with function fields in
this section. As a matter of fact, we shall deal largely with pure trans-
cendental extensions of a ground field %, for we know that if we extend a
valuation v of a field K to a valuation of a finite algebraic extension of X,
then the structure of the value group of v (rank, rational rank, etc.)
remains unaltered.
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ExampLE 1. Valuations of maximum rational rank. Let K=
k(xy, %4, - - -, x,), where x,, x5, -, ¥, are algebraically independent over
k,and leta,, ay, - - -, o, be arbitrary, rationally independent real numbers.
If ¢ is a parameter and we carry out the formal substitution x; — ¢, then
every monomial in xy, %, . . . , &, yields a power of ¢, and distinct mono-
mials yield distinct powers of ¢ (since the «; are rationally independent).
If f(x,, %5 ---,%,) is any polynomial in A[x,, x,,---,x,], then
f(te, te, .-, te)isasum of powers of ¢, say, ctf + terms of degree > B,
where ¢#0, B=n,a,+n,0,+ - - - +m,0,, and the n; are non-negative
integers. If we set v(f)=p, then v is a mapping of k[x;, x,, - - -, x,]
(the zero excluded) onto a group I" of real numbers, where I'=Ja«, +
Joy+ -« -« +Jo, (J=the additive group of integers). Note that I' is the
direct sum of the r free cyclic groups Jo;. We have o(fg)=v(f)+v(g),
o(f+g)2 min {o(f), 2(g)}, and hence v can be extended to a valuation v
of the field K (§ 9, Theorem 14). 'The above group I"is the value group
of v, and thus v is non-discrete, of rank 1 and rational rank ». It isim-
mediately seen that the residue field of v is the ground field &, whence v
is zero-dimensional. If the «; are all positive, then v is non-negative
on the polynomial ring k[x,, x,, - - -, x,] and its center is the origin
xy=x,= - -+ =x,=0 in the affine r-space.

We know that the rational rank of a rank 1 valuation of a field K/k, of
transcendence degree r, is at most equal to . In the above example
this maximum r of the rational rank is realized, and the value group
turns out to be a direct sum of r free cyclic groups. This is not
accidental, for we have quite generally the following:

THEOREM 36. If a valuation v of a field K|k of algebraic functions of
r independent variables has rational rank r then the value group I' of v is
the direct sum of r cyclic groups:

I'=Jry+Jry+ -+ - +J7,
where J denotes the additive group of integers and 7, 75, ---,7, are
rationally independent elements of I.

PROOF. We fix in I" a set {;, @y, - - -, o} Of rationally independent
elements and then we fix in K a set of elements x,, x,, - - -, x, such that
o(x;)=a;. Asin the preceding example one shows that the value group
I'" of the restriction of v to the field k(xy, x,, - - -, x,) is then the group
I'=Jo,+Jo,+ - - - +Ja,, adirect sum of r cyclic groups. If n denotes
the relative degree [K: k(xy, x5, ---,%,)] then we know that

I'cre ;1—71"’ (§ 11, proof of Lemma 1). Now, the group ;ll—’ I''isa

direct sum of r cyclic groups and admits the basis elements o,/n!,
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ay/n!, -+ -, o /nl. Since I' is a subgroup, of finite index, of % I, also

I' must possess a basis of 7 elements 7y, 75, - - -, 7,, as asserted (Vol. I,
Ch. IV, § 15, Lemma 2).

ExaMpLE 2. Generalized power series expansions. Consider formal
power series 2(f)=ayt*o+at1+ - - +a,t*n+ - - -, where the coeffi-
cients a, are in & and the exponents y, are real numbers such that
Yo <¥1< ---, and limy,=00. These power series with the usual
formal rules for addition and multiplication form a field k{#}. This
field admits a natural valuation V, of rank 1, defined by setting
V(z(8)) =y, if ag#0. Any isomorphism of k(xy, x5, - - -, x,) into k{t}
will therefore yield a rank 1 valuation of k(xy, x,, - - -, x,). Any such
isomorphism is obtained by choosing for each variable x; a power series
z,(t) in k{t} such that the r power series z(t), z4(t), - - - , 2,(t) are algebraic-
ally independent. 'The valuations thus obtained are all zero-dimensional
and have k& as residue field. In particular, if the z,(2), 24(2), - - -, 2,(¢)
are power series with integral exponents, so that the “one-dimensional
arc” x;=2,t) ({=1,2, - - -, 7) is analytic and does not lie on any proper
algebraic subvariety of the affine r-space, then we get a discrete zero-
dimensional valuation of k(x,, x, - - -, &,), of rank 1. The condition
that the “arc” x;=2,¢) does not lie on any proper algebraic subvariety
of the affine r-space is equivalent to our condition that the r power
series 2,(f) be algebraically independent (over k). If this condition is
not satisfied, then the 7 power series z(f) can be used to define valuations
of rank > 1, as follows:

The polynomials f(xy, x5, - - -, x,) in R{x;, xy, - - -, x,] which give
rise to true algebraic relations f(2.(¢), 25(2), - - -, 2,(£)) =0 between the
given power series z(¢) form a prime ideal v in A[x,, x5, - - -, x,]. Let
v’ be any valuation of k(x;, x,, - - -, x,) which is non-negative on the
polynomial ring k[x,, x,, - - -, ¥,] and which has center p in that ring.
If %, denotes the p-residue of x; then it is clear that the mapping
%, —2(t),i=1,2,---,7, defines a k-isomorphism of k(% %,, - - -, &,)
into k{t} and therefore also defines a rank 1 valuation ¥ of the field
k(%y, &y, - - -, X,). 'This latter field is a subfield of the residue field 4,,
of 9, and the valuation ¥ can be extended to a valuation of 4,. which
has the same value group as 4. Denoting this extended valuation by the
same letter ¥, we have now a composite valuation v=1v"o 7 of k(x,,
Xy, - - -, &,), whose rank is one greater than the rank of #". Note that
this valuation is, in general, not uniquely determined by the “arc”
x;=z,t); it depends on the choice of 2. The only case in which ¢,
and hence also 7, is uniquely determined is the case in which the prime
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ideal p is minimal, in which case ¢’ is necessarily the prime divisor of
center p.

ExamrpLE 3. Real valuations with preassigned value group. Let

zi(t) = aoity01+alityli+ ... +a'”'tyn"" o

b

where we assume that the power series z;(¢) are algebraically inde-
pendent. MacLane and Schilling have proved (see their joint paper
‘“Zero-dimensional branches of rank 1 on algebraic varieties,” Annals
of Mathematics, v. 40 (1939), pp. 507-520) that if all the a,; are #0, if
k is of characteristic zero and if the exponents y,; are rational linear com-
binations of s+1 given real numbers 1, 7;, 75, - - -, 7, then the field
k(t, tr, t2, - - -, 175, 24(2), 25(E), - - -, 2,(f)) has in the natural valuation
V a value group generated by 1, 7,, 75, - - -, 7, and all the exponents y,,;
of the given r series 2,(¢). From this result one can easily obtain the
existence of a rank 1 valuation of k(xy, x,, - - -, x,) with any preassigned
value group I' of rational rank s+ 1 less thanr. For,let1,r,, 7, ---, 7 be
s+ 1 rationally independent elements of I" (we may assume, as we did,
that one of these real numbers is 1). Since every element of I' is
rationally dependent on 1, 7, 75, - - -, 7, I' is a denumerable set. We
can therefore find r—s—1 power series 2,(f) in k{t} such that the ex-
ponents of these power series generate the group I, and it is also possible
to arrange the choice of these series in such a fashion that the r series
Lo, -, s, 24(E), 2o(t), c -+, 2,_,_1(t) be algebraically independent
over k. By means of these r series, and in view of the theorem of
MacLane-Schilling cited above, we get a rank 1 valuation of k(x,,
Xq, - - -, &,) With the preassigned value group I.

In particular, it follows that if r > 2 then any additive subgroup of the
field of rational numbers is the value group of a suitable valuation of the
field k(x,, x, - - -, x,) of rational functions of r independent variables. We
shall illustrate this result by an example using a procedure which does
not make use of the generalized formal power series. For simplicity,
we shall restrict ourselves to the case r=2 and to the field A(x,, x,).
Let {m,, m,, - - -} be an arbitrary infinite sequence of positive integers
such that mm, - .. m; — + 00, and let {c,, c,, - - -} be a sequence of
elements of %, where each ¢; is #0. We define an infinite sequence of
elements u; in k(x,, x,), by induction, as follows: u, =%, uy=12x,, u; =
(w;— et )iy, i=1,2,--- . We denote by R the ring k[u,, u,, - - -,
u;, - - -] and by q the ideal generated in R by the infinitely many ele-
ments u#,. Since every element of R is congruent mod « to an element
of k, q is either the unit ideal or is a2 maximal ideal in R. We prove
that g% R. Assuming the contrary, there will exist an integer % such
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that the ideal q, generated by u,, u,, - - -, w, in Ry=Fk[uy, uy, - - -, 1)
is the unit ideal. Now, we have u; € k[u;,,, u;, ], for all 7, and further-
more u; belongs to the ideal generated by u,, 4, 4, , in Al 4, u;, ). It
follows that R,=k[u, 4, u,) and that a,=Ry(u,_,, u). Since u,_,, 1,
are algebraically independent over &, the relation 1 € g, is impossible.

Since q is a proper (maximal) ideal, there exists a valuation v of
k(xy, %) such that v is non-negative on Rand has center qin R. Letvbe
such a valuation. Since v(u;.,) >0, it follows that o(u;— cujy,) > v(4%,),
whence v(u;)=mv(u;,,). In particular,

(1) W(uy) = mymy - - - mAtyy).

Since mymy, - - - m, — oo, it follows that v is non-discrete, therefore of
rank 1, and necessarily of rational rank 1, for (1) shows that v cannot be
isomorphic with a direct product of two free cyclic groups. If we
normalize the value group I' of v by setting v(u,)=1, then (1) shows
that I" contains all the rational numbers having denominator mm, - - - m

5

s=1,2,---. We shall now show that I is actually the set of all rational
numbers of the form ;, s=1,2,---, and that

m1m2 o« .. ,’l't
@ Ko = U Ry

To prove (2) we shall use the corollary of Theorem 10, §5 (p. 21).

We have R, = R, and a;,, N R, = q,; this last relation follows from the
relations

(2) Opsr = Rypr-(hy Upir)y Up_y = W"n-1(Upy 1+ Chy) € Opyy

and from the fact that g, is a maximal ideal in R,. Hence, by the cited
corollary of Theorem 10, (2) will be proved if we show that there exists
no valuation of K which, for every £, has center g, and is of the second
kind with respect to R,. Assume the contrary, and let ¢’ be such a
valuation. Then ¢’ must have dimension 1 (since K/k has trans-
cendence degree 2), i.e., v’ must be a prime divisor, and the value group
of ¢’ is therefore the additive group of integers. We must have
v'(uy) > 0, for all , since q, is the center of ¢’ in R,.  On the other hand,
we have also by (2'), v'(u,_,)=m,;_4v'(,;), and in particular, v'(u,)=
mymy - - - myv'(uy,.,), for all A, This is in contradiction with the fact
that all the numbers v'(x,) are positive integers, whereas mym, - - - m;, —
+ 00.

By (1), we have v(y, +1)=m - Therefore, to prove our
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assertion concerning the value group I" we have only to show the fol-
lowing: if f(u,, u,) is any polynomial in k[u,, u,], then for % sufficiently
large we will have f(u,, u,)=u,"f,(uy, us.1), fi(0, 0)£0. To show this,
we fix a positive integer m, sufficiently large, so as to satisfy the in-

equality o(u,™) 2 v( f(uy, u,)), and we set £ =u,"/f(uy, u,). Then é € K,
and hence, by (2), £ € (Rh)q", for large 4, i.e., we have
3) u™|f(uy, o) = Ay, 1)/ Bluy, wyiq), B(0, 0) # 0.

Now, u,, as a polynomial in u,, u,,,, has the form u;=w p(u;, u,_ ,),
where @(0, 0)#0. It follows then from (3) that

Sfuy, ) A(uy, wyyq)

Ii

w By, wy )@y, thy )™
= uhme(uh, u,H_l), C(O, 0) # 0,

and therefore, if f(u,, u,) is expressed as a polynomial in u,, u,,,, its
only irreducible factor which vanishes at u,=u,, ,=0 (if f(u,, u,) has
such a factor) must be u,. In other words, f must be of the form
Wit wnyr)s f(0, 0)#0, as asserted.

We thus see that we can take as I" any subgroup of the additive group
of rational numbers. In particular, if m,=4h, then I is the set of all
rational numbers.

ExampLE 4. Valuations of infinite relative degree. If the algebraic
closure k of the ground field % has infinite relative degree over &, it is
possible to construct zero-dimensional valuations of k(x;, x,, - - -, x,),
r>1, having as residue field an infinite algebraic extension of k. We
shall show this in the case r=2. We assume for simplicity that the
maximal separable extension of k in £ has already infinite relative degree
over k. We fix in % an infinite sequence of elements a,, a,, - - -, a,, - - -
which are separable over k and such that the field k(a}, a,, - - -, a,, - - *)
has infinite relative degree over k, and we consider in the (x,, x,)-plane
the branch x,=ax,+ax,2+ - -- +a,x,"+ ---. This branch deter-
mines 2 discrete zero-dimensional valuation v of k(x,, x,) which has
center at the origin (0, 0) and has rank 2 or 1 according as the branch
is or is not algebraic (see second part of Example 2; we shall see in a
moment that the above branch is in fact necessarily non-algebraic). It
will be sufficient to show that the residue field of v coincides with the _ﬁeld
k(al’ az’ cee, @y - .).

It is clear that the residue field of v is contained in k(a,, a,, - - -,
a, ---). Itisalso clear that a, belongs to the residue field of v, since
a, is the v-residue of x,/x;. We assume that it has already been proved
that a,, a,, - - -, a,_, belong to the residue field of v. Wesetw=a,x,+
asx,+ - -+ +a, ;x,""! and we denote by w,(=w), w,, - - -, w, the con-
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jugates of w over k(x,): w;=a,Vx, +a,Px\2+ .. - +a, ,Dxt Let
£
()= I_Il (t=—w;), §=f(x5)=F(xy, x,) € k[xy, x,].  Then F(xy, 2(xy))=

£
ax," - (1+terms of degree >1). I:_E {(ay—ayD)xy+ - -+ +(a,_,—

a, (Nx,"'+ax,"+ - -}, which shows that the leading term of
the power series F(x,, 2(x,)) is of the form a,bx,#, h2>n, where b is an
element of the field k(a,, a5, - -+, a, ). Since a,b is the residue of
&[x,%, it follows that a, belongs to the residue field of v.

[It now follows a posteriori that our branch is non-algebraic, since the
residue field of a zero-dimensional, rank 2, valuation of k(x,, x,) is
always finitely generated over k, by Theorem 31, Corollary, § 14.]

In the following example, & may be algebraically closed, and we are
dealing with a function field k(x,, x5, x;) of three independent variables.
In this case we can construct a 1-dimensional valuation whose residue
field is not a finitely generated extension of k (contrary to what happens
in the case of prime divisors; see § 14, Theorem 31). We simply set,
for instance: xz=x,+Vx X2+ -+ +Vxx,m+ - - =2(xy), e, we
use the substitution x; — 2(x,) and we treat k(x,) as ground field. Then
we get a discrete, rank 1 valuation of k(x,, x,. x3), whose residue field is
R(V %y, Vg, Vg, - -0,

ExaMPLE 5. Prime divisors of the 2nd kind. Consider the poly-
nomial ring k[x,, x,, - - -, x,] in 7 independent variables, and for any
polynomial f in k[x,, x,, - - -, x,] set ¢(f)=m if f has terms of degree m
but no terms of degree less than m. It is immediately seen that v( fg)=
o(f)+v(g) and that o(f+g)= min {v(f), v(g)}. Hence if we extend v
to the field k(xy, x,, - - -, %,) by setting v(f/g)=v(f)—v(g), we obtain a
valuation v, discrete, of rank 1, which is non-negative on k[x,, x,,---, x,]
and whose center in this polynomial ring is the prime ideal (xy, x,, - - - , x,).
In other words, we are dealing with a valuation whose center, in this
affine r-space, is the origin. On the other hand, it is easily seen that v
is a prime divisor. For, any non-zero polynomial ¢ in the ratios x,/x,,
f(xl’ Xoy """ x,)’

xy™
where f is a form of degree m. Hence v(£)=0, since v(f)=m and
o(x,)=1, i.e., we have shown that the v-residues of the r—1 elements

x3/xy, - -+, %,/%y, with coefficients in k&, is of the form

Xo/xy, -+, X,/x, are algebraically independent over k. Note that v
is also non-negative on the ring k[x'y, &'y, - - -, ¥,], where x'y=x,,
x';=x;[%;, i=2, 3,-- -7, and that the center of v in that ring is the

principal ideal (x'}). The valuation v thus defined is, in some sense,
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the simplest prime divisor of k{x,, x,, - - -, x,) whose center is the
maximal ideal m=(x,, x,, - - -, x,) and is sometimes referred to as the
m-adic prime divisor. Our construction of m-adic prime divisors of
the 2nd kind is merely a special case of a more general procedure
which was used in § 14 in the construction of prime divisors of the
second kind, having a preassigned center.

§ 16. An existence theorem for composite centered valuations.
In the preceding section we have dealt exclusively with valuations of
rank 1. By repeated applications of the procedures outlined in the
case of rank 1 valuations, one obtains corresponding examples of valua-
tions of higher rank. The arbitrary elements which one may wish to
be able to preassign are the following: (1) the value groups; (2) the
dimensions of the successive valuations with which the given valuation
is to be composite; (3) the centers of these valuations. We shall devote
this section to an existence theorem, for function fields, which bears on
items (2) and (3) and which is a refinement of the theorem of existence
of places with preassigned center (Theorem 5, §4). Let V/k be an
irreducible variety, of dimension 7, let K=k(V) be the function field
of V/k and let & be a non-trivial place of K/k, of rank m, which has a
center on V (i.e., 2 is a place which is finite on the codrdinate ring k[V]
of V/k). We have then a specialization chain for £:

(l) gm—l_’gm—zﬁ"'_’gl_’g)

where &, . is a place of K/k, of rank j. Necessarily each &; has a
center on V. Let Q be the center of #, Q, the centerof Z;0on V,j=1,

2,---,m—1. Then also the points Q; form a specialization chain
over k:

) On 1> Qs> > Q> 0.

If s=dim 2|k, 5;=dim 2,/k, then

(3) r—1zs, ,>8, ,>--->85>s20

and

(4) s; 2 dim Q;/k.

The existence theorem which we wish to prove in this section is the
following:

Tureorem 37. Let m be an integer such that 1<m=<r and let s, s,, - - - ,
S,_1 be m integers satisfying the inequalities (3). Let furthermore Q,
O . 0,1 be m points on V such that (2) and (4) hold. Then there
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exists a specialization chain (1) of m places P, Py, - - - , P,,_, of K[k such
that the rank and the dimension of P [k are respectively m—j and s;, and
that the center of 2; on V is the point Q(Py=P, so=5, Qo=0).

PROOF. We first consider the case m=1. Let k=dim Q/k, whence
r—1=s2h, and let c=s—h. We shall first achieve a reduction to the
case =0, as follows:

Let x4, x5, --+,x, be the non-homogeneous cobrdinates of the
general point of V/k and let z,, z,, - - -, 2, be the codrdinates of Q.
We may assume that 2y, 2,, - - -, 3, are algebraically independent over
k, so that 2.y, 2.9, -, 2, are algebraically dependent over A(z,,
Zg,+*+,2;). Then also x4, x,, - -+, x, are algebraically independent
over k, since the point Q=(zy, 2,,-- -, 2,) is a specialization of the
point (xy, xp, - - -, x,) over k. It is clear that in the proof of our
theorem it is permissible to replace Q by any k-isomorphic point.
Since the k-isomorphism of k(2,, 2, - - -, 2,) onto k(xy, xy, « -+, x3), de-
fined by 2; - x;,7=1,2, - - - , h, can be extended to an isomorphism of
k(zq, %, - * + , 2,) into the universal domain, we may assume that x;=2z;,
i=1,2,.--,h If we now extend our ground field % tc the field
k' =k(xy, x5, - - -, %), our problem is to find a place & of k'(x) over %/,
of rank 1 and dimension o, such that x,Z =z, i=h+1, h+2,--- n.
This is the reduction to the case =0, since the z; are algebraic over &'.

The case m=1 can now be divided into two sub-cases according as
o=0o0r >0, ie., according as s=h or s >h. We consider first the case
o=0. In this case we may assume that we have originally s=A=0.
We can carry out a second reduction to the case in which the ground
field % is algebraically closed. This reduction is straightforward, for
if k is the algebraic closure of % in the universal domain, then it is
sufficient to construct a place 2 of k(x, x4, - - -, x,)/k, of rank 1 and
dimension zero, such that ¥, =z, and to take for £ the restriction of
P to k(xy, %5, -+, %,). We may therefore assume that £ is algebraically
closed. In that case, upon replacing each x; by x;,—=2; (2; € k), we
may also assume that Q is the origin and that consequently the ideal
§ in kx, x,, - - -, x,] which is generated by x;, x,, - - -, ¥, is not the
unit ideal. By the normalization theorem (Vol. I, Ch. V, § 4, Theorem
8), we may also assume that x;, x,, - - -, , are algebraically independent
over k and that the ring k[x, x,, - - -, x,] is integrally dependent on
klxy, x5, - - -, %,). Now, in § 15, Example 2, we have given general
procedures for constructing places 2, of k(xy, x,, - - -, %,), of rank 1 and
dimension zero, which are finite on k[x,, x5, - - -, x,] and have in that
ring center q, where q is the ideal generated by x4, x5, -+, x,. Now,
the ideal & generated by x,, x,, - - -, x, in the ring Alxy, x5, - -+, x,],
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lies over a. Hence by Theorem 13, § 7, any place &, such as above,
has at least one extension £ to k(x,, x,, - - - , x,) whose center in k[x,,
Xy -+, X,) is the prime ideal 4. Since 2 and £, have the same
dimension and the same rank, our theorem is proved in the special
case under consideration (case m=1, s=h).

Let now m=1 and s >A. By the first reduction achieved above we
may assume that #=0, whence s >0. Let a be the prime ideal of Q
in the ring R=Fk[x,, x,, - - -, x,]=k[V]. Since Q is an algebraic point
over k, q is a maximal ideal in R. We pass to one of the rings R’; intro-
duced in the course of the proof of Theorem 35 (§ 14, p. 95) (the ideal
q now plays the role of the prime ideal which in that proof was denoted
by p). Using the same notations, we may assume that R';w, N1 R=q.
Let q'; be an isolated prime ideal of R',w, such that q'; N R=q. Since
s<r—1, the ring R, contains prime ideals of dimension s which contain
q';. We fix such a prime ideal q’ in R’;. By the preceding part of the
proof, there exists a place 2 of k(V') of rank 1 and dimension s, such that
2 is finite on R’; and has center q’. Since ¢ is maximal in R, it follows
from q'; N R=aand o', < q’ that ' N R= q, and hence q is the center of
Z in R. This completes the proof in the case m=1.

For m > 1, we shall use induction with respect to m. We therefore
assume that there exists a specialization chain

'@m—l - gm—Z > gl
of m—1 places of K/k such that Z; is of dimension s, of rank m —j, and

has center Q; on V(j=1,2,...,m—1). Let X, be the residue field of
2, and let K, =k(Q,). We set

(5) = max {dim Q,/k+s—s,, dim Q/k}.
Then d is a non-negative integer, and we have

(6) d £ dim Q,/k

since s<s,; and dim Q/k < dim Q,/k, and

(7 d=<s

since dim Q,/k<s, and dim Q/k<s.

Now let V,/k be the irreducible variety having Q, as general point.
Since Q is a specialization of Q, over k, Q is a point of V;. From (5)
and (6) it follows that dim Q/k<d< dim Q,/k. If d<dim Q,/k, then,
by the case m=1 of our theorem, there exists a place 2’ of k(Q,)/k, of
rank 1 and dimension d, such that the center of Z’ on V| is the point Q.
If d=dim Q,/k, then it follows from (5) that necessarily d=dim Q/k,
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for dim Q,/k+s—s,<dim Q,/k. Hence in this case, O and Q, have
the same dimension over k and are therefore k-isomorphic points. We
then take for 2’ the k-isomorphism of the field 2(Q,) which takes the
point Q, into the point Q (#'—a trivial place of k(Q,)/k, with center Q).
In this case, &'[k still has dimension 4, but the rank is zero.

By (5) and (7), we have

(8) 0 £s-d < s,—dim Q,/k.

Since s, —dim Q,/k 1s precisely the transcendence degree of Z,/k(Q,),
it follows by Theorem 11, § 6 that there exists an extenston £ of #’ in
2, which hasrelative dimension s —d. Note that in the case d=dim Q,/k,
(in which case &' is a trivial place of k(Q,)/k), we have s—d<s,—
dim Q,/k, and hence £ 1s not a trivial place of Z,. We set Z=% 2.
Then £ is a place of K|k, composite with Z,, and it is clear that Q is the
center of 2 on V. We have dim Z/k=s, since the residue field of
2 has transcendence degree s—d over the residue field of &', while the
residue field of &’ has transcendence degree d over k. Now, if the ex-
tension & of the place 2’ has exactly rank 1, then the rank of & is
one greater than the rank of 2, i.e., the rank of 2 is m, and everything
is proved. The rank of Z is certainly equal to 1 in the following case:
s;=dim Q,/k. For, in that case we have dim Q/k<s<s,=dim Q,/k,
whence &’ is definitely a non-trivial place and hence has rank 1; and on
the other hand, Z, is now an algebraic extension of £(Q,), and therefore
rank Z=rank &’. The proof of the theorem is now therefore com-
plete in the case s, =dim Q,/k. It follows that in order to complete the
proof it will be sufficient to show the following: there exists a subring
R’ of k(x,, x5, - - -, x,) containing the ring R=~k[x,, x,, - - -, x,] and
having the following properties: (1) £, 1s finite on R’, and the center of
Z,in R’ 1s a prime ideal o, which has dimension s, (in other words: 2,
is of the first kind with respect to R’); (2) R’ contains a prime ideal o',
of dimension =s, such that ¢’ N R= q=prime ideal of Q in R. For, if
such a ring R’ exists, then by the preceding proof there will exist a
place & of K[k, composite with 2, and having rank m, such that £ has
center ¢’ in R’ and has dimension s over k. 'Then the center of £ in
R will be necessarily q.

To show the existence of a ring R’ with the above properties, we fix
a place Z=2,2 of K[k which is composite with 2, has dimension s
over k, and has center q in R (the existence of such a place has just been
shown above, independently of the condition s, =dim Q,/k). Ifh=s—
dim Q,/k, we fix & elements @, @, - - - , @, in the residue field X, of 2,
which are algebraically independent over 2(Q,). We can also assume
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that these elements @; belong to the valuation ring Z;5 of . We then
fix elements w,, w,, - - -, w, In k(xy, x4, - - -, x,) such that @, =w,2,,
and we set R'=Rlw,, w,, - - -, w,]. It is immediately seen that this
ring R’ satisfies our requirement (as prime ideal o’ we take the center of

Zin R).

§ 17. The abstract Riemann surface of a field. Let K be a field
and & a subring of K (not necessarily a subfield). We denote by S the
set of all non-trivial valuations v of K which dre non-negative on &, i.e.,
such that the valuation ring R, contains k. There is only one case in
which S is empty; it is the case in which k is a field and K is an algebraic
extension of & (Theorem 4, Corollary 1 and Theorem 5, Corollary 1,
§4). We shall exclude this case.

ExamPLES: (1) k is a field. In this case S is the set of all non-trivial
valuations of K which are trivial on k. This is the case which occurs
most frequently in algebraic geometry.

(2) kis a Dedekind domain. In this case S consists of valuations of
two types: (a) valuations of K which are trivial on the quotient field of
k and (b) valuations of K which are extensions of the (discrete, rank 1)
p-adic valuations of the quotient field of k, where b is any proper prime
ideal of k. The valuations of type (a) are missing if and only if K is an
algebraic extension of the quotient field of k; when they are present
they have a residue field of the same characteristic as that of K. The
characteristic of the residue field of a valuation of type (b) may be dif-
ferent from the characteristic of K: this case of unequal characteristics
arises if and only if K is of characteristic zero while the intersection of
the prime ideal » with the ring of (natural) integers is a prime ideal (p)
different from zero.

We shall-now introduce a topology in the set S.

If o is a subring of K| containing k, we denote by E(v) the set of all v
in § such that v is non-negative on 0. We now let o range over the
family of all subrings of K which contain k and are finitely generated over
k, and we take the family E of corresponding sets E(o) as a basis of the
open sets in S. We note that E([o, 0'])=E(0) n E(v’), where [o, 0]
denotes the ring generated by two given subrings o, o’ of K, and that
E(k)=S. Therefore any finite intersection of basic open sets is itself
a basic open set, and hence our choice of the basis E defines indeed a
topology in S. Note also that <o’ implies E(0)> E(o0’).

The topological space S is called the Riemann surface of the field K
relative to k, or the Riemann surface of KJk.

We note that if &' is the integral closure of & in K then the Riemann
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surface of K[k’ coincides with the Riemann surface S of K/k both as set
and as topological space. The proof is straightforward.

We begin a study of the separation properties of S.

TureorReM 38. The closure of an element v of S (i.e., the closure of the
set {0} consisting of the single element v) is the set of all valuations v' € S
which are composite with v.

PROOF. Suppose that v’ is composite with v, so that we have for the
corresponding valuation rings the inclusion R, <R,. If E(o) is any
basic open set such that v belongs to the basic closed set S— E(o), then
R, Po, whence a fortiori R, $o, and thus v' € S—E(v). Thus every
basic closed set which contains v necessarily contains v’, showing that
v’ belongs to the closure of the set {v}. On the other hand, assume that
v’ is not composite with v. We can then find an element x of K such
that v'(x) is non-negative while v(x)<0. Then if we set o=~k[x] we
will have v e S— E(o), v' ¢ S—E(0), and consequently ¢ is not in the
closure of the set {z}. This completes the proof.

We recall from topology that a topological space is said to be a T-
space if every point of the space is a closed set. The following theorem
will show that the Riemann surfaces which are T',-spaces are, from an
algebraic point of view, of a very special type.

THEOREM 39. Let k be an integrally closed subring of a field K. The
Riemann surface S of K [k is a Ty-space if and only if one of the following
two conditions is satisfied :

(1) k is a field and K|k has transcendence degree 1; or

(2) k is a proper ring, K is an algebraic extension of the quotient field
of k, and for every proper prime ideal v of k it is true that the quotient ring
ky is the valuation ring of a valuation of rank 1.

PROOF. If condition (1) is satisfied then any valuation v €S has
rank 1 (Corollary 1 of Definition 1, §3). Hence, in this case S is a
T',-space, by the preceding theorem.

Assume that condition (2) is satisfied, and let v be any element of S.
Since v is non-trivial on K and since K is an algebraic extension of the
quotient field of &, the center v of v in k is not the zero ideal, hence p is
a proper prime ideal. If o' is the restriction of v to the quotient field
of kthen R, >ky,, hence R, =k, since ky is a maximal subring of the
quotient field of & (p. 10). Thus ', and hence also v, is of rank 1,
whence again S is a T'y-space.

Assume now-that S is a T,-space. By the preceding theorem, every
element v of S must be a valuation of rank 1. If & is a field then the
transcendence degree of K/k cannot be greater than 1, for in the con-
trary case we can construct a valuation v, of K/k whose residue field has
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positive transcendence degree over k, and compounding v, with a non-
trivial valuation of the residue field of v, we would find a valuation of
K[k which has rank greater than 1. Suppose now that % is a proper
ring. Let b be any proper prime ideal of k. If the quotient ring k,
is not a valuation ring then there exists a valuation v’ of the quotient
field of & which has center v in k and which is of the second kind with
respect to k (Theorem 10, § 5). The residue field 4 of o' is then of
positive transcendence degree over the quotient field #* of k/p. Com-
pounding ¢’ with 2 non-trivial valuation of 4/k* and extending the
resulting composite valuation to a valuation of K we find a valuation v
in S which has rank >1, in contradiction with the preceding theorem.
Hence k, is a valuation ring, and the corresponding valuation of the
quotient field of £ must be of rank 1. Finally, K must be an algebraic
extension of the quotient field of &, for in the contrary case .S would con-
tain valuations of rank > 1, extensions of non-trivial valuations of the
quotient field of k. This completes the proof.

Even in the special case in which S is a T-space it need not be a Haus-
dorff space. Without attempting to give a complete classification of
Hausdorff Riemann surfaces we shall make here only the following
three observations:

(A) In the case (1) of Theorem 39 the Riemann surface S is never a
Hausdorff space. For,leto=Fklx,, x5, ---, x,]and o’ =k[x'y, &'y, - -+, &",]
be two finitely generated subrings of K and let o*=~[x, x'1=]o, 0],
whence E(o*) is the intersection of E(v) and E(v"). Ifo*isa proper ring
then E(0*) is non-empty. Assume that o* is a field. From 2 result
closely related to the Hilbert Nullstellensatz and proved in the next
chapter it will follow that the generators x;, x’; of o* over k are then
necessarily algebraic over k (see VII, § 3, Lemma, p. 165). Hence K
has positive transcendence degree over 0*, and again E(o*) is non-empty.
We have thus shown that the intersection of any two non-empty basic
open sets in S is never empty. Hence S is not a Hausdorff space.

Taking into account Theorem 39, it follows that if k is a field then S
is never a Hausdorff space.

(B) Consider now the case (2) of Theorem 39. We may assume that
k is integrally closed in K (by a remark made earlier in this section).
Then K is the quotient field of .. If S is a Hausdorff space then there
must at least exist a pair of non-empty open sets in .S, whence also a
pair of non-empty basic open sets, having an empty intersection. In
view of the relation E(o) n E(o’)=E([o, 0}), it follows that a necessary
condition that S be a Hausdorff space is that the field K be a finitely
generated ring extension of k. It is obvious that in that case we have
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K =Fk[1/x], where x is a suitable element of k, characterized by the
property that it belongs to all the prime ideals v of &, different from the
zero ideal. However, the above condition may not be sufficient.

(C) If k is a proper ring of the type described in case (2) of Theorem 39
and if K is any (finite or infinite) algebraic extension of the quotient field
L of k, then a sufficient condition for the Riemann surface of K[k to be a
Hausdorff space is that k have only a finite number of prime ideals. The
statement is obvious if K is a finite extension of L, for in that case the
T',-space S has only a finite number of elements. In the infinite case,
given two distinct elements ¢'; and o', of S, there exists a field F between
L and K, finite over L, such that the restrictions v, and v, of v’y and o',
to F are distinct elements of the Riemann surface S* of F/k. By the
finite case, the elements v; and v, can be separated in S* by two dis-
joint basic open sets. Taking the inverse images of these two open
sets, under the restriction map v’ —uv = restriction of ¢’ in F(v'€ S, ve S*),
we find in S two basic open sets which are disjoint and separate o',
and ?',.

Our next object is to prove the following theorem:

THEOREM 40. The Riemann surface S of K|k is quasi-compact (i.e.,
every open covering of .S contains a finite subcovering).

PROOF. Any valuation v of K is completely determined if one knows,
for any element x in K, whether o(x) is positive, zero or negative. In
other words, the elements v in S can be identified with certain mappings
of K into the set Z consisting of the elements —, 0, +. Using the cus-
tomary notation ZX for the set of all mappings of a set K into a set Z,
we can therefore regard S as a subset of ZXK. We now define a topology
in Z by taking as open subsets of Z the empty set, the entire set Z and
the subset {0, +}, and introduce the corresponding usual topology in
the product space ZX. From the definition of the product topology it
follows that in the induced topology on S the basic open subsets are
sets E defined as follows: if {x,, x,, - - -, x,,} is any finite set of elements
of K then the set of all v in .S such that o(x,)e{0, +} is a set E. This
agrees with our preceding definition of the topology of the Riemann
surface S, and thus the latter is indeed a subspace of ZK. 'To complete
the proof we shall make temporarily two modifications in our definition
of the space S:

(1) We shall include in S also the trivial valuation of K. If we denote
by S* this enlarged set and define the topology of S* in the same way
as the topology of S was defined, i.e., by means of subrings of K which
are finitely generated over &, we see at once that every basic open set in
S* contains the trivial valuation. Since S is a subspace of S*, it
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follows at once that S is quasi compact if and only if S* is quasi com-
pact. We shall therefore prove the quasi compactness of S*. In the
rest of the proof we shall drop the asterisk, so that temporarily (until the end
of the proof of the theorem) it should be understood that .S contains the
trivial valuation of K.

(2) We shall also introduce in Z a stronger topology which will be Haus-
dorff, and we shall show that in the corresponding stronger topology of
ZK the subset S becomes a closed set. It will then follow, by
Tychonoff’s theorem, that in the induced stronger topology S is com-
pact (i.e., quasi compact and Hausdorff), whence a fortiori the Riemann
surface .S is quasi compact (in its original weaker topology).

The stronger topology which we introduce in Z shall be the discrete
topology (every subset of Z is open). For any f in ZK the relation
“fe S” holds if and only if the following conditions are satisfied.

(a) The set of all x in K such that f(x) € {0, +} is closed under addi-
tion and multiplication.

(b) The above set contains k.

(c) If f(x) ¢ {0, +} (whence x#0, by (b)) then f(1/x) e {+}.

These conditions can be re-formulated as follows:

(a’) For any elements x, y in K we have either f(x)= — or f(y)= —
or both f(x+y) and f(xy) are in {0, +}.

(b") If x €k then f(x) € {0, +}.

(¢') For any x in K either f(x) € {0, ~} or x#0 and f(1/x)= +.

For any x in K denote by pr, the mapping f— f(x) of ZX into Z.
This is a continuous mapping. For any x and y in K denote by F, ,
the intersection of the following two subsets of ZX.

prx_l{_} Y Pry—l{—} U Prx+y_1{0’ +}’
pro{=3 v pr, =) Uy 7O, 4
The six sets which occur in the definition of F, , are closed sets (since
we have assigned to Z the discrete topology). Hence F,  is a closed
set. Condition (a") can now be written as follows:
(a") f belongs to the intersection of the sets F, (x and y arbitrary
elements of K).
Similarly, conditions (b’) and (c’) can be written as follows:

(b") f belongs to the intersection of the sets pr,~Y0, +}, x € k.
(c") f belongs to the intersection of the sets

pr YN0, +} U pry 7Y +), 0 #xek.

Thus S is an intersection of closed sets and is therefore a closed set.
This completes the proof of the theorem.
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We shall now undertake a study of the Riemann surface S from a
different point of view. The objective of this study will be to show
that S can be regarded as the projective limit of an inverse system of
certain topological spaces associated with finite subsets of K. The man-
ner in which these spaces will be defined will be quite similar to that in
which projective varieties are defined in algebraic geometry.

We mean by a quasi-local ring a commutative ring (noetherian or non-
noetherian) with identity, in which the non-units form an ideal. Thus,
every valuation ring is a quasi-local ring, and a quasi-local ring is a local
ring (Vol. I, p. 228) if and only if it is noetherian. We consider the set
L of all quasi-local rings (noetherian or non-noetherian) between k& and
K. For Pin L, we denote by m(P) the (unique) maximal ideal of P.
For P, P’ € L, we say that P dominates P’ if P'< Pand m(P")= P’ n m(P).
A subset M of L is said to be irredundant (resp., complete) if, for any
valuation v of K/k (trivial or non-trivial), the valuation ring R, dominates
at most one (resp., at least one) element of M. We say that a subset M’
of L dominates a subset M of L and we write M < M’ if every element of
M’ dominates at least one element of M. This relation M <M’ is
obviously transitive. If we, furthermore, suppose that M is irredun-
dant, then, by the extension theorem (Theorem 5, §4), the element P
of M which is dominated by a given element P’ of M’ is unique; thus
the transformation P’ — P is a mapping, called the domination mapping
and denoted by d. »;. Inthe set of irredundant subsets of L, the rela-
tion M <M’ defines a partial ordering; furthermore if M, M', M" are
irredundant subsets of L such that M<M'sM", then dy. =
dyp- pdy - Notice, finally, that, if M’ dominates M and if M’ is
complete, then M'dy,. 5 is complete.

We introduce in L the following topology, which generalizes the
topology we have defined on the Riemann-surface S of Kjk. Ifo is
any ring between k and K, we denote by L(o) the subset of L composed
of all quasi-local rings P containing 0. We let o range over the family
of all subrings of K which are finitely generated over k, and we take the
family of corresponding sets L(o) as a basis for open sets in L. Since
any finite intersection of sets L(o) (o finitely generated) is a set of the
same type, these sets constitute indeed a basis for open sets for a
topology on L. When, in the sequel, a subset M of L is considered as
atopological space, it is tacitly understood that its topology is induced by
the topology of L.

The Riemann surface S may be identified with a subset of L, and the
topology on S defined at the beginning of this section is obviously
induced by the topology of L. Theorem 38 generalizes in the following
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way: the closure of an element P of L is the set of all quasi-local rings P’
between k and P; the proof is similar to that of theorem 38.

For any ring o between k& and K, we denote by P(v) the set of all
prime ideals of o which are # 0, and we assign to P(o) the following topo-
logy: a closed set is the set of all ideals p € P(0) which contain a given
ideal aj; it is indeed clear that any intersection and any finite union of
sets of this type is a set of the same type. We denote by V(o) the subset
of L composed of all quotient rings oy(p € P(0)).

Lemma 1. The mapping f of L(v) into P(o) defined by f(P)=m(P)no
is continuous.  The restriction of f to V(o) is a topological homeomorphism
of V(o) onto P(v).

PROOF. Any closed set in P(0) is an intersection of closed sets
F (x €0, x#0) of the following type: F, is the set of all prime ideals
containing x. In order to prove that f is continuous, it is sufficient to
prove that f~}(F,) is closed in L(o), i.e., that f-}(P(0)—F,) is open.
Now, for P € L(v), the relations P € f~}(P(0)—F,)”, ”x ¢ m(P)” and
’1/x € P” are equivalent, since x € 0< P; we thus have f~Y(P(0)—F,) =
L(o) n L(k[1/x]), which proves that the set is open.

Similarly, any basic open set in I/(0) is a finite intersection of sets U,
of the following type: x is an element # 0 of the quotient field of o, and
U, is the set of all P e I/(0) containing x. Since fis a (1, 1) continuous
mapping of V(o) onto P(v), to prove that f is a homeomorphism it is
therefore sufficient to prove that f(V(o)— U,) is closed. Now this follows
from the fact that the relations p € f(V(0)— U,)”, ’x ¢ vy’ and ”’p con-
tains the ideal a, of all elements d € 0 such that dx€0” are equivalent.
Q.E.D.

For any ring o between k and K, the subset V(o) of L is obviously
irredundant. When o is finitely generated over k, we say that /(o) is an
affine model over k; the ring o, which is uniquely determined by V(o)
since it is the intersection of all P € V/(v), is called the defining ring of
the affine model I(0). A model M over k shall be by definition, any

irredundant subset of L which is a finite union M= 0 V(o;) of affine
i=1
models over k.t
Levva 2. For any model M= \) V(o;) we have M 0 L(0,)= V(0,),
i=1

whence V(0,) is open in M. For a subset H of M to be open (resp. closed)
in M, it is necessary and sufficient that H 0 V(v;) be open (resp. closed) in
V(o;) for every i.

+ It may be easily proved that all the rings o; have then the same quotient
field.
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PROOF. The inclusion V(o,)= M n L(o;) is obvious. Conversely, if
Pe M L(o;), P contains o, and hence dominates the element P’ =(o,),.
of V(o;), where »’=m(P) no;. Since M is irredundant, this implies
P=P', and proves the first assertion. The second assertion is now pure
topology. The necessity of the condition is obvious. In the proof of
the sufficiency it is enough to consider the case of open sets (replace H
by M—H). In this case, since V(o) is open in M and since H n V(o;)
is open in V(o;), H n V(o;) 1s open in M, whence also H is open in M,
for H is the union of the sets H n V(o;). Q.E.D.

LemmA 3. Let M be a model and M' a subset of L which dominates M.
Then the domination mapping f=dy,. y, is continuous.

PROOF, Let M= [nJ V(o;), where the V(0,)’s are afine models, and

i=1
let U be an open set in M. We show that f~(U) is open. Since U is
the union of the open sets U n F(v;) (Lemma 2), we may assume that U
is contained in some V(o;), say V(o,). Now, by Lemma 1, the mapping
g of L(o,) onto V(o) defined by g(P)=0,im(p)no ) is continuous. Since
we obviously have f~Y(U)=g"Y(U)n M’, and since L(o,) is open in L,
fYU) isopenin M'. Q.E.D.

Lemma 4. Let M be a complete model and let f=d ,, be the domina-
tion mapping of the Riemann surface S into M. Then fis continuous and
closed.

PROOF. The fact that f is continuous is a particular case of Lemma 3.
We thus have to prove that, for any closed set F of S, f(F) is closed in
M. For any finite subset /={x,, - - -, x,} of K, we denote by F(I) the
set of all valuations v in .S such that R, does not contain k[/]; the sets
F(I) are the basic closed sets of S, whence F is an intersection of such
sets, say F'= nA F(1).

We first prove that, for any finite intersection F' of basic closed sets
of S, f(F) is closed in M. We write F'= ()F(;), where
i=1
Li={xj -, %j a0} Setting F(x;)=F({x;,}), we have F(I;)=
F(x; ) U - -+ UF(x; 4;)), whence
g
F' = nl(F(xj,l) U Flxj0) U oo UE(x a0)-

j=

Using the distributivity of union with respect to intersection, we see
that F’ is the union of the closed sets G, = F(x, (1)) N F(xg ) N - -+ N
F(x, ), where s ranges over the set R of all integral valued mappings
of {1,2,---, g} such that 1 <s(j)<n(j) forj=1,--.,q9. Since f(F')=
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fCU G)= U f(G,), and since R is a finite set, it is sufficient to prove
seR seER

that each f(G,) is closed in M. To simplify notations we prove that,
if G=F(x;,)NF(x5) 0 -+ N Fx,)x; € K, x;#0), then f(G) is closed.
Notice that G is the set of all valuatlons v such that v(x;) <0 for every j,
i.e., such that the valuation ideal 9, contains all the elements v;i=1/x;.
For proving that f(G) is closed in M, we use Lemma 2 and write
M= |J V(v;) where the V(v,) are affine models; it is sufficient to prove

that f(G) n V(v;) is closed in V(o;) for any i. Let o be any one of the

q
rings 0;. We consider the ideal a=0 n ( D violyy, e ,yq]) ofo. If
i=1

P ef(G) n V(o), the prime ideal p=o0n m(P) is the center in o of a
valuation v (€G) such that M, contains y,, - - -, ¥,; then M, contains
the ideal a, whence p contains a. Conversely, if p is 2 prime ideal in o
which contains g, it is easily seen that the ideal b’ of o'=0[y,, - - -, ¥,]
generated by v, v,, - - -, ¥, contracts to p in 0. Thus the ideal b"-0(o—y)
is not the unit ideal of the quotient ring 0’(o_y, and is therefore contained
in some maximal ideal M’ of 0’(o_py (Vol. I, Ch. ITI, p. 151, Note I). By
the extension theorem, M’ is the center in v’,_py of some valuation v.
The valuation ideal 9, contains y,,---,y, whence v€ G; on the
other hand p is the center of v in o. Therefore the quasi local ring oy
belongs to f(G) n V(o). By Lemma 1, this proves that f(G)n V(o) is
closed in V(o), as asserted.

To complete the proof, we have to pass to the case of an infinite inter-
section F of basic closed sets, say F= nA F(1,) (where each I, is a

ae

finite subset of K). For every finite subset B of the indexing set 4, we

denote by F'y the intersection of the sets F(I,), where b ranges over B.

We have F= (] F'p. The first part of the proof shows that f(F'p) is
B

closed for every finite subset B of 4. It is therefore sufficient to prove
that f(F)= () f(F'g). Itis clear that the left-hand side of this relation
B

is contained in the right-hand side. Conversely, let P be an element of
M which belongs to f(F'g) for every B; this means that the subset
f~YP)n F'g of S is non-empty for every B. Since any finite intersec-
tion of sets F''y is itself a set of the same type, it follows that the family
of sets f~Y(P) n F'y has the finite intersection property. Were the point
P of M a closed set (equivalently: were P a ring of quotients relative to a
maximal ideal of one of the rings o, by which M is defined) then all the
sets of the above family would be closed in S (since f is continuous),
and from the quasi-compactness of .S it would then follow that the sets
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of the collection have a non-empty intersection, i.e., f~(P) n F is non-
empty. Thus P would belong to f(F), and the proof would be com-
plete. Bearing in mind this observation, we shall use the following
device:

Let us denote by £* the quasi-local ring P and let S* be the Riemann
surface of K/k*. Then S* is a subset of S (since k*>k). If o=4[2]
is any finitely generated subring of K and if we set o*=k*[z], then
E*(0*)=E(0) n S*, where E*(0*) denotes the basic open set on S*
which is defined by o*. It follows that the topology of S* is at least as
strong as the topology induced on S* by that of S.

We now set 0,*=k*[o;], M*= |J V*(0;*), where the symbo! V'* has

the same meaning relative to the ring 2* as 7 had relative to K. Itis
clear that M*< M, and since S*< S and M is irredundant, also M* is
irredundant. Since each o;* is finitely generated over &*, each V*(o;*)
is an affine mode! over k*. Therefore M* is a model over k*. 1fo is one
of the rings o; such that P>o then 0* = P=k*, the ideal m(P) is a maxi-
mal ideal of o* and therefore the point P is a closed subset of M*. Now,
it is obvious that if f* is the domination mapping of S* onto M*, then
f*YP)=f-YP). It follows that f~X(P) is a closed subset of S* and
consequently also the sets f~Y(P)n F,* are closed subset of S*. Since
fYP)nF*=f"YP)nF,, the sets f~Y(P)n Fg* coincide with the sets
f~YB)n F'g, and since the collection of the former has the finite inter-
section property, it follows, by the quasi-compactness of M*, that
f~YP)n F is non-empty. This completes the proof.

Lemva 5. If M and M' are two complete models such that M’
dominates M, then the domination mapping dyy. py is both continuous and
closed.

PROOF. In fact, the continuity of dj;. ,, follows from Lemma 3. On
the other hand, if F’ is a closed subset of M’, we have dy. ,, (F')=
ds v(ds p~H(F')), whence dy, ,(F') is closed since d . is continuous
(Lemma 3) and since dy j, is closed (Lemma 4).

Among the complete models of K, we are going to single out a parti-
cularly interesting class of models, the projective models. Given a non-

empty finite set {xy, x,, - - -, x,,} composed of non-zero elements of K,
we set 0, = k[xo/x;, X,/ - - -, %] (i=0, 1, - - -, m)and M= J V(o,).
i=0

We prove that M is a complete model.

(a) M is irredundant. If fact, if P and P’ are two elements of M
which are dominated by the same valuation ring R,, P and P’ cannot
belong to the same affine model V{v;); so we have, for example, P € V(o,)
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and P’ e V(o,). We set o=~k[o,, 0,]. The local rings P and P’ are
dominated by the quotient ring o, of v, where b=0 N 9,. Since o con-
tains x,/x, and x,/x,, these elements are units in o, hence also in o,.
Since P contains x,/x, and is dominated by oy, it follows that x,/x, is a
unit in P; therefore, since x;/x, € P, we have x;/x, = (x;[x,)/(x,/x,) € P
for every 7, whence P contains o, and consequently 0. From the inclu-
sions 0 © P <oy, and from the fact that o, dominates P we conclude that
m(P) n o=yp, whence the elements of o — p are units in P. Therefore P
contains o,, whence P=p,. In a similar way, we see that P'=o,.
Consequently P=P’ and M is irredundant.

(b) M is complete. In fact, given any valuation v of K[k, we choose
an index j for which o(x;) takes its least value. We then have v(x;/x;) >0
for every 7, whenceo; < R Therefore the element P= (o Do, 0m,) of M
is dominated by R,, and M is complete.

From (a) and (b) it follows that M is a complete model; we say that M
is the projective model over k determined by {x,, - - -, x,}.

We denote by C (resp. C’) the set of all complete (resp. projective)
models over k; it is clear that C' is a subset of C. Both are ordered sets
for the order relation M<M'.

LemMA 6. Let M= J V(o;) and M'= |J V(0';) be two models over k.

i J
We set v, =Kk[o;,0";]. Then M"= ] V(v;;) is a model which dominates

sJ
M and M’ and is such that every subset N of L which dominates both M
and M' dominates M". If M and M’ are affine (resp. complete, projec-
tive), so 1s M".

PROOF. We first show that M " dominates both M and M’. Given
P" e M", P" belongs to some V{(v,;) whence contains some o;; then P”
dommates the element ()7 no,) of M; similarly for M.

Now let N be a subset of L which dominates both M and M'. Given
Q in N, Q dominates some P € M and some P' € M’; let i and j be
indices such that P e V(o) and P’ € V(0';). Then Q contains both o,
and o’;, whence also o;;. Consequently () dominates the element
(0:)mc@y a0, of M.

In order to show that M” is a model we have to show that it is irredun-
dant. Let P," and P," be two elements of M " which are dominated by
the same valuation ring R, and let, for s=1, 2, P’ dominate P, e M
and P',e M'. Since P, and P, are dominated by R,, and since M is
amodel, we have P, = P,; similarly P',=P,". Ifiandjare indices such
that P"; belongs to V(v;;), then we have seen that P, is a quotient ring
of o, and P'; a quotient ring of 0’;.  From the inclusion o,; k[P, P';]<
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P7,, and the fact that P”, is a quotient ring of o,;, we deduce that P, is
a quotient ring of k[P;, P’;], necessarily with respect to a prime ideal
q,; we obviously have a;=k[P;, P';]1nm(P";), whence q,=
k[P;, P'] n9,. Similarly P, is also a quotient ring [Py, P'}], ,
and we also have a,=k[P;, P';] nM,. Consequently q,= gq,, whence
P",=P",. 'This proves that M" is irredundant.

We have thus proved that M"” is the least upper bound of M and M’
in the ordered set of all models. This proves the uniqueness of M"; in
particular M" is independent of the representations of M and M’ as
finite unions of affine models.

Now, if M and M’ are affine models, say M= V(o) and M'=1(0"),
we have M "= V(k[o, 0']), whence M" is an affine model.

Let us now suppose that M and M are projective models, respectively

determined by {x4,:--,%x,} and {x'y,..-,x'}. Setting o;=
k[xo[x; <+ X,/x;) and o'y =k[x"o[x";, - - -+, &' [x}], thering 0,; = k[o,, 0;]
is obviously equal to A[xex'o/x;x';, -+, xx' [xx';, -, xx [xx";].

Therefore M" is the projective model determined by the set consisting
of the (n+1)(g+1) elements x.x’,.

Suppose finally that M and M’ are complete. 'This means that the
Riemann surface .S dominates both M and M’. From what has been
seen above, it follows that S dominates M ", whence that M" is complete.
Q.E.D.

The model M" defined in Lemma 6 is called the join of M and M’
and is denoted by J(M, M’). The join of a finite number of models is
defined inductively and enjoys the same properties as the join of two
models. It is immediate that if M’ dominates M then J(M, M")=M'.
In particular, J(M, M)=M.

LemMa 7 (“Chow’s lemma”).  For any complete model M there exists
a projective model M’ which dominates M.

. q
PROOF. In fact, let us write M= |J V(o,), where o,=k[x; , - - -

b

i=1

%, niy). We may assume that the elements x; ; are #0. Let M, be
the projective model determined by {1, x; 5, - - -, %; ,;s}- Then V(o,)
is a subset of M,;. We take for M’ the join of all the projective models
M; (whence M’ is a projective model, by Lemma 6). If P’ is any
element of M, then by Lemma 6, P’ dominates an element P; of M; for
every . Now let R, be a valuation ring which dominates P’. Since
M is complete, R, dominates some element P of M ; let 7 be an index
such that Pe V(o;). Since P and P; are two elements of a model M;
which are dominated by the same valuation ring R,, they are equal.
Therefore P’ dominates the element P of M. Q.E.D.
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It may be shown by examples that there exist complete models which
are not projective (see M. Nagata, “Existence theorems for non-projec-
tive complete algebraic varieties,” Illinois J. of Mathematics, Dec. 1958).

Lemma 6 shows that the ordered sets C and C’ of all complete models
and of all projective models respectively, are directed sets. Lemma 7
shows that C’ is a cofinal subset of C.

In view of these properties, the partially ordered set C and the con-
tinuous mappings dy. p (M, M’ € C, M< M') give rise to an inverse
system of topological spaces. The limit space of this inverse system, or
the projective limit of the spaces M e C with respect to the mappings
dyp pr is then defined as the set S(C) of all those points PO = {P,,; P),e M}
of the product A;_—IC M which satisfy the relations Py =dp p(Pyy).

€

whenever M < M'; the topology in S(C) is defined as the one induced
in S(C) by the usual product topology in the product space. We shall
denote by f;, the projection P — P,, of S(C)into M. By definition of
S(C) we have fy, = frrdpy pr whenever M< M'.

We define in an entirely similar way the projective limit S(C’) of the
projective models M € C’, and denote by f’y, the natural mapping of
S(C’) into M. Since C’ is a cofinal subset of C, the elementary theory
of projective limits shows the existence of a natural homeomorphism
of S(C) onto S(C’). But we shall not need this elementary fact, as we
are going to prove that both S(C) and S(C’) are naturally homeomorphic
to the Riemann surface S of K.

In fact, given any element v of S, the system of quasi-local rings
{dg m(R,)} (M € C) is a point of S(C) since we have dg »y =ds prdps
whenever M<M’'. We have thus a mapping g of S into S(C), defined
by g(v) ={ds m(R,)}. Similarly, we obtain a mapping g’ of S into S(C’).

THEOREM 41. The mappings g and g’ are topological homeomorphisms
of S onto S(C) and S(C') respectively.

Proor. We give the proof for S(C’), the proof for S(C) being en-
tirely analogous. Let P0={P,}(M e C’) be a point of S(C'). Using
the fact that C’ is a directed set we find that the union of the quasi local
rings P,, is a ring o, and that the union m of their maximal ideals m(P,,)
is the ideal of non-units of o. Hence, there exists a valuation v of K
such that R, dominates 0. Therefore R, dominates each P,,; in other
words, we have g'(v)=P0. This shows that g’ maps S onto S(C’).

Let v and ¢’ be two distinct elements of S. We have either R, & R,
or R, ¢ R,; thus there exists an element x of K which is contained in
one and only one of the rings R, and R,.. Then it is immediately seen
that v and ¢’ dominate distinct elements of the projective model M
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determined by {1, x}. Consequently, g'(v)#g'(v"). Hence g’ is one-
to-one.
Since all the mappings d 5, are continuous (Lemma 4), their “product

mapping” g’:v — {dg y(R,)} is a continuous mapping of Sinto [] M,
MecC’
whence also a continuous mapping of .S onto the subspace S(C").

It remains to be proved that g’ is closed. Let F be a closed subset of
S. We obviously have g/(F)=S(C") n ( I dS,M(F)). By Lemma 4
Mée

each set dg ,,(F) is closed, whence also the product of these sets is
closed. Therefore g'(F) is a closed subset of S(C’). Q.E.D.

~oTE: For further details concerning Riemann surfaces, and for applica-
tions of the compactness theorem 40 in Algebraic geometry (specifically, in
the problem of local uniformization), see O. Zariski, “The compactness of the
Riemann manifold of an abstract field of algebraic functions” (Bull. Amer.
Math. Soc., 1944) and ““Local uniformization on algebraic varieties” (Annals
of Mathematics, 1940).

§ 18. Derived normal models. Let V//k be an affine variety (de-
fined over a ground field k) in the affine n-space 4,X (K—a universal
domain; see § 5%¥%). Let o==k[x,, x5, - - -, x,] be the codrdinate ring
of V/k; here (x4, x,, - - -, x,) is a general point of V/k and the x; may
be assumed to belong to K (since K is a universal domain). Using the
notations of §5°s and of the preceding section, we have a natural
mapping of V" onto the affine model V(v): to each point Q of V' we let
correspond its local ring o(Q; V') on V/k. Two points of V are then
mapped into one and the same element of V(o) if and only if they are
k-isomorphic points (§ Sbis). Thus, the affine model V(o) is obtained
from the affine variety V/k by identification of k-isomorphic points.

At the end of § 14 we have introduced implicitly (and we shall do
that in more detail in VII, §§4 and 4%is) the notion of a projective
variety V'*/k, in the projective n-space P,X over K, as the union of

n+1 affine varieties V; (=0, 1, - - -, n) immersed in P,X. We start,
namely, from a set of 7 quantities x,, x5, - - -, &, in K and we define
V; as the set of all points (2g, 24, -+, 2% 1, 1, 301, * + +» 2,) In PK
(the codrdinates being homogeneous) such that the n-tuple (24, 24, - - -,
%1, %t ¢ s B,) 1S a specialization, over &, of the n-tuple

Xo X3 Xio1 %41 Xn

—y =Sy ey —  —=y -y — |

X; X X X% Xy
where x,=1 (note for i=0 this means the n-tuple (xy, x,, - - -, x,))-

Thus V; lies in the affine space P,X— H;, where H; is the hyperplane



124 VALUATION THEORY Ch. VI

Y,;=0, and if we take as non-homogeneous coérdinates in that affine
space the quotients Y,/Y,, Y /Y, ---, Y, /Y, Y, Y, ---, Y, Y,
then (xofx;, x1/2;, « « + 5 X;_1[%;y %0 q/%; « - -, X,/x;) 1s a general point of
V.[k. It is then easily seen that there is a natural mapping of V'* onto
the projective model M determined by the set {x,, x,, - - - , x,} and that,
again, two points of V* are mapped into one and the same point of M
if and only if they are k-isomorphic.

By analogy with our definition of normal varieties, given in § 14, we
can define normality for the general models, over &, introduced in the
preceding section (k is now a ring, not necessarily a field). A model
M is normal if each element of M is an integrally closed quasi-local
domain. It is immediately seen that Theorem 34 of § 14 continues to
be valid for these, more general models; we have, namely, that an
affine mode! V(o) is normal if and only if o is an integrally closed ring.

The concept of a derived normal mode! is of importance in algebraic
geometry. We shall introduce this concept here with reference to the
more general type of models considered in the preceding section. We
shall find it convenient to denote the “ground ring” not by & but by
some other letter, and denote by % the field of quotients of the ground
ring. This will facilitate references to some theorems proved in
volume I. We shall therefore denote the ground ring by R. Follow-
ing Nagata (“A general theory of Algebraic Geometry over Dedekind
domains,” 1, American Journal of Mathematics, vol. 58 (1956), p. 79
and p. 86), we will impose on R the following conditions: (1) R is
noetherian; (2) if F is any finite algebraic extension of the quotient field of
R then the integral closure of R in F is a finite R-module. We shall
refer to an integral domain R satisfying these two conditions as a
restricted domain. '

We note first of all that the “normalization lemma” proved in Vol-
ume I (Ch. V, § 4, Theorem 8) continues to be valid if the infinite field &
of that lemma is replaced by an infinite ground ring R, and the proof
remains substantially the same. For the convenience of the reader we
shall now restate the ‘“normalization lemma” in the more general form
in which it is now needed.

Let A=R[x,, x5, - - -, x,) be an integral domain, finitely generated
over an infinite domain R, and let d be the transcendence degree of the field
of quotients of A over the field of quotients k of R. There exist d linear
combinations y,, Vo, - + - , ¥4 of the x; with coefficients in R, such that A
is integral over Ry, vs ---,v4). If the field k(x,, x,,---,x,) is
separably generated over k, the y; may be chosen in such a way that
k(xy, o, - - -, x,) is a separable extension of k(y,, v, - - -, ¥a).
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[Only the following modifications must be made in the proof of the
normalization theorem as given in volume I: (a) It is permissible to
assume that the polynomial P(U, X,, X,, - - -, X,) has coeflicients in
R. (b) The elements a; (i=1, 2, - - -, n) must now be suitably chosen
in R; this is possible, by Theorem 14 of Vol. I, Ch. I, § 18, since R has
infinitely many elements.]

With the aid of this generalized normalization theorem we can now
also extend Theorem 9 of Vol. I, Ch. V, § 4 in the following form:

Let R be a restricted domain, A=R[x,, x,,---,x,] an integral
domain which is finitely generated over R, and let F be a finite algebraic
extension of the quotient field k(x,, x,, - - -, x,) of A, where k is the
quotient field of R. Then the integral closure A' of A in F is a finite
A-module (and is therefore finitely generated over R).

Again, the proof is substantially the same as that of the cited Theorem
9 of Vol. I, Ch. V, §4. We shall give here only those extra steps or
modifications in the proof that are needed for the complete proof of
the above generalized statement.

(a) In the reduction to the case in which F'is the quotient field of 4
we must take a basts {y,, ¥, - - -, y,} of F over k(x,, x,, - - -, x,) com-
posed of elements which are integral over 4 (and not merely over
k[x,, x4, - - -, x,]). It is obvious that such a basis can be obtained by
first finding a basis consisting of elements which are integral over
k[x,, x,, - - -, x,] and by multiplying each element of that basis by a
suitable element of R.

(b) Assuming that we have already F=quotient field of 4, we may
furthermore replace R by the integral closure R of R and A by R[x,,
Xy, -+, x,]. For, the algebraic closure, in F, of the quotient field %
of R, is a finite algebraic extension of %, and therefore R is a finite
R-module (R being a restricted domain). It is clear that R is also a
restricted domain, and since the integral closure of 4 in F is the same
as the integral closure of R[x,, x,, - - -, x,] in F, it is sufficient to prove
that the integral closure in question is a finite module over R[x,,
Xy, -+ -x,). We may therefore assume that R is an integrally closed
domain.

(c) In the next part of the proof the additional hypothests 1s made to
the effect that R is an infinite domain and that F (=k(xy, x,, - - -, &,))
1s separably generated over k (=quotient field of R). Using the
generalized normalization theorem, stated above, we find elements
3y, %y, - -+ %3 in A such that A4 is integral over the ring B=R[z,,
%y, - - -, 7] and such that {2}, 2,, - - -, 2.} Is a separating transcendence
basis of Flk(z,, 25, - - -, 2g)-
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Then Corollary 1 of Theorem 7 (Vol. I, Ch. V, §4) is applicable
provided it is proved that B is an integrally closed domain. We ob-
serve that 2, 2,, - - - 2; are algebraically independent over R and that R
is integrally closed. 'To prove that this implies that R[24, 2, - - -, 3] 1§
also integrally closed it is sufficient to consider the case d=1. Let then
B=R[z], where z is a transcendental over R, and let £ be an element of
the integral closure of R[2] (in the quotient field of R[z]). Then
necessarily { € k[z]. Letthen { =f(2)=a?+a,27 '+ - - - +a, where
the a; are in k. The ring B[£] is a finite B-module. Since B[¢]< k[z],
the finiteness of the B-module B[¢] implies the existence of an element
d of R, d#0, such that dB[£]<B.

In particular, d¢* € B for i=1,2,---. Since 2z is transcendental
over R it follows from this that da,’ € R, fori=1, 2, - ... This implies
that a, is integral over R, since R is noetherian. Therefore a,€ R,
a,29-1+ ... +a, is integral over B, and in a similar fashion it follows
that a,, a,, - - -, @, € R, which proves our assertion.t

Having settled these algebraic preliminaries, we now consider an
affine model V(o), where o is a ring between the ground ring R and K,
finitely generated over R. Let F be a subfield of K which is a finite
algebraic extension of the quotient field of o, and let 5 be the integral
closure of o in F. Since we have just proved that o is a finite o-module
(and hence is finitely generated over R), 5 is the defining ring of an affine
model V(5). This affine model is, of course, normal and is called the
derived normal model of V(o) in F.

Let now M= 0 V(v;) be an arbitrary mode! over R. It has been
i=1

pointed out in § 17 that the rings o, have necessarily the same quotient
field. This field will be denoted by R(M). Let F be a subfield of K
which is a finite algebraic extension of R(M), and let 5; be the integral

closure of o; in F. We consider the finite union M'= 0 V(s,) of
i=1

affine models V(5,). It is clear that M’ dominates M, for if P’ is any
element of M’ and if, say, P'=35, ;, where b is a prime ideal of 3;, then
P’ dominates the element o, , of M, where b=bno;. We now show
that M’ is an drredundant set, and is therefore a model over R. Let v
be any valuation of K/R such that the valuation ring R, dominates some
element P’ of M'. Then R, dominates one and only one element P
of M (since M'z M and since M is an irredundant subset of L). Let,

+ We note that the assertion that R[z] is integrally closed has already been

proved earlier (§ 13, Theorem 29, part (a)) by valuation-theoretic methods,
without the assumption that R is noetherian.
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say, P’ € V(5;). Then P’ —6,-’9 where b is a prime ideal in 5;, and
P=o,, where p=bno; It is clear that P’ contains as subring the
mtegral closure P of P in F. Let B=m(P)nP. The prime ideal
% in P is the center of v in P and is thus uniquely determined by v.
It is a maximal ideal in P since § 1 P=m(P). We have m(P")n P=,
whence P’ dominates the local ring Pg. On the other hand, we have
that b, is a subring of P and that $ n5,=p (since B and p are the
centers of v.in P and ©; respectively). Therefore Py dominates P
It follows that P'=Pg, showing that P’ is uniquely determined and
that M’ is therefore an irredundant subset of L.

The given model M may possibly admit more than one representation
as a finite union of affine models. However, the model M’ which we
have just constructed, starting from a given representation of M=

L"j V(v;), depends only on M and the field F. For, the above proof of
1=1

the irredundant character of M’ shows clearly that M’ is the set of all
local rings Py, where P ranges over the set of integral closures, in F,
of the elements P of M, and where, for a given P, B ranges over the
set of all maximal ideals of P.

The model M’, constructed above, is called the derived normal model
of M, in F, and will be denoted by N(M, F). We repeat that F must
be assumed to be a finite algebraic extension of R(M).

If M and M’ are models over R and M’ dominates M, we say that
M’ is complete over M if every valuation ring R, (v—a valuation of K/R)
which dominates an element of M dominates also an element of M.
It is clear that N(M, F) is complete over M. For, let v be any valuation
of K/R such that R, dominates an element P of M. Then v has a
center B in the integral closure P of P in F (where P is necessarily
a maximal ideal in P, since B n P=m(P)), and thus R, dominates the
element Py of N(M, F).

In particular, it follows that if M is a complete model then also
N(M, F) is a complete model.

THEOREM 41. Let M and M’ be two models over R such that M’ is
normal and such that the field R(M') is a finite algebraic extension F of
the field R(M). Then M’ is the derived normal model N(M, F) of M in
F if and only if the following condition is satisfied: if a normal model M"
dominates M and is such that R(M")> F, then M" also dominates M'.

PROOF. Let M!=N(M, F), let P" be any element of M" and let P
be the element of M which is dominated by P”. Since R(M")> F and
P” is integrally closed in its quotient field R(M"), P” contains the integral
closure P of P in F. We have m(P")nPnP=m(P")nP=m(P),
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showing that m(P") n Pis a maximal ideal & of P. Hence P” dominates
the element Pg of M’, showing that M” dominates M'.

Conversely, assume that M’ satisfies the stated condition and denote
by M* the derived normal model N(M, F). By our assumption, as
applied to M"=M%*, we have that M* dominates M'. On the other
hand, since M’ dominates M and R(M')=F, it follows, from what we
have just proved, that M’ dominates M*. Using the fact that both M’
and M* are irredundant subsets of L we conclude that M'= M*,

THEOREM 42. If M is a projective model, also N(M, F) is a projective
model.

PROOF. Let M be a projective model, over R, determined by

{xg, X1, - = =, x,}, s0 that M= |J V(o,), where o;=R[xo[x;, x1/x;, -+ -,
i=0

x,/x;]. Let d; be the integral closure of o; in F. Then N(M, F)=

L"J V(5,). Let {w;;, w;y, - - -,} be a finite module basis of 5, over o,.

i=0

If 7 and j are any two indices in the set (0, 1, - -, #) and if w; is any
element of 5;, then upon writing the relation of integral dependence of
w; over o; we see at once that for all sufficiently high integers ¢ the
elements w.x?/x2 belong to 5. We can therefore choose a large
integer ¢ such that w;, x,9x;2 € 5, for i=0, 1, - - -, nand for all w;, in
the set {w;;, w;5, ---}. We denote by =24, 2,,---,2, the various
monomials x¢%x;% - - - x,% of degree ¢, where we assume that z,=
x4, 1=0,1,...,n. We denote by z,,,, 2,2 *- -, 2y the various
products w;, x2 (1=0,1,.--,2; v;=1,2,...) and we consider the
projective model M’ determined by the set {2, 2y,---, 25}. Let

2y % 2n]
o’,-=R[—, —1, <o —ﬂJ, i= -+,n. We have z,/z;€0; for s=
012 . m (since 2;=x; for z=0, 1,.--,n, and 2, is a monomial
in x¢, x4, -+, x,, of degree ¢, for s=0,1,2,...,m). We also have

2,[%; € D; for §>m, since z,/z; is an element of the form w; . %i%x2 for
some j=0,1,-.. n Furthermore, the set of elements z,/z s>m,
includes the basis w;y, Wig, - - -, of D; over o;. Hence 0o’;=5,. Thus
M'>V(0')=V(®;), i=0,1,---,n, and consequently M'>N(M, F).
Since M’ is irredundant and N(M, F) is complete, it follows that

=N(M, F). This completes the proof.
Another proof of Theorem 42 will be given at the end of VII,
§ 4bis.



VII. POLYNOMIAL AND POWER
SERIES RINGS

Among commutative rings, the polynomial rings in a finite number of
indeterminates enjoy important special properties and are frequently
used in applications. As they are also of paramount importance in
Algebraic Geometry, polynomial rings have been intensively studied.
On the other hand, rings of formal power series have been extensively
used in ‘“‘algebroid geometry” and have many properties which are
parallel to those of polynomial rings. In the first section of this chapter
we shall define formal power series rings and we shall show that the
main properties of polynomial rings which have been derived in previous
chapters (see, in particular, Vol. I, Ch. I, §§ 16-18) hold also for formal
power series rings. In the later sections of this chapter we shall give
deeper properties of polynomial rings and, whenever possible, the
parallel properties of power series rings.

§ 1. Formal power series. Let A4 be a (commutative) ring with
element 1 and let R=A4[X,, X,,---, X,] be the polynomial ring in 7
indeterminates over A. By a formal power series in n indeterminates
over A we mean an infinite sequence f=(f, f, - -, f,, - - ) of homo-
geneous polynomials f, in R, each polynomial f, being either 0 or of
degree g. We define addition and multiplication of two power series

f=Ufofu - fp)andg=(gp, gy, " Y AR E-N follows:
) f+g = (fot+&o f1+8v  fot8p )
(2) f:ﬁ = (ho’ hlv ] hq, c '), where hq = Z f;g]

t+1=¢g
It is easily seen that with these definitions of addition and multiplication
the set S of all formal power series in z indeterminates over A becomes
a commutative ring. 'This ring S, called the ring of formal power series
in n indeterminates over A, shall be denoted by A[[X,, X,, - -, X,]].
The zero of S is the sequence (0,0, ---), and (1,0,0,---,) is the

multiplicative identity of S.
129
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Polynomials in X,, X,, --., X,, with coefficients in A4, can be
identified with formal power series, as follows: if f€ 4A[X,, X,, - - -, X,]]
and f=fo+f,+ - - +f,, where each f; is a form which is either zero
or of degree 7, then we identify f with the power series (fo, f1,** *, fomr
0,0,.-:). By this identification the polynomial ring R=A4[X,,
X,, - - -, X,] becomes a subring of the power series ring S=4MTX,
X - ’Xn]]'

REMARK. If the ring 4 is the field of real or complex numbers, then
the power series f which are convergent in a suitable neighborhood of
the origin X,=X,= --- =X,=0 become an object of study. It can
be shown that the convergent power series form a subring S’ of .S (this
subring obviously contains all the polynomials). Most of the results
proved in this section (in particular, the Wéierstrass preparation
theorem and its consequences) hold also for S'.

Let f=(fo, f1» -+ » fp * - -) be a non-zero power series. The smallest
index ¢ for which f, is different from zero will be called the order of f
and will be denoted by o(f). If i=o0(f), then the form f; is called the
initial form of f. We agree to attach the order + oo to the element
0of S.

THeOREM 1. If f and g are power series in A[[X,, X,,---, X,],
then

(3) o(f+g) z min{o(f), o(g)},
(4) o(f2g) 2 o(f)+o(g).

Furthermore, if A is an integral domain then also S is an integral domain
and we have

#) o(fg) = o(f)+o(g).

PROOF. The proofs of (3) and (4) are straightforward and are similar
to the proofs given for polynomial rings in Vol. I, Ch. I (see, for
instance, I, § 18, proof of Theorem 11; the only difference in the proof
is that now we have to use the initial forms rather than the homo-
geneous components of highest degree). As to (4'), we observe that if
f#0 and g+#0 then the product fg; of the initial forms of f and g is
different from zero (since the polynomial ring A{X,, X,, - -, X,]is an
integral domain if 4 is an integral domain) and is the initial form of fg.

The power series of positive order form an ideal in S. This ideal is
generated by X, X,, -, X, and shall be denoted by X. For any
integer ¢ 1, the ideal %7 consists of those power series which have

order 2¢. It follows that ] %7=(0).
g=1
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THEOREM 2. If f=(fo, f1, - -+ fp - - *) is a power series, then f is a
unit in S if and only if the element f of A is a unit in A.

prOOF. If fe=1, with g=(gp g1, -, &, - - +)» then fogo=1, and
hence f, is a unit in 4. Conversely, if f; is a unit in 4, then we can

find successively forms go, g4, -+, 8, -+, Where g, 1s either zero or a
form of degree g, such that g, fo=1, g1 fo+gof1=0, - - -, g fo+ &1 [r+

- +g0fe=0,---. In fact, we have go=f,'. Assuming that
g0 &v* *» &1 have already been determined and that each g, is

either zero or a form of degree i (0=7<¢g—1), wesetg,= —fo " g,_ /1 +

- +gof,), and it is clear that g, is then either zero or a form of degree g.
If we now set g=(go, &1, *» &p * + *) then we find, by (2), that fg=1.
This completes the proof.

CorOLLARY 1. If k is a field, then the units of the power series ring
k[ Xy, X, - -+, X,]] are the power series of order 0. The ring R[[X,,
X,, -+, X,]] is a local ring, and the ideal X generated by X,, X,, - - -,
X, is its maximal ideal.

Everything follows directly from Theorem 2 except the assertion
(implicit in the statement that R[[X,, X,, ---, X,]] is a local ring)
that R[[X, X,, - - -, X,]] is noetherian. This will be proved later on
in this section (see Theorem 4).

CoOROLLARY 2. If k is a field and S=Fk[[X]]is the power series ring in
one indeterminate, then X is the principal ideal SX, and every ideal in S
is a power of 2. In other words, S is a discrete valuation ring, of rank 1,
and its non-trivial ideals are the ideals SX°.

Everything follows directly from Theorem 2 and from properties of
p-adic valuations in unique factorization domains (p—an irreducible
element; see VI, § 9, Examples of valuations, 2), by observing that if
f 1s a non-zero element of R[[X]], of order ¢, then f=X4g, where g is
a unit.

The valuation of which £[[X]] is the valuation ring is the one in
which the value of any non-zero element f of k[[X]] is the order o(f)
of f. Now, Theorem 1 shows that, more generally, if 4 is an integral
domain and S=A[[X,, X,,---, X,]] is the power series ring in any
number of indeterminates over 4, then the mapping f— o(f) can be
extended uniquely to a valuation of the quotient field of S (in general,
however, S will not be the valuation ring of that valuation). If we
denote by o that valuation, then it is clear that the center of 0 in S
(see Ch. VI, §5) is the maximal ideal X of S. We shall refer to this
valuation o as the X-adic valuation of S (or of the quotient field of .S).
It is clear that the valuation o is trivial on 4, and hence we may assume
that the residue field of o contains the quotient field of 4.
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THeOREM 3. The quotients X,[X,, i=1,2,---,n—1, belong to the
valuation ring of the X-adic valuation o. If t; denotes the residue of
X,/ X, in the valuation o, then t,, ty, - - - , t,_, are algebraically indepen-
dent over A, and the residue field of o is k(t,, ty, - -, 1, ), where k is
the quotient field of A (A, an integral domain).

PROOF. Since o(X,)=1, i=1,2,--- n, o(X;/X,)=0, and the first
assertion is proved. Let now F(X,, X,,---, X, ;) be any non-zero
polynomial in n—1 indeterminates, with coefficients in 4, and let m be
the degree of F. We set g=g,(X,, X, ---,X,)=X,"F(X,/X,,
X,o/X,, -+, X,_1/X,). Then g is a form of degree m in X, X,, - - -,
X,, with coefficients in 4. We have o(g)=m=0(X,"), hence the
o-residue of the quotient g/X,™ is different from zero. Since g/X,m=
F(X,[X,, Xo/X,, -+, X, 1/X,) and since o is trivial on 4, it follows
that F(¢,, ty, + -+, t,_1)#0, showing that ¢, ¢, -+, ¢, , are algebrai-
cally independent over 4.

The field k(t,, ¢, « - -, t,_,) is contained in the residue field of o,
and it remains to show that these two fields coincide. Let ¢ be any
element of the residue field of o, {#0, and let f and g be elements of
Al[X,, X,, - -+, X,]] such that ¢ is the o-residue of f[g. Since ¢#0,
we must have o(f)=o0(g). Let o(f)=¢. Then both f/X,? and g/X,2
have non-zero o-residues, and the quotient of these two residues is ¢.
It is therefore sufficient to show that the residues of f/X,? and g/X, ¢
both belong to k(t,, t,, - -+, ¢, ;). Consider, for instance, f/X,9. Let
f, be the initial form of f. Then o(f—f,) > ¢. whence the o-residue
of f/ X, coincides with the o-residue of f,/X,9. Since f(X,, X,, - -,
X)X 9=f( XX, Xo| X, -+, X, 1/ X, 1), the o-residue of f, /X9 is
fftute -+, t, 4, 1) and belongs therefore to A(ty, fy - -, 2, ).
This completes the proof.

We note that the restriction of o to the polynomial ring R=A4[X,,
X,, -+, X,) is a prime divisor of the field k(X , X,, - -, X,), with
the same residue field as o, and that if n > 1 then this prime divisor is of
the second kind with respect to the ring R, its center in R being the
point X, =X,= ... =X, =0 (see Ch. VI, § 14).

We now go back to the general case, in which 4 is an arbitrary ring.
If we take the set of ideals X9, ¢=0, 1, 2, - - -, as a fundamental system
of neighborhoods of the element 0 of S, then, by Theorem 1, S becomes
a topological ring (S. L. Pontrjagin, Topological groups, p. 172). [Ele-
ments ‘“near” a given element f,, of .S are those elements f for which
f—fo has high order. Since we have o((f+g)—(f,+g,)2min
(o(f—1p), olg—go)}, o(fg—fago)=0(f(g—g0) +8olf—fo) Z minfo(f) -
o(g—g,), o(gg)+o(f—fo)}, and both o(f) and o(g,) are non-negative
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integers, it follows that f+ g and fg are near f,+ g, and f,g, respectively
provided f and g are sufficiently near f, and g,; in other words, the ring
operations in .S are indeed continuous.] Note that in view of the

relation F] %X2=(0), .S is a Hausdorff space. As a matter of fact, the
g=1

topology of S can be induced by a suitable metric in .S; namely, fix a
real number r>1 and define the distance d(f, g) between any two
elements f, g of S by the formula d(f, g)=r"9, where g=0(f—g).

The space S is complete, i.e., every Cauchy sequence {f?} of elements
fi of S converges in S. For let fi=(fy, fi’, -+, f} --). Since we
are dealing with a Cauchy sequence, we must have fi=f7 for all
i, jzn(q), where n(g) is an integer depending on ¢. We set f =fi
for i=n(g) and f=(fo f1, > fp ) Then o(f—f)>gq if izZmax
{n(0), n(1), - - -, n(g)}, showing that the sequence {fi} converges to f.

It follows in the usual way that if {fi} and {g'} are two Cauchy
sequences, then

(5) Lim (fi +g") = Lim fi+ Lim g/,
(59 Lim figé¢ = Lim f*- Lim g%

Let now {#’} be an infinite sequence of power series satisfying the
sole condition that o(k’) tends to co with 7; in other words, {h'} is a
Cauchy sequence whose limit is the element 0 of S. Then the partial
sums fi=h0+pl+ ... +hi clearly form a Cauchy sequence. We
express this by saying that the infinite series R+ h'+ ... +hi+ ... is
convergent and we define the infinite sum z ht to be the limit f of the

sequence { f}:

z hi = Lim @A°4+h'+ ... +k), if o(h')— +oo.
i=0

iI—+ ©
It follows easily from the definition of Z h* that this infinite sum is

independent of the order in which the elements of the sequence {4}
are written. We have the usual rules of addition and multiplication of
infinite series:

©) SeaSh = 3 (g,

1

) 2,820 =3 (gN g hi T+ -+ giho).

1

Relation (6) follows directly from (5). As to (6'), the left-hand side is,
g g

by (5), the limit of the Cauchy sequence {p?}, where ¢7= > gi- > ki
=0 =0



134 POLYNOMIAL AND POWER SERIES RINGS  Ch. VII

g

= > g'hi, while the right-hand side is the limit of the sequence {4},

i,7=0
where 2= > gihi. Hence p?—i? is a sum of terms gih/ in which

i+j=¢q

at least one of the integers 7,7 is 2 'q/2'. Since o(g?)and o(k’) tend to
+ 00 with 7, it follows that the two sequences {¢?} and {4} have the
same limit, and this proves (6').

We note that (6") implies the distributive law

(6”) h th j— z hgt"

We also note that if we have /=0 for all sufficiently large values of 7,
say for i >m, so that the sequence {4} is essentially a finite sequence,
then the infinite sum > % coincides with the sum of the elements

1
RO, RY, - -+, k™ in the ring S.
We note that the inequality (3) generalizes to infinite sums, iLe., we

have for any convergent series > hi:
;

) o(z h*’) > min,{o(k)).

The notion of infinite sums allows us to write every power series

f=fofvfo- s fp- ), where f, is a form of degree ¢ (or is zero),
as an infinite sum; namely, we have

®) F=3 0 or f=forfik e koo

In this form, f appears as an actual power series in X,, X,, .-, X,.
The partial sums fi are now polynomials fo+f;+ --- +f,. Each
monomial which occurs in any of the forms f, will be called a term
of the power series f.

In (8), every element f of S is represented as a limit of polynomials,
Hence S is the closure of the polynomial ring R=A[X,, X,,---, X,],
or—equivalently—R is everywhere dense in S. 'The following character-
ization of subrings of S which are everywhere dense in S will be used
in the sequel:

Lemma 1. A4 subring L of S is everywhere dense in S if and only if L
has the following property: if f, is any form in X\, X,,-- -, X, with
coefficients in A, then L contains at least one element whose initial form
is f,.

;ROOF. Assume that L is everywhere dense in S and let f, be a form,
of degree q. If nis an integer >g¢, L must contain an element f such
that o( f—f,) 2 n (since f, must be the limit of a sequence of elements
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of L). Since n>g, the inequality o(f—f,)=n implies that f, is the
initial form of f. Note that in this part of the proof we have not used
the assumption that L is a subring of S.

Conversely, assume that L has the property stated in the lemma.
Let f be any element of S. We shall construct an infinite sequence
{f}, fie L, such that o{f—f?)27, whence f=Limfi. For /=0 we
simply set f®=0. Let us assume that we have already defined the »
elements f°, f!, ..., f*~1 in L and that we have then o(f—f)27 for
i=0,1,---,n=1. Ifo(f—frYY2nweset fr=fr-1 If off—fr1)=
n—1, let g,_, be the initial form of f— f7~1 and let A7-! be some element
of L whose initial form is g, ;. If we set fr=f7-14}7-1 then freL,
since L is a subring of S, and we have o(f—f")=o(f—fr-'—h"Y)2n,
since both f—f"~1 and A"-! are of order n— 1 and have the same initial
form g,_,. This completes the proof of the lemma.

We have seen in Vol. I, Ch. I that in any polynomial in 4[ X, X,, . . .,
X,] one can substitute for the indeterminates elements of any overring
of A (see Vol. I, Ch. I, § 16, end of section). This operation of sub-
stitution cannot be performed for power series without further ado
since infinite sums of power series have a meaning only if their partial
sums form a Cauchy sequence (hence converge, in the formal sense
explained above). Consider the power series ring A[[Y,, ¥,,---,
Y]l in m indeterminates and m power series fYX,, X,,---,X,),
FUX Xy oo XD, - f™( X, Xy, - -+, X,) In n indeterminates,
over A. We assume that each of the m power series fi is of order 2 1.
Under this assumption we proceed to define g(f%, f2,-- -, f™), g(¥Y,,
Y, ---,Y,) being any power series in A[[Y,, ¥,,---, Y, ]]. Let
g=8o+&1+ -+ +g,+ - - -, g, being either zero or a form of degree ¢
in Y, Y,y ---,Y,, with coeflicients in 4. Then g,(f* f%,---,f™) is
defined as an element g7 of A[[X,, X,,---, X,]]. Furthermore, by
Theorem 1, g7 is a power series of order 2 g, since g, isa form of degree
g and since o(f?)21, 1<i<m. Hence the series > §7 is defined as an

g
element of A[[X,, X,, -+, X,]]. This power series > g in A[[X,,
q

Xy, -+, X1 we call the result of substitution of f1,f%, ---fm into
&Yy, Yy, Y,), or the transform of g(¥Y, Yy ---,Y,) by the
substitution Y, — fi. In symbols:

&) LS ™) = qugq(fl,fz, s ™ =q§04§’-

For fixed f1, f2, - - -, fm, (9) defines a mapping
(10) g'*g(fl’fz’ e ’fm)’ gEA[[Yl’ Yorr) Ym]l’
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of A[lY,, Y,,---, Y]] into A[[X,, X,, --+,X,]]l. We shall refer
to (10) as the substitution mapping (relative to the substitution Y, — ff).
It follows easily from the rules (6) and (6") of addition and multiplica-
tion of infinite sums, that the substitution mapping (10) is a homomor-
phism. Furthermore, the mapping (10) is continuous (with respect to
the topology introduced earlier in power series rings). To see this it
is sufficient to show that if 9 denotes the ideal generated in A[[Y,,
Yo oo+, Y]] by ¥y, Yy, - -+, Y, then the transform of 9 by (10)
is contained in ¥°(), where p(7) tends to co with 7. This, however, is
obvious, since from the definition of the substitution mapping it follows
that if g € 9¢ then g(f?, f2%, - - -, f™) belongs to X'

The image of the ring A[[Y,, Yy, - - -, ¥,.]] under the substitution
mapping (10) is a subring of 4[[X,, X,, ---, X,]]. We shall denote
this subring by A4[[f*, f%, - - -, f"]].

It 1s not difficult to see that any continuous homomorphism r of A[[Y,,
Yo+, Y, ]]into A[[X,, X, - - -, X,]] is a substitution mapping. For
let 7(Y,)=fi. The continuity of = requires that high powers of fi
belong to high powers of the ideal X. Hence fie %, i=1,2,.--,m.
Now, let g=g,+g,+ - -+ +g,+ - -- be any power series in Y,, ¥,,

-, Y,,. Since 7 is a homomorphism we have 7(g,)=g,(f f*

y Tty

fm™ and T(z gq) =2 glf,f% -+, f™). Since g= Lim (z gq) and
g=0 g=0 i—>w \g=0
since T is continuous, we must have

9 = Lime( 20) = Lim S g 500

re., H(@)=g(f% f% - -, f"), in view of (9). This shows that 7 is the
substitution mapping relative to the substitution ¥; — f'.

In the special case m=mn, the two rings A[[Y,, Y,,---, ¥,]] and
A[[X,, X,, - - -, X,]] coincide and we have Y;=X,. In this case, our
substitution mapping defines a continuous homomorphism of the power
series ring A[[X,, X,, - - -, X,]] into itself. We now describe a case
in which this homomorphism is an automorphism.

Levmma 2. Let fY,f2, ..., fr be n power series in A[[X,, X,, - -,
X)) such that the initial form of fi is X, (1=i<n). Then the substitution
mapping o: g(X,, X,, -+ -, X,) —>g(fY f3, - - -, ') is an automorphism
of the power series ring A[[X,, X,, - - -, X1l

PROOF. We first show that the kernel of ¢ is zero. Let g be a
non-zero power series in A[[X,, X,, - -+, X,]] and let g, be its initial
form. From (9) we find at once that g(f% f2, .-, f")—g € ¥+
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Hence g(f1, f2, - - -, fM#0, and thus g is not in the kernel of . Ob-
serve that we have shown here the following: g and g(f%, f2,-- -, f")
have the same initial form.

We next show that ¢ maps AF[XI, X, -+, X1 onto itself, i.e.,
that A[rfl f2 o = A[{le Xogyoooy n]] Ifgx(le XKooy X,,)
is any form, with coefficients in 4, then we have just seen that g (X,
X,, - - -, X,) is the initial form of the element g(f1, f%, - - -, f") of the
ring A[[fY f% - --,f"]. It tollows therefore from Lemma 1 that the
ring A[[f% f% - -, f]] is everywhere dense in A[[X,, X,,---, X,]],
and in order to prove the lemma we have only to show that A[[f1,
f% -+, f1] is a closed subset of A[[X;, X,, -, X,]]. Assume then
that we have an element 4, such that A= Lim gi(f%, f2, - - -, f), where

g(Xy, Xo - -+, X)) is in A[[X,, X,,---, X,]]. The order of gi(f*,
f3 - M—g(fLf% -+, f") is the same as the order of gi(X,,
X oo Xn)_gj(le Xy - -+, X,). Hence {gi(le % CHEI Xn)}
must be a Cauchy sequence as well as {g(f% f2,---, )}
Let g=Lim gi(X,, X, ---, X,). Since ¢ is continuous, it
follows that h=q(g)=g(f*, f2, - - -, f'), whence k€ A[[f1, 2, - .-, f1L.
Q.E.D.

CoRrOLLARY 1. Let f',f2% ..., f" be m power series in A[lX,,
Xy -+, X,]l, mEn, such that the initial form of fi is X,. Then the
substitution Y; — f' defines an isomorphism @: g — g(f*, f% - - -, f") of
A[[Yl’ Yorrr, YmH into A[[Xl’ Xy oo, Xn]]

For the first part of the proof of Lemma 2 is independent of the
assumption m=n.

COROLLARY 2. Let A be an integral domain and let f1,f2, ..., fm
be m power series in A[[X,, X,, -, X,]l, m<n, such that the initial
forms of the fi are linearly independent linear forms fi%, fi%, - - - fi™.
Then the substitution mapping ¢: g(Y,, Yo, - - -, Y,) = g(fL f2, -+ -, f™)
is an isomorphism of A[[Y,, Yy, ---, Y]] into A[[X,, X,, ---, X,]].
If, furthermore, m=n, ¥;=X,, i=1,2,---,n, and the determinant of
the coefficients of the lmear forms fi1, fi% -, fi" is a unit in A (in
particular, if A is a field and the above determinant is #0), then ¢ is an
automorphism of A[[X,, X,, - -+, XL

If g(Y,, Y, ---,7,) is the initial form of a non-zero element
gY, Yy -, Y,) of A[[Y,, Y, ---, Y]], then we find, as in the
case of the lemma, that s is also the order of ¢(g), since ¢(g)—g.(fi%
fi% - -+, fi™) € Es+1 and since in the integral domain A the linear
mdependence of the linear forms f, 1, f1 , -+ -, fi" and the non-vanishing
of the form g, imply that g(f,%, f,% - - -, f,") is different from zero and
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has an initial form of degree s (to see this it is sufficient to pass to the
quotient field of A4).

If m=n and if the determinant of the coeflicients of the linear forms
fiL f1% -+ -, fi" is a unit in A4, then, for each integer g, the linear
substitution X; — f,* maps onto itself the set of forms of degree ¢ in
X, Xg v -+ X, with coefficients in 4. It follows that also in the
present case the ring A[[f, f2, - - -, f7]] has the property of containing
power series with arbitrarily preassigned initial forms, with coefficients
in A4, and the rest of the proof of the lemma is now applicable without
any change.

THEOREM 4. If A is a noetherian ring, then the power series ring
A[[X]] is also noetherian.

PROOF. We give here a proof parallel to the second proof of Hilbert’s
basis theorem, cf. Vol. I, Ch. IV, § 1, i.e., a proof using the finite basis
condition. Let % be anidealin A[[X]]. For any integer 720 denote
by L; (%) the set of elements of 4 consisting of 0 and of the coefficients
of X7 in all elements of % which are of order z. Then L(¥) is an ideal
in A4, and the ideals L() constitute an ascending sequence. Their
union L(¥) is the ideal in 4 consisting of 0 and of the coefficients of
the initial terms?t of all non-zero elements of 2.  Since A4 is noetherian,
L(Y) has a finite basis {a;, - - -, q,}. We fix in % a power series F;(X)
whose initial term has a; as coefhicient. Denote by d the greatest
integer among the orders of the series F,(X).

Now, for every j<d, let {b,;, - - -, b;,(;5} be a finite basis of the ideal
L), and let G (X) be a power series in % whose initial term is
bjp, X/(1<k;<n(j)). We shall prove that the ideal % is generated by
the series F(X), G (X) (1<i<q; 0<j<d; 1<k;<n(j)). We prove
this in two steps:

(a) Let %’ be the ideal (G, (X)) generated by the elements G, (X).
We have A'<A. Every element P(X) of % which has the order j<d

is congruent mod 2’ to an element of %A which has order >j+1. In
fact, the coefficient ¢ of the initial term cX7 of P(X) may be written in

)
the form ¢= > ¢y by (6 € A). Thus P(X)— z Ck, j(X) is of
k=1

order >j+1. It follows by successive apphcanons of this result that
every element of order j < d of % is congruent mod %’ to an element of
A of order >d. It remains to prove that any element of order >d of

+ Since we are dealing now with power series in one variable, an initial form,
of degree ¢, consists of just one term cX!, c € 4.
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% is in the ideal (Fy(X), G, (X)). We will even prove that such an
element is in the ideal (Fy(X), - - -, F(X)).
(b) Let P(X) be an element of ¥ of order s>d, and let c¢X* be its

q
initial term. We may write ¢= > ca; (c;€A4). Thus P(X)-
i=1

q

> ¢;X:°FPF(X) is an element of order >s+1 of A. By successive
i=1

applications of this result we get ¢ sequences {¢,} (1=1,2,---,¢q;
n=s,5+1,---; ¢f=c,;) of elements of 4 such that, for every n, the
power series

Px)- 3 (S eiximem) Fp)

i=1 \j=s

is of order >n. As the exponents j—o(F;) tend to infinity with j,
each of the infinite sums ﬁ ¢/ Xi—°F) converges and represents an
element 5,(X) of A[[X]]. ]S=i;1ce the order of the power series P(X)—
Eq: s(X)F(X) is greater than n for every n, this power series is 0, and

i=1

we have P(X)= é; s(X)F(X). QE.D.

CoroLLARY. The power series ring A[[X,, - - X,]] in n indeter-
minates over a noetherian ring A (in particular, over a field, or over the
ring of integers) is noetherian.

This follows from Theorem 4 by induction on #, since A[[X,, - - -,
X,]] is isomorphic to A[[X,, - - -, X, _,]1[[X,]]-

REMARK. A simple direct proof of the fact that A4[[X,,---, X,]]is
noetherian may be given if one uses the fact that the polynomial
ring A{X,,---, X,] i1s noetherian. But, since this proof applies as
well to a more general situation, we postpone it until the chapter
on Local Algebra (see VIII, §3, Example 1, p. 260). On the
other hand we shall give later on in this section a proof that
k[[X,, - - -, X,]] 1s noetherian (&, a field) using the Weierstrass’ prepara-
tion theorem.

THEOREM 5. (Weierstrass preparation theorem) Let k be a field and
let F(X,,---,X,) be a non-invertible power series (i.e., a non-unit in
k[ Xy, X,, - - -, X,)]) with coefficients in k.  Suppose that F(X,, - - -, X,)
contains terms of the form aX,* with non-zero coefficient a, and denote by
s (= 1) the smallest of all the exponents h having this property. Then for
every power series G(Xy, - - -, X,) there exists a power series U(X,, - - -,
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X,) and s power series R(X,,---, X, )in X,,---, X, , (0<i<s—-1)
such that

(1)  G(Xy,---, X)) = UX,, -+, X)F(X,, - -+, X,)
s—1
+ D R(X,, -, X, )X,
=0

The power series U and R, are uniquely determined by G and F.

PROOF. For every power series P(X,, - - -, X,) denote by r(P) the
sum of all terms in P which do not have X, as a factor, and by 2(P) the
factor of X, in P—r(P). In other words we have

(12) P = (P)+ X,(P),

where 7(P), k(P) € k[[X,, X,, - - -, X,]] and where, furthermore, r(P)
is a polynomial in X, of degree =s—1, with coeflicients in k[[X,,
Xy, -+, X, ,]]. Note that if the power series ring k[[X,, X,, -- -,
X,]] 1s thought of as a vector space over the field k, then both operations
r and h are lLinear transformations in that vector space. By the definition
of the integer s, 2(F) is a unit in k[[X,, X,, - - -, X,]] (see Theorem 2),
and r(F), regarded as a polynomial in X, has all its coefficients in the
maximal ideal of the ring A[[X, X,,---, X, ,]]. We shall denote
this maximal ideal by m.

The problem of finding power series U and Ry, R,, - - -, R,_, such
that (11) holds is equivalent to the problem of finding a power series
U such that the following relation holds:

(11a) WG) = h(UF).

For if (11) holds, then A(G — UF)=0, whence (11a) holds by linearity
of k. Conversely, assume that U is a power series satisfying (11a).
Then »G-UF)=0, whence G—UF=r(G—-UF) (by (12)), i.e.,
G — UF is a polynomial in X, of degree <s—1, with coefficients in
k[IX,, X,,---, X, ,]], and so (11) holds.

We have UF = Ur(F)+ X,sUh(F), and hence (11a) can be re-written
as follows:

(11b) KG) = WUr(F))+ UK(F),

and our problem is equivalent to finding a power series U satisfying

(11b). Since A(F) is a unit in R[[X,, X,, ---, X,]] we shall try to
construct the power series

(13) V = Uh(F).
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We set

(14) M = —r(F)HF)]

Then, by (13), Ur(F)= — MYV, and (11b) is equivalent to
(11c) hG)=—hMV)+ V.

For every power series P, denote by m(P) the power series 2(MP).
Notice that m is again a linear operation on power series. Furthermore,
if P, considered as a power series in X, over k[[X,,---, X, ,]], has
all its coefficients in some power m/ of the maximal ideal m, then
m(P) has all its coefficients in mi+1. For convenience we set H=~~(G).
With these notations condition (11c) may be written as follows:

(11d) V = H+m(V).

Since m is linear, condition (11d) implies that V=H+m(H+m(V))=
H+m(H)+m*V), and, by successive applications:

(11e) V= Hem(H)+miH)+ - - +ma(H) +meX(V),

for any integer ¢ = 0.
The property of the operation m which we have just pointed out above
shows that m/(H) is at least of order 7, and me~Y(V') is at least of order
g+1. Thus the infinite sum H+m(H)+m*H)+ .- +my(H)+ - - -
converges, and, if a power series V satisfying (11d) exists, it must
therefore be the series

(15) V = Hem(H)+mH)+ - - - +ma(H)+ - - -,

and this proves the uniqueness of V, whence of U and of the R,.

We now prove that the series V' given by (15) satisfies condition
(11d). Let us write V=H+m(H)+ --- +my(H)+ W, The co-
efficients of W, (W, being considered as a power series in X,) are all
in me+l, Then, since m is linear,

V-H-m(V)=H+ --- +mi(H)+ W —H
—m(H)— - - —mYH)—m(W,) = W,—ma+}(H)—m(W,).

Thus all coefficients of V' — H—m(V) are in me*L. As this is true for
every ¢, we have V—H—m(V)=0, and condition (11d) holds. This
proves the existence of V, whence also of U and of the R;.

REMARK. In the next chapter we shall give a somewhat shorter proof
of the Weierstrass preparation theorem, based upon the properties of
complete local rings. An advantage of the proof given here is that the
questions of existence and unicity are treated simultaneously. A more
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substantial advantage is that the method of majorants is easily applicable
to the resolving formula (11e), with the result that if F and G are con-
vergent power series over the field of real or complex numbers, then
the series V/, U and the R; are also convergent. To show this we open
now a brief digression on the preparation theorem for convergent power
series.

In the case of convergent power series over the field k of real or
complex numbers, the proof of the Weierstrass preparation theorem
runs as follows. We recallt that a power series

F(Xl’ e ’Xn) = ;aq"'"’ q"qun .. 'ann

is said to be convergent if there exists a neighborhood NN of the origin
in k% such that the series > Qg ...q 817 "+ %, is absolutely con-
q

vergent for every (24, ---,2,) € N. Then there exist positive real
numbers p and p such that la, ..., | <pp~@+-"+4). Conversely,

the existence of two such real numbers implies that Z g ...q,51% *
q

2,41 converges in the neighborhood N of 0 defined by !z;!<p (i=1,
-+-,n). Itis easily seen that the convergent power series in k[[X,,
-+, X,]] form a subring of k[[X,,---,X,]], and that a convergent
power series with a constant term 0 admits as inverse a convergent
power series. A series Z aql_,,an 91+ X, 4 with real positive

q
coefficients is said to be a majorant of Y bgyovoq Xt - X if

q
g evnaq S gyeenq, for all gy, -+, g, Tt is clear that, in order to

prove the convergence of a power series F, it is sufficient to prove that
a majorant of F converges. The inequality 'a, ..., '<up=@+-*e

X X,\ . .
means that ,u./(l-——l) e (1—-—'—’) is a majorant of 3 a, ..., X;u
3 P 1 4
s X 40,
In order to extend the Weierstrass preparation theorem to convergent

power series, it is sufficient to prove that, if the series M and H are
convergent, then

V=HtmH)+ - +mi(H)+ - -+,

is convergent (same notations as in the proof of Theorem 5). We
notice that the coefficients of ¥ are polynomials with positive integral
coefficients in the coefhicients of M and H. Thus, if we replace M and

+ See Bochner-Martin, ‘ Several complex variables,” Princeton (1948),
Chap. II.
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H by majorants M’ and H’, and assuming that M’ is of positive order,
then the power series

V/ —_ H’_Lml(H/)_!_ e +m1q(Hl)+ e

(where the operation m' is defined by m'(P)=h(M'P)) is a majorant of V.
We may take

H = ©

(-3 (=%

wXyt -+ X, )

EmE?

(For the second one we write M=N,X,+ --- +N,_ X, , and we
major separately each one of the sertes N;.) Instead of H',, we take
as majorant of H the series

M =

. p© X
H = (_)
(1-%. (1_&;1)"’ ’
3 P
where ¢(X) is a series in one variable, majoring %{ and enjoying

properties which we are going to describe.

We notice that the operation m’ is not only additive, but knear over
R[[Xq, -+, X,.1]]- We thus have

X+ -+ X, ) X, X,
- o))
" R A=y
P P

We setX=%~ Theseries V'=H'+m'(H')+ - - - +m'y(H")+ - - - will
<P(X))

be very easy to compute if h(l—_——

is a scalar multiple of the series

®(X). By definition of the operation %, this is true if there exist a
polynomial P,_,(X) of degree <s—1 and a real number A such that

28 P () +1Xp(X).
Thus ¢(X) must be a rational function:

(1= X)P,_,(X)
P = I axet
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We take A=2s+l, and notice that the denominator 1—2s+1Xs.
2s+1Xs+1 factors into (1 —2X)(1+2X+22X2+ ... 4+ 2s-1Xs-1_2sX5),
The second factor takes the value 1 for X=0 and —1 for X=1.
Therefore it admits a positive root 1/« (¢ >1). Thus the denominator
1—2s+1Xs 4 25+1X5+1 may be written in the form (1—2X)(1-oaX)
P,_(X), where P_(X) is a polynomial of degree s—1. We choose
P,_,(X) to be just this polynomial P,_;(X). We then have

1-Xx 1
?(X) = T 2x T-ax’

and thus for this choice of p(X) we will have A(p(X)/(1 — X)) =2s"1p(X).
As it is a rational function, this power series (X)) is convergent. Since

1-X 11 1

1-2x  2"21-2X

the power series expansion of p(X) is
.12(2+2X+4X2+ cee 22X L. )(1 +aX+ -+t X+ .. -).

Except for the constant term (which is equal to 1), the coefficient of X*
is af+an~1L 20724 ... =271 since it is obviously >1, (X)) is a
majorant of 1/(1 -X)=1+X+ ... + X"+ ...

This being so, if we set A=p/(l—i§}-) . ( —)%‘5) and B=

70, SRR ,,_1)/<1—2£3) s <1—X-—i——”1) and if we notice that, for
every power series $(X) (where X =X, /p), we have

m (X)) = h(B ;/’(_—)?() - Bh<‘lfi_-)%),
we get m'(H'y=m'(Ap(X)) = ABh(p(X)/(1 — X))=2-+1 ABp(X). Hence,
by repeated applications,
m*(H') = m'(Z*1ABp(X)) = 2D AB%*p(X)

and m'9(H')y=20¢+D24Bip(X) for every g. Then the compurtation of
the infinite sum V'=H'+~m'(H)+ - -+ +m'«(H")+ - - -, reduces to the
computation of the sum of a geometric series:

V' = Ap(X)+ A2+ Bp(X)+ A22+DBIp(X) + - - - .
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Hence
, 1
V' = Ae(X) 17

-— - W(Xz"s/fl) Y
(=3 (=2 (- )

X,
.1__~)
w15

(R

2Kt e+ X))

Since V" is a rational function, this is a convergent power series. This
proves the preparation theorem in the case of convergent power series.

A power series F(X,, X,,---,X,) which contains a term cX,°
which is a power of X, with non-zero coeflicient ¢, is said to be regular
in X,. To say that F(X,, X,, - - -, X,) is regular in X, is equivalent
to saying that (0,0, - - -, 0, X,) is different from zero.

CoroLLARY 1. Let F(X,, X,,---,X,) be a power series in S=
k[[X,, X,, - - -, X,]] which is regular in X, (k, a field) and let the order s
of the power series F(0, 0, - - -, 0, X,) be =1 (in other words, it is assumed
that F is not a unit).t Then there exist power series E(X,, X,, - - - , X,),
R(X,y, Xy, - -+, X,y (6=0,1, - -, s=1) such that
(16) F(Xl’ X2) R Xn)

= E(Xy, Xy, -+, X)X+ R (X, Xy, oo+, X, )X 4 -
+R0(X1> Xz’ T Xn—l)]'
The power series E, R; are uniquely determined by F; E is a unit, and

none of the R, is a unit.
For if we apply Theorem 5 to the power series G= — X, we find

XS+ R_y( Xy, Xy oo+, X )X+ -+ 2 R(Xy, Xy, -+, X, y)

= —U(Xy, Xy, -+, X)F(Xy, X, - - » Xo)-
Setting X;=X,=--- =X, ;=0 in this identity we obtain on the
right-hand side a power series in X, which has order =s. Hence
Ry0,0,.--,0)=0,0=<i<s—1, and no R(X,, X,,---,X,_,)is a unit.
It follows at the same time that U(0, 0, - - -, 0, X,) must be of order

+ The corollary holds trivially also if F is a unit; in (16) we have then E=F,
while the expression in the square brackets is the element 1.
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zero, whence U(X,, X,, ---, X,) is a unit. If we now set E=U-},
we have (16). The unicity of E and of the R; also follows from
Theorem 5 in the special case G= — X,s.
The polynomial (in X))

(17) F* = Xn:'LRs—l(Xl’ X2’ T "X'n—l))(ns—l

+ oo FRY(Xy, X, e, Xly)
in (16) is called the distinguished pseudo-polynomial associated with F';
it is defined only if F is regular in X, and its degree s (in X,) is equal to

the order of the power series F(0,0,...,0,X,). The relation (16)
shows that F and F* are associates in S.+

Note that F* has the following two .properties: (a) it is a monic
polynomial in X, ; (b) its coefficients, other than the leading coefficient,

are power series in X,, X,, ---, X, , which belong to the maximal
ideal of A[[X,, X,, ---, X, ,]]. Before deriving other consequences

of Weierstrass’ preparation theorem, we point out the following con-
sequence of (a) and (b): if S* denotes the ring

R[[Xy, X, - -+, X, XL,
then
(18) SF*S* = S*F*.
We have to show the following if H*=hF*, with H*€ S* and h € S,
then Ae S*. Let A= Zh(Xl, X, -+, X, )X,2 and let s+m be

the degree of H* in X Expressmg the fact that AF*, regarded as a
power series in X, is actually a polynomial of degree s+m, we find

(19) hy+hypiRo_y+ - +h Ry =0, g>m.

q-ts
Since the R; all belong to m, it follows from (19) that 2, € m if g>m.
But then again (19) shows that #, € m? if ¢ >m. By repeated applica-

tion of this argument we find that hqeﬁ mé, whence /4,=0 for all
i=1
g>m. Thus % is a polynomial in X, (of degree m), showing that
heS*.
Since F and F* are associates in S we have SF=SF*. Then (18)
shows that the residue class ring S/SF contains S*/S*F* as a subring.
CorOLLARY 2. The rings S|SF and S*|S*F* coincide.

For if G is any element of S then Theorem 5 shows that G is con-
gruent mod F to an element of S*.

+ Note that the distinguished pseudo-polynomial of a unit F is the element 1.
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The following lemma shows that every non-zero power series in
k[TX,, X, ---,X,]] may be construed to be regular in X,. More
precisely, we have

Lemma 3. If F(X,, X,, ---,X,) is a non-zero power series in
K[[X,, Xy, - -+, X1 (R, a field), then there exists an automorphism @
of RITX,, Xy, - - -, X,]1 such that o(F) s regular in X,

proor. We assume first that & is an infinite field. Let f, be the
initial form of F. Since k is infinite we can find elements a,, a,, - - -,
a,_, in k such that f(a,, ay, - - -, a, 3, 1)#0. Then we may use the
linear substitution X;— X;+a;X, (=1,2,---,n-1), X,— X,
(compare with the normalization lemma of Vol. I, Ch. V, §4,
Theorem 8). By Lemma 2, Corollary 2, the corresponding substitution
mapping @ is an automorphism. Furthermore, the initial form of ¢(F)
contains the term fy(a,, ay, - - -, a,_;, 1)X,2. Hence o(F) is regular
in X,

We now give a proof which is also valid for finite fields and which
will show the existence of exponents u; (=1, - - -, n—1) such that the
automorphism ¢ defined by ¢(X,)=X,, o(X;)=X;+X,* has the
required property, i.e., is such that F(X,*, - - -, X,*n-1, X,)#0. We
order lexicographically the monomials which appear in F' with non-
zero coeficients. Let X,% --- X % be the smallest one. Then, if
Xb1- - - X2 is another monomial which actually appears in F, we
have, either b, >a,, or by=a, and by>a,,---, or by=a,, - - -, b, ;=
a, , and b,>a, The corresponding monomials in F(X*, -,
X1, X,) have wja,+usa,+ --- +u, ja, \+a, and wub,+usb,+
<+« +u, b, 1+0b, as exponents. If we takew, ,>a,, 4, ,>u, 1a, ,

+ay Uy > UMyt - - U, a4, +a,, then we get ub+ -+
Uy 1b,_1+b,>uay+ - - - +u, qa, ;+a, in fact, if the index 7 is
defined by the condition a,=b,, ---,4a;_1=b;_1,a;<b; then the

difference u;b,+ - - - +b,—(ua;+ - - - +a,) of the two above expo-
nents is #,(b; —a;)+u; 1(b; 1—a;.)+ - - - +b,—a, The first term is
>u;, whereas the remainder is > —(¥;,,4;,,+ - - - +a,), and thus the
difference of the two exponents is >0 since u;>u; 1a;,,+ - - - +a,.
In other words, in F(X,“, - - -, X, -1, X,) the monomial with exponent
u,a,+ - - - +u, cannot be cancelled by any other, and hence F(X *,

<y Xn“n—l, X,,);éO

CoroLLARY. Given any finite set of non-zero power series Fy, F,, - - - |
F, in R[[X,, X,, - - -, X,]], there exists an automorphism ¢ of R[[X,,
Xy, - -+, X,]1 such that each of the h power series o(F;) is regular in X,,.

It is sufficient to apply the lemma to the product F,F, - - - F,.

We give now a second proof of the fact that A[[X,, - -, X,]] is
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noetherian. This proof can be applied verbatim to rings of convergent
power series.

THEOREM 4", Ifkis a field, the formal power series ring k[ X, - - - X,]]
is noetherian.

We prove by induction on 7 that every idea! % in A[[X,, ..., X1
has a finite basis (the cases n=0 and n=1 being trivial). We may
suppose that A#(0). By replacing, if necessary, % by an automorphic
image ¢(%), we may suppose that 2 contains a power series F which is
regular in X, (Lemma 3). For every G in %, we may write then

s—1
G=UF+ > R.X,’ (Theorem 5). In other words, if we denote by S’
i=0

the power series ring £[[X;, - - -, X,_,]], we have A=(F)+A (S +
S'X,+ -+ +8X;-1). As S’ is a noetherian ring, by hypothesis,
AN(S"+S'X,+ - - - +5°X,51) is a finitely generated S'-module, since
it is a submodule of the finitely generated S’-module $'+ S’ X, + --- +
S’X,s~t. A finite system of generators of AN(S'+ --- +S5°X,5-1)
will thus constitute, together with F, a finite basis of 2. Q.E.D.

We end this section with another application of the Weierstrass
preparation theorem. The proof we will give can be applied almost
verbatim to rings of convergent power series.

THEOREM 6. If k is a field, the formal power series ring R[[X,. - - -,
X)) is a unique factorization domain.

PROOF. We proceed by induction on 7, the cases n=0 and #=1 being
trivial.  Since £{[X,, - - -, X,]] is noetherian, we have to prove that, if
F is an irreducible power series, then the principal ideal (F) is prime;
in other words, we have to prove that, if GH € (F), then either G or H
is a multiple of F. Let us write GH=DF. By replacing, if necessary,
the series F, G, H, D by automorphic images o(F), o(G), o(H), o(D),
we may suppose that F, G, H, D are regular in X, (corollary to Lemma
3). We denote by F', G’, H', D’ the distinguished pseudo-polynomials
associated with F, G, H, D (Corollary 1 to Theorem 5). Since the
power series G'H' differs from GH by a unit only, and since it is a
distinguished pseudo-polynomia! of the right degree in X, it is the
distinguished pseudo-polynomial associated with GH. Similarly D'F’
is the distinguished pseudo-polynomial associated with DF. As
DF=GH, we have D'F'=G'H’, since the distinguished pseudo-
polynomial associated with a given power series is unique.

Now, F’ is an irreducible element of R[[X,, X,, -+, X, J][X,]
In fact, assume that g(X;, X, ---, X, 1;X,) 1s a factor of F' in
RIIX,, Xo, -+, X,_1J1[X,], not a unit in this latter ring. The leading
coefficient of g is a unit in A{[X;, X,, ---, X, ;1] since the leading
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coefficient of F' is 1 (both g and F’ being regarded as polynomials in
X,). Therefore g must be of positive degree in X, (for g is not a
unit in k[[X,, X,, ---, X,_4]][X,]) and also g(0,0,---,0; X,) must
be of positive degree in X,. Consequently ¢(0,0,---,0; X)) is of
the form ¢ X,k h2 1, c ek, ¢#0, since F'(0, 0, - - -, 0; X,) is also of this
form. This shows that g(0,0,---,0;0)=0, i.e., that g(X,, X,, - - -,
X, 1, X,) is a non-unit in A[[X,, X,,---, X, ,, X,]]. Since Fis an
irreducible element of £[[X,, X,, - - -, X,_,, X,]], we have proved that
F' is also an irreducible element of R[[X,, X,, -, X,_,]I[X,]. By
the induction hypothesis, k[[X,, X,,---, X, ,]] is a UFD, whence
also k[[X,, X,, ---, X,_4]J1[X,] is also a UFD. (Vol. I, Ch. I, §18,
Theorem 13.) Thus, from D'F'=G'H’ we deduce that either G’ or
H' is a multiple of F'in R[[X,, X,, - - -, X,_4]1[X,]- Hence, a fortiori,
either G’ or H' is a multiple of F' in k[[ X, X,, - - -, X,,_,, X,]]. Since
F', G’ and H’ differ from F, G and H only by unit factors in k[[X,,
X, - -+, X,_y, X,]], we conclude that either G or H is a multiple of F.
This completes the proof.

CoroLLARY. If F(X,, X,, - -, X,) is a power series which is regular
in X, and is an irreducible element of k[[X,, X,, -, X,]], then the
quotient field of the residue class ring S|SF is a simple algebraic extension
of the quotient field of k[[X,, X,, - - -, X,_4])

This follows immediately from Corollary 2 of Theorem 5.

§ 2. Graded rings and homogeneous ideals. Let 4 be a ring
and let R=A4[X,, X,, -+, X,] be the polynomial ring over 4, in n
indeterminates. Every element F in R can be written in the form of a
finite sum F=Fy+F,~+ --- +F;+ ..., where F; is either zero or a
form of degree j. The form F; is called the homogeneous component of
degree j of F. 'The product of two homogeneous polynomials f and g
is again homogeneous, and if fg#0 then &(fg) = o(f)+ &(g) (¢ =degree).
The homogeneous polynomials of a given degree ¢ form, together with
zero, an additive group and a finite A-module R,. We have

(1) RqRq'ch+q”
and R is an infinite (weak) direct sum (see Vol. I, Ch. III, § 12bis) of
the subgroups R;:
(2) R= 2> R, thesum being direct,
g=—

where, in the present case of polynomial rings, we have R, =(0) if ¢<O0.

An ideal % in R is said to be homogeneous if the relation F € % implies
that all homogeneous components of F are in .
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In this section we shall derive a number of properties of homogeneous
ideals. However, we shall not restrict ourselves to polynomia! rings.
We shall study homogeneous ideals in rings which are more general
than polynomial rings, namely in graded rings.

DEerINITION. A4 ring R is called a graded ring if it is a (weak) direct
sum (in the sense of Vol. I, Ch. 111, § 12%) of additive subgroups R, of R
satisfying relation (1); here q ranges over the set J of integers. An
element of R is said to be homogeneous if it belongs to an R,, and is said to
be homogeneous of degree q if it belongs to R, and is different from
zero.

In a graded ring R we have therefore the direct decomposition (2);
it signifies that every non-zero element F of R can be written, in a
unique way, as a finite sum of non-zero homogeneous elements of
distinct degrees. These elements will be called the homogeneous com-
ponents of F, and the homogeneous component of F of least degree will
be called the initial component of F.

If S is a subring of R we say that S is graded subring of R if S is the
(direct) sum of its subgroups S,=Sn R, i.e., if we have S=3 S,. It
is clear that the sum is then necessarily direct and that S is a graded
ring.

We define homogeneous ideals in a graded ring in the same way as
we have defined it above for polynomial rings. This definition can
also be expressed by saying that an ideal % in a graded ring R is homo-
geneous if % is also a graded subring of R.

Let R and R’ be two graded rings: R=2 R, R'=Y R’,. A homo-

q
morphism ¢ of R into R’ is said to be homogeneous of degree s if
P(R)=R',, for all q.

Lemma 1. (2) If @ is a homogeneous homomorphism of a graded ring R
into a graded ring R’, then the kernel % of ¢ is a homogeneous ideal in R,
and the image of @ is a graded subring of R'. (b) If A is a homogeneous
ideal in a graded ring R and o is the canonical homomorphism of R onto
the ring R[U, then R/W is a graded ring with respect to the decomposition
R/ =3 o(R,), and the canonical homomorphism of R onto R[% maps in

(1, 1) fafs‘hion the set of homogeneous ideals of R containing % onto the set
of all homogeneous ideals of R/%.

PROOF. Assume that p is a homogeneous homomorphism of R into
R’, of degree s. Let F=3 F/(F,€ R)) be an element of the kernel %
of . We have > o(F,)=0, with ¢(F,)€ R, and therefore neces-
sarily (F,)=0 for all g¢. This shows that all the homogeneous com-
ponents of F belong to %, whence % is homogeneous.
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Since R=3 R, we find that (R)=> @(R,), and since p(R,) obviously
coincides with (R)n R, ,, it follows at once that the image S'=¢(R)
is a graded subring of R'.

Now, let % be a homogeneous ideal in a graded ring R and let ¢ be
the canonical homomorphism of R onto R/%A. We set S=R/Y,
S,=¢(R,)). From R=3} R, follows S=3 S, and from R R, <R,
we deduce that S,S,.=S,.,.. It remains to prove that the sum 3 S, is
direct, or—equivalently—that if a finite sum F=F,+F, ,+ ---, with
F, €S, is zero, then each term F, is zero. But this follows directly
from our assumption that the ideal % is homogeneous. The last
statement of the lemma is obvious.

Of particular importance in this chapter will be those graded rings
which contain a ring 4 and are homomorphic images of polynomial
rings A[X,, X, - - -, X, ], with a homogeneous ideal in A[X,, X,, - - -,
X,] as kernel. We call such rings finite homogeneous rings, over A.
More precisely: a ring R, containing a ring A and finitely generated
over A, is homogeneous if there exists a homomorphism ¢ of a poly-
nomial ring R=A[X,, X,, - - -, X,] onto R such that ¢ is the identity
on A and such that the kernel of p is a homogeneous ideal in R. If we
set x;=@(X,), then R=Alx,, x5, - - -, x,], and the homogeneity of the
ring R signifies that every algebraic relation F(xy, Xy, - -+, x,)=0
between the generators x;, with coeflicients in A, is a consequence of
homogeneous relations. By the preceding lemma, a homogeneous ring
R=Afx,, x,, - - -, x,] is a graded ring, the subgroup R, of homogeneous
elements of degree ¢ being the set of elements of the form f(x,, x5, - - -,
x,), where f is a form of degree ¢, with coeflicients in 4. Note that a
homogeneous ring R admits a set of generators x; which are homo-
geneous and of the same degree. It is not difficult to give examples of
finitely generated graded rings (over a given ring A) which are not
homogeneous. For instance, it can be shown (see end of this section)
that the integral closure of a finite homogeneous integral domain, over
a field %, is a finitely generated graded ring; however, this ring is not
necessarily a homogeneous ring.

THeOREM 7. In order that an ideal % in a graded ring be homogeneous
it is necessary and sufficient that ¥ possess a basis (finite or infinite) con-
sisting of homogeneous elements.

PROOF. Suppose that % is homogeneous. If {F(®} is any basis of
2, then all the homogeneous components F, () of all the F(®) also belong
to A and obviously form a basis of A. Suppose, conversely, that an
ideal ¥ possesses a basis {G®} consisting of homogeneous elements.
Let F be any element of % and let {F,} be the set of homogeneous
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components of F. We have then F=> POGW, PWe R, If PW=
A

> P, is the decomposition of P into its homogeneous components,
then F= Z P,WGW, and in this sum the partial sum > P,WGW,
g+d(XN=m
where d(/\) denotes the degree of G, is the homogeneous component
F, of F, of degree m. Hence F,, €%, and % is homogeneous

The class of homogeneous 1deals in a graded ring R is closed under
the standard ideal-theoretic operations. More precisely:

THEOREM 8. Let % and B be ideals in a graded ring. (a) If A and B
are homogeneous, then A+ B, AB, ANV and :B are homogeneous.
(b) If A is homogeneous, then its radical \/ is homogeneous.

PROOF. The assertions relative to €+®B and AV are trivia!, by
Theorem 7. The assertion relative to AN B results trivially from the
definition. For :9, take a basis {B™W} of B consisting of homogeneous
elements. If FeA:®B and if F =Z F; is the decomposition of F into

7
its homogeneous components, then we have FBW =3 F,B® e 9 for
J

every A. Since, for fixed A, the products F,B® are homogeneous
elements of different degrees, and since % is homogeneous, we deduce
that F;B® e ¥, for every j and every A. 'Therefore F; € %: % for every
j (since {B™} is a basis of ¥), and %: D is homogeneous.

We now consider the radical /% of a homogeneous ideal %. Let F
be an element of V¥ and let F=F, 4+ F,,;+ - - - be the decomposition
of F into its homogeneous components, where F,, then, is the initial
component of F. We have FP=Fpr+ terms of degree >sp, and
Fr € U for a suitable integer p. Since % is homogeneous, it follows that
Fped, F,e VY. But then F—F, e V% and therefore, by the same
argument, also the initial component of F—F, belongs to v/2. In this
fashion we find that all the homogeneous components of F belong to
V. QED.

COROLLARY. If a primary ideal o in a graded ring R is homogeneous
then its associated prime ideal is also homogeneous.

Concerning prime homogeneous ideals the following useful remark
can be made: in order to prove that a given homogeneous ideal p is prime
it is sufficient to verify that the property “fép, gé v = fg¢ p” holds
for homogeneous elements f and g. Infact, assume that this property
holds for homogeneous elements fand g and let F and G be two arbitrary
elements of R such that Fé¢p, G¢yp. Let F=F,+F, + -
G=G,+G,,,+ -+ be the decompositions of F and G into homo-

geneous components. Let F,., and G, , be the first homogeneouvs
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component of F and G respectively which does not belong to
v(p20,020). Then F, G, ¢», and therefore

r+p~ s+o
[F_(F7+Fr+l+ s+ r+p—l)][G_(Gs+Gs-'-l+ Tt _I'Gs+o—l)] ¢ p
(since v is homogeneous). Since F,+F,.,~ --- ~F, , and G +
Gy~ -+ +G,.,_, belong to p, it follows that FG ¢ p.

The above remark can be generalized to primary ideals:

LemMAa 2. If a homogeneous ideal q in a graded ring R has the property
that whenever a product fg of two homogeneous elements belongs to o and
one factor, say f, does not belong to a, some power of the second factor g
belongs to q, then q is a primary ideal.

prOOF. The proof will be similar to the one given above for prime
ideals, and we shall use the same notations. Assume that F ¢ q and
that FG € q. We have to show that GeVq. In the proof we may
assume that F, ¢ q, for we may replace F by F, +F, . ,+ - - - without
affecting the conditions F ¢ g and FG € q. 'The product F,G, is either
zero or is the initial component of FG, and hence F,G, € q since q is
homogeneous. Since F, ¢ q it follows that G, € Vq. Assume that it

has already been proved that G,, G4, - - -, G,.,, belong to V/ q and
let 4 be an integer such that (G,+G,. ;+ --- +G, )€ q. Then
FG-G,— --- =G, )*€ q, and therefore, using again the fact that

F,¢ q, we find that G#,,.., € Va. Hence G,.,..,€Vq QE.D.

We shall use Lemma 2 and the next lemma for the study of primary
decomposttions of homogeneous ideals.

LemMA 3. Let U be an ideal in a graded ring R and let %* denote the
ideal generated by the homogeneous elements belonging to %. Then if %
is prime or primary, also A* is prime or primary.

PROOF. Let F and G be homogeneous elements such that F ¢ %A*
and FG e ¥*. Then F ¢ %A. If Wis prime then G € ¥; if % is primary
then G» € ¥, for some p. Since G is homogeneous, it follows, by the
definition of A*, that G (or G*) belongs to A*. Hence, by Lemma 2,
the proof is complete.

We note that %* is the greatest homogeneous ideal contained in %.

THEOREM 9. Let U be a homogeneous ideal in a graded ring R. If ¥
admits a primary representation %=\ q;, then it also admits a primary
representation A= (\ oa*; in which the a*; are primary homogeneous ideals.

PROOF. We take for g*; the greatest homogeneous ideal contained in
a;. By Lemma 3, each g*, is a primary ideal, and we have n q*; e
On the other hand, since % is homogeneous and A< q;, it follows that
A< q*;, whence A< o*;. Thus, A=ng*,, and the theorem is
proved.
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CoOROLLARY. Let U be a homogeneous ideal in a graded ring R and
assume that W admits a primary representation. Then the isolated com-
ponents of W are homogeneous, and so are the associated prime ideals of .

This follows from Theorem 9 and from the uniqueness of the
isolated primary components and of all the associated prime ideals of .

Some of the direct components R, of a graded ring R may be zero.
An important case is the one in which R, =0 for all negative integers q;
that is so, for instance, if R is a polynomial ring AlX,, X,,---, X}
over a ring A. If R =0 for all negative ¢ then the ideal genemtecl
by the homogeneous elements of positive degree is given by Z R, and

is not the unit ideal unless Ry=0. This ideal shall be denoted by x.
It is clear that if R, has no proper zero divisor, then X is a prime
ideal. A homogeneous ideal % in R shall be called irrelevant if

X£<+/%. The consideration of the ideal ¥ is particularly useful if R,
is a field or if R is a polynomial ring A[X,, X,, - - -, X,] over a ring 4.
In the first case, ¥ is a maximal ideal in R, it contains every proper
homogeneous ideal, and every irrelevant ideal is either the unit ideal or
is a primary ideal with X as associated prime ideal (Vol. I, Ch. III, § 9,
Theorem 13, Corollary 2). In the second case, X is generated by
Xy, Xg ooy X,

The next two lemmas refer to finitely generated graded rings, i.e.,
to graded rings of the form R= Alx,, x,, - - -, x,), where A isa noetherian
ring, Ry=A4 and each x; is homogeneous of positive degree. These
lemmas are useful in some applications. If ¥ is a homogeneous ideal
in R and B= N q; is a primary irredundant representation of 9B, the q;
being homogeneous ideals, we denote by B* the intersection of those
primary components q; of % which are non-irrelevant. Clearly B* is
uniquely determined by %, for the prime ideals Vq; q; form an isolated
system of prime ideals of B (see Vol. I, Ch. IV, §5, p. 212). For any
ideal % in R we denote by %, the set A N R,.

Lemma 4. If B is a homogeneous ideal, then there exists an integer s,
such that B,=B* for s>s, (in other words, B and B* coincide in the
homogeneous elements of sufficiently high degree). Furthermore, B* is
the largest homogeneous ideal enjoying this property; in other words, if a
homogeneous ideal B’ is such that there exists an integer m such that
B’ =B, for s=m, then B' < B* and B'* = B*.

k

PROOF. Let B={) q;, where q; is non-irrelevant for /=1, ..., A,
i=1

k
and is irrelevant for i=h+1,..-, k. We have 8,=[) q;,. For
i=1
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i=h+1,---,k, a; contains a power of X, whence, for large s, q;, is
)

the entire group R.*+ Thus, for s large, we have 8B,= () q; ,=B*,
i=1

and this proves our first assertion. Suppose now that %8’ is as indicated
above. For 1<i<h, q; is non-irrelevant, whence its radical p; does
not contain the ideal 2. Therefore for any given 7, 1<7/<h, there
exists an index j depending on 7 such that x; ¢ p;. From this it follows
that if Fe®’, then Fe g, since x;"F e B8<gq,;. In other words, we
have B8'c®B*. Applying the same result to the ideal 8'* (which also
coincides with 8 in the homogeneous elements of large degrees),
we get B'*<B*, and, by exchanging B and B’ we have B*<B'*.
Hence B*=%B"* and all our assertions are proved.

LEMMA 5. The ideal B* is equal to B :X¢ for s large enough.

Proor. The ideals (B:%*) form an ascending sequence; since R is
noetherian, this sequence stops increasing for large s: (8:%5)=(B: %)
= . ... With the notations of Lemma 4, we have q;:¥*=Rforh+1=
i<k and s large enough, since q; contains all high powers of £. For
1<i<h, there exists an index j(i) such that x,;, ¢ v q;, whence a
relation such as Fx;* € q, implies F € q;; in other words, we have
q;=0q;:%s for every s and every i such that I<i<h. From this it
follows that, for s large, we have

k h h
B:% = () (a;:%) = ) (0:%) = ) q; = B*.
i=1 i=1 i=1

Our next theorem refers to a finite homogeneous ring Alx,, x,, - - -, x,],
where A4 is now not necessarily noetherian.

TueOREM 10.  Let U be an ideal in a finite homogeneous ring Alx,,
Xo, -+ -, X} (all x; being homogeneous of the same degree). If U is homo-

geneous then for every element F(xy, x,, - - - , x,) in % and for every t in A
we have F(tx\, tx,, - - -, tx,) €. The converse is true if A is an infinite
field.

PROOF. Let F(xy, %y, - - -, %)= > Fj(%y, %5, - -+, x,) be the de-
J
composition of an element F of % into homogeneous components (F;
stands for a form of degree j, with coeflicients in 4). We have
F(tx,, txy, - - -, tx, =Z tF (%1, %05+ -+ 5 %)
J

If % is homogeneous then Fj(x;, &, - - -, x,) €A, whence F(tx,,
txy, - -+, tx,) €. To prove the partial converse, we have only to

t If & is an integer such that each x; is homogeneous of degree <4 and if
X< g, then g, ;> R, as soon as s hq.
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show that the (finite-dimensional) vector space ¥V which is spanned
over A by the homogeneous components F; of F is also spanned by
the family & of elements F(tx,, tx,, - - -, tx,), t € A. (It is clear that
F<V.) For that it is sufficient to show that any linear function
f on V (with values in A) which is zero on & is also zero on V. Let
f(F;)=c;. We have then f(F(tx,, tx,, - - -, tx,))=> c;t/=0 for all ¢ in
A. Since 4 is an infinite field, the vanishing of the polynomial 3 ¢; X7
for all values of X in 4 implies that all the coefficients ¢; of that poly-
nomial must be zero. Hence f=0 on V, as asserted.

REMARK. If R=A4[X,, X,,---,X,] is a polynomial ring and if v
denotes the degree of F, then the polynomial >¢ . X7 is of degree v,
and the conclusion that F belongs to % would still be true in the case
of a finite field A4, provided 4 has at least v+1 distinct elements
ty tg, +++, t,,. Another proof can be obtained by using the Vander-
monde determinant |¢7]. The following is an example in which the
second part of Theorem 10 fails to hold for a finite field A. Assume
that A is a field with two elements (0, 1). In this case, if F(X,, X,,

, ,,) is any polynomlal whose constant term is zero then F(tX,,
th, X,), t € 4, is either F(X,, X,,---, X,) or 0. Thus, every
ideal ¥ in A[X 1» Xg, + + -, X,] which is contained in the maximal ideal
(X, X, -+, X,) satisfies the condition “Fe¥ = F(tX,, tX,, -- -
tX,)ed”

We shall conclude this section with the proof of a result which
concerns the integral closure of a graded domain and which, in the
special case of homogeneous finite integral domains, is of basic import-
ance in the theory of normal varieties in the projective space (see
§ 4,bis).

Let R=3 R, be a graded domain and let K be the quotient field
of R. Itis easy to see that the element 1 of R is a homogeneous element of
degree zero. For if l=w,+tw, 1+ -+ +o, (0,e R, n2Zm, w,#0,
w,#0), then l1=0,2+2w,w,  ,+ -+ +wri=w,+ ---w, Since
w,?#0 and w,?#0 it follows from the equality w,?+ -.- +w,2=
w,+ +++ tw,that w,2=w,and w,?=w,. Since w,, and w, are homo-
geneous, this implies that m=n=0.

The group R, is obviously a ring, and is not the nullring since
1 eR,.

An element x of the quotient field K will be said to be homogeneous
if it is a quotient of homogeneous elements of R.  If x is a homogeneous
element, and if, say, x=¢£,/1,, with £ eR, and 7, € R,, then it is immedi-
ately seen that the integer ¢—7 depends only on x. We say that x
is homogeneous of degree g—r. It is clear that the product and

»
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quotient of homogeneous elements are homogeneous and that the degree
of a product is the sum of the degrees of the factors. Furthermore,
the homogeneous elements of K, of a given degree, form, together with
0, a group. In particular, it follows that the homogeneous elements
of K which are of degree zero form a field. We shall denote this field
by K,.

’ Mc;)rc generally, we shall denote by K, the set of elements of K which
are homogeneous of degree ¢g. As was pointed out above, we have
KK, <K, , and hence the sum ZJKQ is a subring of K. Further-

q

more, it is easily seen that the sumq > K, is direct. In fact, if we have
a relation of the form ¢, +¢,, .+ --- +£,=0 (£,€ K, nzm), then
we express the £, as quotients of homogeneous elements of R, with
the same denominator w'eR;; say, {, =w,, /o', where w; € R;. 'Then the
above relation yields the relation w,.,+w,. .1+ -+ +w,,,=0, and
hence the w; are all zero, whence also the ¢, are all zero. We have
shown therefore that the ring > K is again a graded ring.

It is clear that the integers ¢ such that K ,#0 form a subgroup J’
of the additive group J of integers. Hence J'=Jm, where m is some
positive integer (we exclude the trivial case R=R;). We may there-
fore assume that J'=J, for in the contrary case we may simply re-
define the degree of the homogeneous elements of R by assigning to
any non-zero element of R, (g=0(mod m)) the degree ¢/m. We may
therefore assume that there exist elements in K which are homo-
geneous of degree 1.

Let v# 0 be a homogeneous element of degree 1. If £ is an element
of K, then ¢/y1e K, £€ Ko[ylif g20and ¢ € K[1/y]if ¢<0. Hence
R< K[, 1/¥], and therefore K=K ().

Note the relations

) K, = Kyy, 3 K, = Ky 15}

We assert that y is a transcendental over K. For, assume that we
have an algebraic relation agy*+a,y*1+ - -. +a,=0, a,€ K,. Then
a;y"eK, ,, and therefore a;y"i=0, since > K, is a graded ring.
Since y#0, it follows that the a; are all zero, showing that y is a trans-
cendental over K,

Let R be the integral closure of R in K. The theorem which we
wish to prove is the following:

THEOREM 11, The ring R is a graded subring of the ring > K,

q
More precisely: if we set R,=Rn K, then R=3 R,. In the special
case in which R,=0 for all negative integers q also R,=0 for negative q.
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PROOF. It was pointed out above that R K[y, 1/y]l. Now K,[y]
is 2 polynomial ring over a field K and is therefore integrally closed
in its quotient field Ko(v)(=K). The ring K[y, 1/y] is the quotient
ring of K,[y] with respect to the multiplicative system formed by the
non-negative powers of y; this ring K[y, 1/y] is therefore also
integrally closed in K. (Vol. I, Ch. V, § 3, Example 2, p. 261.) Conse-
quently R K[y, 1/y]=3 K,[by (3)]. Every element of R is therefore a
sum of homogeneous elements. In particular, if R, =0 for all negative g,
then R< K [y] and therefore also R< K [y]; thus in this special case,
every element of R is a sum of homogeneous elements of non-negative degree.

Let

(4) §= §s+§s+l+ st +§z
(¢,€ K, t25) be an element of R. To complete the proof of the
theorem we have only to show that each £, (g=s,s+1,- -, ) s itself

an element of R.

We shall first consider the case in which the ring R is noetherian.
Since R=3 K, every element of R can be written as a quotient of two
elements of R such that the denominator is a homogeneous element.
Since ¢ is integral over R, the ring R[£] is a finite R-module. We can
therefore find a homogeneous element d in R, d+#0, such that d.R[{]<R.
We have therefore, for every integer 120, that d¢ e R.  If £, denotes,
as in (4), the initial component of £, then the initial component of the
element d¢’ of R is dé. Hence d§; € R for every integer 120. We
have therefore shown that all the non-negative powers of £ belong to
the finite R-module R.(1/d). Since we have assumed that R is noetherian,
it follows that the ring R[] itself is a finite R-module. Therefore also
&, is integral over R. Then also £—§¢,=¢,,,+ --- +{,€R, and in
this fashion we can prove step by step that all the £, g=s,s+1,---,¢,
belong to R.

In the non-noetherian case we can achieve a reduction to the
noetherian case, as follows:

Let

(s) Erta it - ta, =0, €R

be 2 relation of integral dependence for ¢ over R, and let d#0 be a
homogeneous element of R such that {de R for g=s,s+1,---, ¢
We consider the following homogeneous elements of R: the element d,
the products £,d (g=s,s+1, - - -, £) and the homogeneous components
of the coeflicients a,, a,, - - -, a, of the above relation (5). We denote
these homogeneous elements, in some order, by x;, ®,, - - -, ¥y, and
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we denote by A4 the smallest subring of R containing the elements x,.
Then A=J[xy, x5, - -+, xx5] if R is of characteristic zero (J=ring of
integers) and A=J,[x;, x5, - -+, xy] if R is of characteristic p#0
(¥,=prime subfield of R). In either case 4 is a noetherian integral
domain. If we set 4,=AnR, then it is immediately seen that
A=3 A, and that consequently A is a graded subring of R. In fact,
if 7 is any element of A4, let , be the homogeneous component of 7,
of a given degree ¢, and let n=f(x;, %y, - - -, xy), where f(X;, X,, - - -,
Xy) is a polynomial with coefficients which are integers or integers
mod the characteristic p of R. If ¢; denotes the degree of the homo-
geneous element x; of R and f(X;, Xy, - - -, Xjy) denotes the sum of
terms ¢X 1 Xyf2--- X'y in f such that 7,g,+i,g,+ -+ +ingy=
glce J or ce ¥,), then it is clear that 5, =f (x, x5 - - -, xy) and hence
Mg € A.

! Since the element d and the products £d, g=s,s+1,---,¢, are
included in the set {x;, x,, - - -, x5}, it follows that £ belongs to the
quotient field of 4. On the other hand, since also the homogeneous
components of all the coeflicients a; in (5) are also included in the
set {xy, Xy, - - -, xn}, it follows that £ is integrally dependent over A.
Hence by the noetherian case, the homogeneous components £, of ¢
are integral over A4, hence a fortiori also over R. This completes the
proof of the theorem.

Theorem 11 can be generalized as follows:
Let K’y be an algebraic extension field of K, and let K'=K'q(y).
We set K',=K',-¥? (¢—an integer), so that > K’, is obviously a graded
q

ring. Then we have the following
CoroLLARY. Theorem 11 remains true if in the statement of that
theorem we replace the field K by the field K', the graded ring > K, by

the graded ring D, K', and the ring R by the integral closure R’qof Rin

K' (in particular,q we must write R'=3 R’ , where R =R’ n K').

The proof is immediate. For, the ring > R’, (weak direct sum of
the R',) is obviously a graded ring, having K’ as quotient field, and
R’ is also the integral closure of this graded ring, in K'. Since R',,
by its very definition, consists of all the homogeneous elements of XK',
of degree ¢, which are integral over the graded ring 3 R',, it follows
from Theorem 11 that R'=3 R'_.

; REMARK. It is easily seen that if 2 € R, then z satisfies an equation of the
orm

(6) z"+az" 1 +ag2" 1+ - - - +a,=0, a, € Ry,
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and that conversely, if an element z of K' satisfies such an equation (with
the a;, in R;)) then z€ R',. For, assume that z € R', and let

2t bygn14byan-21 ... +h =0, bR,

be an equation of integral dependence for z over R. Each of the n+1 terms
on the left-hand side of this equation belongs to the graded ring R’. There-
fore, if we denote by a;, the homogeneous component of a;, of degree #g, then
we find (6). Conversely, assume (6). Dividing (6) by ¥ and observing
that a;,/y" € K, we find that z/y? is algebraic over K, and therefore must
belong to K’ (since K’y is the algebraic closure of K in K’). Hence the
element 2 is homogeneous of degree ¢, and since it is integral over R (in view
of (6)) it must belong to R',.

§ 3. Algebraic varieties in the affine space. Let % be a field and
let K be an algebraically closed extension of k. The field & will be
referred to as the ground field, while K will be called the coérdinate
domain. Given an ideal % in the polynomial ring R=k[X,, X,, -+ -,
X,], we recall (VI, § 5bs) that the variety of % in the affine space 4K
is the set V of all points (x)=(x,, x5, - - -, x,) (¥; € K) such that f(x)=0
for all fin A. We shall denote this variety by ¥ (%). The fact that
U is an ideal in the polynomial ring over k is expressed by saying that
V, the variety of ¥, is defined over k. Any point (x) of V is said to
be a zero of the ideal A. For every subset E of 4,X we denote by
F(E) the set of all polynomials in R[X,, X,, ---, X,] which vanish
at every point (x¥) of E. Clearly, #(E) is an ideal. We shall denote
by I the set of all ideals of the form F(E), Ec 4 K.

The set of points in A4,X which satisfy a finite set of equations
f1=0,£,=0,---,f,=0, where fek[X,, X, ---,X,], is a variety,
namely it is the variety of the ideal generated by the polynomials
Sfuvfo -+, f Conversely, every variety can thus be defined by a
finite system of polynomial equations, with coefficients in &, for every
polynomial ideal has a finite basis.

We note the following relations:

e ASB = ¥ (WY (B).
¢9) EcF = #(E)> #(F).
@ »(Iw) = nro.
@) HUE) = s,

3) Y (UNB) = ¥ (AB) = ¥ (A) UV (V).
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4 ¥V (#(E))>E.

(4 S (W)=

(5) ¥ (#(E)) = E <> E is a variety.
(59 V() =A<=Ael

(6) Ael=VUA=9

All these relations, except (2), (3), (5) and (5') are self-evident. In
(2) the sum 3 %; is not meant to be necessarily finite. The inclusion
Y (C %)< N 7 () follows from (1). The opposite inclusion follows

from the definition of the ideal-theoretic sum 3 ¥, according to which
every polynomial in > ¥; is a finite sum > f;, each f; belonging to at
least one of the ideals %;; any such polynomial vanishes therefore on

N

The inclusions ¥ (V)2 ¥ (A n B)> ¥ (A) U ¥ (B) again follow from
(1) since AB<AN B. On the other hand, if (x) ¢ ¥(A) U ¥(VB), then
these exist polynomials f and g such that fe ¥, ge B, f(x)g(x)#0.
Since fg € AV, it follows that (x) ¢ ¥ (AB). This shows that ¥ (AVB)<
Y7 (%) U 7°(B), and (3) is proved.

The implication “?(F(E))=FE = E is a variety” is self-evident.
On the other hand, if E is a variety, then E=%7(), for some ideal .
We have, then, by (4'), #(E)>%, whence ¥ (#(E))<E, and (5) now
follows from (4). The proof of relation (5') is quite similar (and is, in
fact, dual to the proof of (5)).

From (2) and (3) it follows that intersections (finite or infinite) and
finite unions of varieties are again varieties. 'The empty set (=variety
of the unit ideal) and the whole space 4,X (=variety of the zero ideal)
are varieties. It follows that 4,K becomes a topological space if the
closed sets in 4,X are defined to be the algebraic varieties immersed in
A,K. We have an induced topology on each variety V' immersed in
A,K. Since intersections of varieties are again varieties, the closed
subsets of V" are the algebraic varieties contained in V, i.e., the sub-
varieties of V.

If E is any subset of 4,X then the closure of E is, of course, the
least variety containing E. If V is any variety containing E, then
IV H(E) and V= (F(V)>V (#(E)). Hence ¥ (F(E)) is the
closure of E. In particular, the closure of a point P is the set of all
points which are specializations of P over k (VI, § 5bis).

From (5) it follows that if I/, and V, are distinct varieties, then
J(V)#F(V,y). Hence a strictly descending chain Vi>V,> --- >
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V:> -+ of varieties gives rise to a strictly ascending chain of poly-
nomial ideals S(V,))<F(Vy)< --- <F(V))< --- and is therefore
necessarily finite. 'This very special property of varieties shows that
every variety, with the above topology, is a quasi-compact space.

A variety V' (defined over k) is said to be reducible (over k) if it can
be decomposed into a sum of two varieties 7/, and V, which are defined
over k and are proper subsets of V. If such a decomposition does not
exist, then V' is said to be irreducible (over k).

THEOREM 12. 4 variety V is irreducible if and only if its ideal #(V)
is prime.

PROOF. Assume that I is irreducible and let f;, f, be two polynomials
such that f; ¢ A(V),i=1,2. Let W, be the set of points of I/ at which
f; vanishes (=1,2). Then W, is a variety, and it is a proper sub-
variety of V, since f; ¢ (V). Since V is irreducible, also W, u W,
is a proper subset of V. Let (x) be a point of V, not in W,y W,.
Then fi(x)#0 and fy(x)#0, whence f, f, ¢ #(V). This shows that
F(V) is a prime ideal.

Conversely, assume that #(V) is a prime ideal. Let V=V, 0V,
where V; is a variety (defined over k), 1=1, 2, and assume that V,# V.
We shall show that ;=71 (and that therefore V' is irreducible). By
(2") we have L(V)=L(V )N I (V)2 L(V,)-F(V,). Since H(V,) >
F(V) and FA(V) is prime, it follows at once that #(V)> #(V,), whence
V=", QE.D.

TueoreMm 13. Every variety V can be represented as a finite sum of

irreducible varieties V;:

@) v=y .

and the decomposition (7) is unique (to within order of the V) if it is
trredundant, i.e., if no V; is superfluous in (7).

PROOF. The existence of a decomposition (7) into irreducible
varieties follows easily by an indirect argument. Suppose, namely,
that there exists a variety V' for which the existence assertion of the
theorem is false. Then J must be reducible, so that we can write
V=WUuW', with W<V and W'<V. Then the existence assertion
of the theorem must be false for at least one of the two varieties W or
W'. What we have shown is that if the theorem is false for a given
variety J then there exists a proper subvariety V', of V for which the
theorem is still false. This conclusion leads to the existence of an
infinite strictly descending chain V'>V,>V,> ... of varieties, in
contradiction with a preceding result.
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Suppose now that (7) is an irredundant decomposition of V into
irreducible varieties and let
) V=0,
be another irredundant decomposition of V into irreducible varieties.
For any V, 1<i<h, we have V,=Vn V,.=ngjl (V';n V). Since

V; is irreducible, at least one of the g varieties V'; n V; must coincide

with V7, i.e., we must have V,= V", for somej, I=j<g. By the same
argument we find V';,cV  for some s, 1=s<h. We have then
V,eV';cV,, and therefore V,=V";=V_ (since the proper inclusion
V;<V, would imply that V| is superfluous in (7)). We have shown
that each one of the A varieties V; coincides with one of the g varieties
V';; and conversely. This establishes the unicity assertion of the
theorem.

The irreducible varieties Vy, V,, - - -, V), are called the drreducible
components of V.

REMARK. In order to verify that a decomposition (7) into irreducible
varieties is irredundant it is sufficient to verify that V; ¢V, if 4, 5=
1,2,---,h and 7#j. For assume that we have a decomposition (7)

into irreducible varieties which is not irredundant, and let, say, V; be
h h

superfluous. Then Ve U V, V,=U (V;nV;). Since V, is
=2 i=2

irreducible, this implies that Vy=V,nV, for some 7#1, ie., that
V,cV,; for some i1,

The above reasoning is similar to that which one uses to show that
if a finite set of prime ideals {p,, Py, - - -, P} is such that p; D p; for
t,7=1,2,---, hand i#7, then no b, is superfluous in the intersection
PLNPeN -+ NP, (See Vol. I, Ch. IV, §4, property A at end of
section.)

CoroLLARY 1. If an irreducible variety V has more than one point it
is not a Hausdorff space. [Compare with Theorem 39 of VI, § 17 and
the observations (A), (B) and (C) following that theorem.]

If V is irreducible, the union of two proper closed subsets of V'
is never the entire variety V, or—equivalently—the intersection of two
non-empty open subsets of V' is never empty, and hence V is not a
HausdorfF space.

CoroLLARY 2. Every ideal % in the set 1 admits an irredundant
representation as intersection of prime ideals:

(8) A= p,NPN -+ NPy
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The irredundant decomposition (8) is unique, each one of the h prime
ideals v; is itself in the set I, and the h varieties V;=7"(p;) are the
irreductble components of the variety ¥ (%).

Let V=v%7(%). Since A€l, we have A=F(V). Let V, V,,---,
V, be irreducible component of V. By the property (2") we have
A=py; N0y N --- Ny, where p;=F(V;)el is a prime ideal, by
Theorem 12. Since V; & V; for j, we have p, D p; for i#j, and this
shows that the representation p; N P, N --- N p, is irredundant. The
unicity of the irredundant representation (8) of % as an intersection
of prime ideals follows from the general theorems on primary decom-
positions of ideals in noetherian rings (and could also be proved directly
and in a straightforward fashion by an argument similar to the one
employed in the proof of the second part of Theorem 13). We observe
that the existence and unicity of an irredundant representation of
as an intersection of prime ideals is an immediate consequence of the
general decomposition theorems for ideals in noetherian rings and of
the fact that %=1/9 (see (6)). What is new in the above corollary is
the assertion that the prime ideals p; in the decomposition (8) themselves
belong to the set I.

We shall now prove the following important theorem:

TueoreM 14 (THE HILBERT NULLSTELLENSATZ): The ideal F (¥ (2))
of the variety of an ideal N in k[ X, X,, - - -, X,] is the radical of .
Or equivalently: if F, Fy, F,, - - -, F, are polynomials in k[ X, X,, - - -,
X,) and if F vanishes at every common zero of Fy, F,, -, F, (in an
algebraically closed extension K of k), then there exists an exponent p and
polynomials Ay, Ay, - - -, A, in RIX,, Xy, - - -, X, ] such that

(9) FP = A1F1+A2F2'L ... +Aqu.

PROOF. We first show that the following statement is equivalent to
the Hilbert Nullstellensatz:

(10) If (%) is empty then A = (1).

It is obvious that (10) is a consequence of the Hilbert Nullstellensatz,
since the ideal of the empty variety is the unit ideal, and the only idea!
A whose radical is the unit ideal is the unit ideal itself. On the other
hand, assume the truth of (10) and let F, Fy, F,, - - -, F, be poly-
nomials in k[X;, X,, - -, X,] satisfying the conditions stated in the
theorem. We introduce an additional indeterminate 7. The poly-
nomials ¥y, F,, - - -, F,, 1 = TF have no common zero in K. There-
fore, by (10), the ideal generated by these polynomials in k[X,, X,,
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.-+, X, T1 must be the unit ideal, and there exist then polynomials
B/(X, T), B(X, T) in k[X,, X,, - - -, X,, T] such that

1 = By(X, TIFy(X)+ - - - +BX, T)F{X)+B(X, T)(1 - TF(X)).

Substituting 1/F(X) for T in this identity and clearing denominators,
we obtain a relation of the form (9).

Thus, in order to prove the Hilbert Nullstellensatz we have only to
show the following: if % is an ideal different from (1) then U has at
least one zero in K. Since every ideal different from (1) is contained in
some proper prime ideal, it is sufficient to deal with the case of a
prime ideal A = p, different from (1).

The proof that a prime ideal p, different from (1), has always a
zero in K| is immediate if K is a universal domain (see VI, § 5bis p. 22).
For in that case, one can always construct a k-isomorphism of the residue
class ring

k[xly Koy 'ty xn] = k[Xl) Xz» T Xn]/p (xi = p-residue of Xt)

into K, and if ¢ is such an isomorphism then the point (p(x,), p(xs),

-+, @(x,)) is a zero of p in K. Thus, our proof of the Hilbert Null-
stellensatz is complete if K is a universal domain. The Nullstellensatz
for the case of a universal domain is often referred to as the weak
Nullstellensatz.

To prove the Nullstellensatz in all generality, it is sufficient to prove
it in the case in which K=*k=algebraic closure of k, for every alge-
braically closed extension of k contains an algebraic closure % of k and
since, furthermore, the existence of a zero of » in 4,* will imply the
existence of a zero of v in every algebraically closed extension of k.
We have therefore to show that “every prime ideal p in k[X,, X,, - - -,
X,), different from (1), has an algebraic zero,” i.e., a zero (£, &,, - - -, £,)
such that ¢; € k.

We shall give two proofs of this assertion.

FIRST PROOF.  Since every prime ideal, different from (1), is contained
in a maximal prime ideal, we may assume that p is a maximal ideal. In
that case, the residue class ring k[x;, x,, - - -, x,] =k[ X}, X,, - - -, X,]/P
(x;=yp-residue of X)) is a field, and the Hilbert Nullstellensatz results
then as a consequence of the following lemma:

LemMma.  If a finite integral domain k[xy, x,, - - -, x,) over a field k
is a field, then the x; are algebraic over k.

PROOF OF THE LEMMA. The lemma is obvious if n=1, for if x is a
transcendental over k then the polynomial ring k[x] is definitely not
a field (the polynomials of positive degree are non-units). We shall
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use induction with respect to n#. The ring S=~&lx;, x5 - -+, x,],
assumed to be a field, contains the field k(x,), and we have S=
k(xy)[xy, x5, - - -, x,]. Hence, by our induction hypothesis, the elements
Xg, X3, - - -, X, are algebraic over k(x;). It remains to show that x;
is algebraic over k.

Since each x;, 2<i<n, is algebraic over k(x,), there exists a poly-
nomial a(X), with coefficients in %, such that a(x;)#0 and such that
the n—1 products a(x,)x,, 2<7=<n, are integral over k[x,]. It follows
that for any element &=f(x, x,, - - -, x,) of .S there exists an exponent
p (depending on §) such that [a(x;)]°f(xy, x4, - - -, x,) is integral over
k[x;]. This holds, in particular, for every element ¢ of k(x,), since
k(x,)= S. Now, if x; were a transcendental over &, then k[x,] would
be integrally closed in k(x;) and we would have, therefore, the absurd
result that every element £ of k(x;) can be written as a quotient
A(x,)[la(x,)lr of two polynomials in x;, with denominator equal to a
power of a fixed polynomial a(x,), independent of £.

SECOND PROOF. This proof will be based on properties of integral
dependence. We first of all achieve a reduction to the case in which &
is an infinite field. For this purpose we consider an algebraic closure
K of the field k(X,, X,,---,X,) and in this field we consider the
polynomial ring kX, X, - - -, X,], where k is the algebraic closure
of kin K. If pe denotes the extension of p to the ring k[X,, X,, - - -,
X,], we have to show the existence of an algebraic zero (o, a5, + -+, ,,)
of pe, and thus, if we fix any prime ideal b in k(X }, X,, - - -, X,] such
that p>pe, it will be sufficient to show the existence of an algebraic
zero of . 'Thus we may replace in the proof the field & by the field &,
and since k is an infinite field, we have the desired reduction. Assum-
ing, then, that # is infinite, we apply the normalization theorem (Vol. I,
Ch. V, § 4, Theorem 8) to the integral domain S=R/v=~k[x;, x,, - - -,
x,], and we thus get a set of d algebraically independent elements
2y, 2y, -+ -, 2y of S|k (d=transcendence degree of S/k) such that S is
integral over k[zy, 2,, - - -, 2;]. We consider a specialization of klz]
to k by assigning to 2y, 2, - - -, 2,4 arbitrary values a;, @y, - - -, a; in k.
The polynomials f(2y, 25, - - -, ;) such that f(ay, a,, - - -, a;)=0 form
a prime ideal a, in A2, 2, - -+, 2,], necessarily maximal, since
klay, a,, - - -, a;) is a field. Since S is integral over k[z;, 25, - - -, 2],
there exists in S a prime ideal q lying over g, (Vol. I, Ch. V, §2,
Theorem 3). The residue class ring S/q is integral over kfz,, 2,,
<o, 250/ag (Vol. I, Ch. V, §2, Lemma 1), and this implies that the
g-residues §; of the x; are algebraic over k. We have thus found an
algebraic zero (£, &5, - - -, &) Of P.
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A slight modification of the above proof makes it possible to avoid
the use of the normalization theorem. For that purpose we fix an
arbitrary transcendence basis {2,, 2y, - - - , 2} of the field k(x;, x4, - - -,
x,)/k such that the 2’s belong to k[x;, x,, - - -, x,] (for instance, we
could take for {2y, 2,, - - -, 2} a suitable subset of {x;, xs, - -+, x,}).
Each x; satisfies an equation of algebraic dependence, of the form
En(B1y Bay -+, B+ - - +8o(21, B -+, 37)=0, where the g, are
polynomials with coefficients in £ and where we may assume that the
leading coefficient g,, is independent of 7. Fix in the algebraic closure
k of k a set of elements %y, %, - - -, £; such that g, (%,, 2,,---, 3)#0
(this is possible since % is an infinite field). Let g, be the kernel of
the k-homomorphism k&[2,, 25, - - -, ;] > k[Z,, 25, - - -, ;] deter-
mined by the conditions 2; — %;. We denote by o the quotient ring
of k[2,, 2,, - - -, 2] with respect to g4, by o* the integral closure of o
in k(xy, xg, - - -, ¥,), and we fix a prime ideal q* in o* which lies over g.
Since g,.(2,, 25, - - -, £ #0, we have g,(2,, 2, - - -, 2,) ¢ 9o and hence
g3 B2 -+, %) is aunit in 0. Consequently, each x; belongs to o*;
the g* residue &; of each x; is algebraically dependent on k[%,, 2,, - - -,
%] and thus &; is algebraic over k. Since the mapping k[x,, x,, - - -,
x,] — k[%,, %y, - - -, X,] determined by the condition x; > %; is a
homomorphism (with kernel a* 0 k[x,, x5, - - -, x,)), (&1, &y, - - -, £,) Is
an algebraic zero of the prime ideal p.

Various consequences can be drawn from the Hilbert Nullstellensatz.

CoroLLARY 1. If v is any prime ideal in R[X,, X,, - - -, X,], then
p is the ideal of its own variety V" (v), and hence ¥ (p) is irreducible and
pel

For, Vp=1y, whence p=F(¥(p)) eI. The irreducibility of ¥ (p)
follows from Theorem 12.

We have therefore a (1, 1) correspondence between the prime ideals
p in the polynomial ring k[X,, X,, - - -, X,] and the varieties in 4,X
which are defined and irreducible over k. 'The correspondence is such
that if p and V are corresponding elements then p=#(V) and V'=7"(p).

CoroLLARY 2. Ewvery ideal which coincides with its own radical is the
ideal of a variety and therefore belongs to the set 1. This set I cotncides
therefore with the set of ideals % such that A=VU; or equivalently,
L is the set of all polynomial ideals which are finite intersections of prime
1deals.

For if %=+/% then A=S(¥(A)), by the Hilbert Nullstellensatz.
The rest of the corollary follows from relation (6) and from Theorem 13,
Corollary 2.

CorOLLARY 3. If % is a polynomial ideal and ,, 9y, - - - , ¥, are the
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isolated prime ideals of N, then the varieties ¥ (p,), ¥ (9g)y- -, ¥ (¥y)
are the irreducible components of ¥ (N)/k.

Since P, NPy N - -- NP, is an irredundant representation of V¥ as
intersection of prime ideals, the corollary follows from the irreducibility
of ¥(p;) and from Corollary 2 (since V% € I, by that corollary).

COROLLARY 4. Let V be a wvartety in AKX, defined over k. If a
polynomial f in k[ X, X,, - - -, X, vanishes at all the algebraic points of
V, then f vanishes at every point of V.

Let ¥, be the set of algebraic points of V' and let % be an ideal in
k[X,, Xo -+, X,] such that V=77 (). Then ¥V, is the variety of
the ideal % in the affine space 4,k over k.. By the Hilbert Nullstellen-
satz, as applied to the case K=k, the vanishing of f at every point of
V, implies that fe /9. Hence fe #(V).

The last corollary shows that a variety V in 4 K which is defined
over k is uniquely determined by the set of its algebraic points. Or,
in topological terms: the set of all algebraic points of a variety V is
everywhere dense in V.

§ 4. Algebraic varieties in the projective space. Let k be a
ground field and let K be an algebraically closed extension of k (K=
codrdinate domain). The points of the n-dimensional projective space
P X over K are represented by ordered (n+1)-tuples (yo, ¥4, * * * 5 y,)
of elements of K, the (n+1)-tuple (0,0, - - -, 0) being excluded and
two (n+1)-tuples (yo, y1 = =, ¥a) (3’0’1 - - » ') representing the
same point P if and only if they are proportional (i.e., if there exists an
element t#0 in K such that y';=ty, ¢=0,1,--.,7n). The (n+1)-
tuple (yg, ¥4, * - +» ¥,) is called a set of homogeneous coordinates of the
corresponding point. We shall often denote this point by (v). If
(y) is a point P in PX, the field generated over k by all the ratios
¥:/y; such that y;#0 is independent of the choice of the set of homo-
geneous codrdinates of P. This field will be denoted by k(P). By
the dimension, dim P/k, of P (over k) we mean the transcendence degree
of k(P)/k.

A set (¥, yp - - +» ¥, of homogeneous codrdinates of a point P is
called a set of strictly homogeneous codrdinates of P if the following
condition is satisfied: the ideal of al! polynomials F(Y,, Y,,---, Y)
(homogeneous or non-homogeneous) such that F(yg, vy, -, v,)=0 is
homogeneous; or equivalently: the ring k[yg, vy - -+, y,] is homo-
geneous (in the sense of § 2).

Lemma. Let (yo, ¥1, -+ - » V) be a set of homogeneous coordinates of
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a point P and let s be an index, 0 <s<n, such that y.#£0. Then (y,,
Y ***» Va) 15 a set of strictly homogeneous codrdinates of P if and only if
y, 15 a transcendental over the field k(P).

PROOF. Assume that (yg, ¥y, -+, ¥, is a set of strictly homo-
geneous coordinates of P and let F(Z) be a non-zero polynomial in one
indeterminate Z, with coefficients in k(P). Since every element of
k(P) is a quotient of two forms in k[y,, ¥y, - - -, ¥,], of like degree, we
have

HZ) = (,Zf DG yv 2 INZN (Yo Y-+ 2 I

where f(® and the f®) are forms in k[Y,, ¥, - - -, V,], of like degree A.

We have f(o)(yo’ NATIR ’yn)?éo’ and f(i)(yoyyb U ,y,,);eo for some
i#0. Let G(Yo, Yy, -+, V)= f(Yy, Yy, - -+, Y)Y, I, say,

f(v)(yo’ Yo ’yn)9é0 and if we set Gv+h=f(v)( YO’ Yl) ] Yn) st’
then G, ., is the homogeneous component of G, of degree v+#4, and we
have G, (¥ Y1 - - +» V) #0 since y #0. Since the y’s are strictly
homogeneous codrdinates of P, it follows that G(vg, ¥4, * - -, ¥,) #0, i.e.,
F(y,)#0. Thisshows that y, is a transcendental over k(P). The proof
of the converse is also straightforward and may be left to the reader.

CoROLLARY. If K has infinite transcendence degree over k every point
of P,X has sets of strictly homogeneous coordinates.

Let F(Yy Yy, - -+, Y,) be a homogeneous polynomial over k& and
let P be a point of P,X. If some set of homogeneous codrdinates
(Yo Y-+ +» V) of P satisfies the relation F(yg ¥y, -+, ¥,)=0 then
every set of homogeneous codrdinates (v'g, ¥'y, -+ -,y",) of P will
satisfy the relation F(y'q, %'y, --,¥')=0. We then say that the
point P is a zero of the form F and that F vanishes at P. If A is a
homogeneous ideal in k[Y,, Y, .-, Y,], any common zero of the
forms belonging to U is called a zero of the ideal %, and the set of
zeros of U is called the wvariety of % and is denoted by 7" (%). An
algebraic (projective) variety in P,K, defined over k, is any subset of
P,K which is the variety of some homogeneous ideal in A[Y, YV, - - -,
Y,]. Only varieties defined over the given ground field & will be con-
sidered, and the specification “defined over & will be omitted.

If E is any subset of PX then the set of forms in k[Y,, ¥V, -+, V,]
which vanish at every point of E is obviously the set of forms belonging
to a well defined homogeneous ideal, namely to the ideal generated by
these forms. This homogeneous ideal is called the ideal of the set E
and will be denoted by F(E). We shall denote by I the set of all
homogeneous ideals in k[Y,, Y, - - -, Y,] of the form S(F), E<P/KX,
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Note that if o is an irrelevant ideal (§ 2, p. 154) then ¥7(%) is empty,
for if U is irrelevant then Y2 € ¥ for some integer p=1 and for all ¢,
showing that no point (v, ¥y, - - +, ¥,) (not all ¥, being zero) can be a
zero of U.

As in the case of the affine space 4,K, we have a natural topology in
the projective space P,X in which the algebraic (projective) varieties
are the closed sets. The closure of any subset E of P X, i.e., the least
variety contaming E, is given by ¥ (F(E)). By a specialization of a
point P, over k, we mean any point Q which belongs to the closure of
the point P; in symbols: P A 0.

These notations and terms are identical with those used in the pre-
ceding section for affine varieties. The formulas (1)«(6) continue to
hold for projective varieties and homogeneous ideals, and there is no
change whatsoever in the proofs except that whenever we use poly-
nomials f, g, etc., we must now assume that f, g, - - - are forms. Itis
only necessary to bear in mind the fact that the set of homogeneous
ideals is closed under all the basic ideal-theoretic operations (see § 2,
Theorem 8). The definition of irreducible varieties can be repeated
verbatim for projective varieties, and then Theorems 12 and 13 continue
to hold, the proofs remaining the same (we need only recall, from § 2,
that for a homogeneous ideal v to be prime it is sufficient that the con-
dition “fge p = fe p or g p” be satisfied for forms f and g). Corol-
lary 2 of Theorem 13 continues to hold, with the additional property
that the prime ideals by, p,, -+ -, ¥, in (8) are homogeneous. While
going through the reasoning which was employed in the proof of that
corollary the reader should bear in mind the fact proved in § 2 (Theorem
9, Corollary) that all the prime ideals of a homogeneous polynomial
ideal (over a field k of coefficients) are homogeneous.

In VI, § 5%, we have introduced the notion of a genera! point of
an irreducible affine variety and also the codrdinate ring of such a
variety. We shall now extend these definitions to varieties in the
projective space PK.

Let 7 be a non-empty irreducible variety in P,X and let p be the
homogeneous prime ideal of V in k[Y,, ¥;,---, ¥,]. The residue
classring Rl Y,, Yy, - - -, Y Vo =k[yy, ¥4, - - -, ¥,], where ¥, = p-residue
of Y, is called the homogeneous coérdinate ring of V. It is clear that
this ring is a finite homogeneous integral domain (over k), in the sense of
the definition given in § 2 (p. 151).

Since V is non-empty, not all the indeterminates Y, can belong to .
Hence not all y; are zero. However, the y; are not in general elements
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of K, and we cannot therefore, in general, regard (yg, ¥1, - - -, ¥, 35 2
point of P,X. We do call, however, the (n+1)-tuple (yo, ¥y, - = = » ¥
the general point of V. Since the kernel v of the canonical homo-
morphism kY, Yy, .-+, Y1 —k[vg, ¥3, - - -, ¥,] is homogeneous, it
follows that (yo, ¥4, - - -, ¥,) 5 a set of strictly homogeneous codrdinates
of the general point of V.

If K is a universal domain, there exist k-isomorphisms of k(y,,
Y1+ » ¥, into K. If ¢ is such an isomorphism then the point
(a(¥o)s o(¥1), - - -, o(¥,)) is a point of I and is also called a general point
of V'; the point (yg, ¥y, - - - y,) may be singled out by referring to it as
the canonical general point of V. Note that the set (a(yy), o{¥y), - - -
o(y,)) is a set of strictly homogeneous codrdinates.

The quotient field of the homogeneous codrdinate ring k[Y]/p is
not what is called the function field of V. We notice that £[Y]/p is a
graded ring (see § 2, Lemma 1, p. 150), whence we can talk about homo-
geneous elements of this ring. Then the set of all quotients a/b,
where a and b are homogeneous elements of like degree in A[Y]/p
(b#0), is obviously a subfield of the quotient field of A[Y]/p. This
subfield we call the function field of V, and we denote it by 2(V). The
field (V') is generated over k by all the ratios y,/y; whose denominator
is #0; if s is an index such that y,#0, we also have A(V)=k(y /y,,

-y ¥alys)- The transcendence degree of k(V) over k is called the
dimension of V and also the projective dimension of the homogeneous
prime ideal p. It is an integer between 0 and n. Since vy, y4, - - -, ¥,
are strictly homogeneous coérdinates, it follows from the above lemma
that y, is a transcendental over (V). Hence the transcendence degree
of k(y¢, ¥1, - - - » ¥n)/k (=dimension of the prime ideal p) is one greater
than the dimension of V' (or also, one greater than the projective
dimension of p).

According to our preceding definitions, k(}") is identical with k(P),
where P is the canonical general point of V, and dim V' =dim PJk.

From the Hilbert Nullstellensatz we can easily derive a corresponding
Nullstellensatz for homogeneous polynomial ideals and projective
varieties. We can see already that some modification will be necessary,
for we have already pointed out that the projective variety I of an
irrelevant ideal ¥ is always empty, while in the non-homogeneous case
the Hilbert Nullstellensatz tells us that only the unit ideal has the
property that its (affine) variety is empty. Thus we cannot expect to
have a verbatim extension of the Nullstellensatz. However, it turns
out that the irrelevant ideals are the only exceptional ones:

THEOREM 15 (Projective Nullstellensatz): If % is a non-irrelevant
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homogeneous ideal in R(Y,,---, Y], then ¥ (N) is non-empty and the
ideal of the variety ¥ (%) is the radical of .

PROOF. We set I/=77(¥) and we consider the affine variety C(V')
in A,.,¥ which is the variety of the ideal %: it is the set of all points
(%9, - -+ » x,) in A, K such that F(x)=0 for every F in A. Since  is
a homogeneous ideal, the relation (x, - - -, x,) € C(V) implies (tx,,
.-+, tx,) € C(V) for every t in K. Thus, if V is non-empty, C(V) is a
union of straight lines containing the origin (0, - - -, 0).

It is furthermore clear that a point (x, x4, - - -, &,) of 4, %, different
from the origin, belongs to C(V') if and only if the point of P, X whose
homogeneous cobrdinates are xg, x,, -, %, belongs to V. The
variety C(V) is called the representative cone of V. Since ¥ is non-
irrelevant, C(V') is neither empty nor is it reduced to the origin (by
the affine Nullstellensatz). Hence V' is non-empty.

Since V is non-empty, it is clear that the (homogeneous) ideal of V
is contained in the ideal of C(V). Conversely, if a polynomial F(Y,,

-+, Y,) vanishes on C(V'), we have, for every point (xg, - - -, x,) of V/
q
and for every ¢ in K, F(tx,, - - -, tx,)=0. Writing F= > F;, where
=0
F; is either zero or a form of degree j, we get Fo-!—tlé'l(x)-!— R
t9F (x) =0 for every ¢, whence F (x) =0 for every j since the algebraically
closed field K is infinite. Therefore the homogeneous ideal of 1
is equal to the ideal of C(V). Theorem 15 now follows immediately
from the affine Nullstellensatz. Q.E.D.

The four corollaries of Theorem 14 hold for projective varieties and
homogeneous ideals with the following modifications:

In Corollary 1 it must be assumed that b is a prime homogeneous
ideal, different from the irrelevant ideal 9) which is generated by
(Ym Yl) Tt Yn)

Corollary 2 should read as follows: “Every ideal which coincides
with its own radical and is not an irrelevant ideal is the ideal of a
variety and therefore belongs to the set I. The set I is therefore the
set of all polynomial ideals which are finite intersections of prime
ideals and are different from the irrelevant prime ideal (Y,, Y,, - -,
Y”).”

In Corollary 3 it must be assumed that 2 is not an irrelevant ideal.

In Corollary 4, V' is a projective variety in PX, fis in (Y, Y,
.-+, Y1 and is a form. By an algebraic point in P.X we mean a
point whose homogeneous coordinates are proportional to elements
of &.

We note that the existence of algebraic points on every non-empty
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variety can also be proved by means of the existence theorem for
algebraic places (VI, § 4, Theorem 5’, Corollary 2), as follows:

Let (v, Y1, - - = » ¥) be the canonical general point of an irreducible
non-empty variety V in PX, and let # be an algebraic place of k(y,,
Y1 -+ > ¥k If v is the corresponding valuation, we may assume
that o(y) S o(y;), 1£i<n. Leta;=2(y,/y,), where a; is then different
from oo and is algebraic over k. The point (1, a,, - - -, a,) is immedi-
ately seen to belong to V, and thus I has an algebraic point, as asserted.

§ 4, Further properties of projective varieties. We shall
begin by generalizing to projective varieties the notion of the center of
a place and the notion of a divisor which have been given for affine
varieties in the preceding chapter (VI, § 5bis and § 14).

Let Q be a point (=g, 24, -, 2,) of V. We consider quotients
Do Yv > INEYe Y1 - - > Ve Of elements of the homogeneous
codrdinate ring of V| such that f and g are homogeneous, of like degree,
and such that g(zg, 24, - - -, 2,)#0. These quotients form a ring,
contained in the field k(V'), called the local ring of V at the point Q, or,
briefly, the local ring of Q (on V).

Without loss of generality we may assume that z,#0. Then also
yo#0 since Q is a specialization, over k, of the general point (y,, y,,

-,y of VIk. Set x;,=y;/yo, a;=2;/z,. It is clear that the point

(ay, ay, - - -, a,) of the affine n-space is a specialization of the point
(%4, %9y - + =, x,). Therefore, if we consider the ring Alx,, x5, - - -, x,]
then the point (a,, a,, - - -, a,) corresponds to a prime ideal p of this

ring, and the local ring of Q is immediately seen to be equal to the
quotient ring of the ring Rx,, x,, - - -, x,] with respect to this prime
ideal. The points of the projective space P, X which do not lie in the
hyperplane Y (=0 form an affine space 4,X. Denote by V, the inter-
section 7 n A, K. We have just seen that each point of V, is a special-

ization of (x4, x5, - -, x,) Over k; also the converse is true and its
proof is immediate. Hence V, is an irreducible affine variety, with
(%, %, - - -, x,,) as general point. This connection between projective

and affine varieties will be investigated in more detail in Section 6.
For the moment we only wish to call attention to the fact which was
established above, namely that if Q is any point of V, then the Jocal ring
of the projective variety V at Q is the same as the local ring of the affine
variety V, at Q. .It is also clear that the function fields k() and
k(V,) coincide, both being given by the field A(x,, x5, - - -, %,). We
shall use these facts and notations in the remainder of the section.

Let & be a place of the function field A(V) of V' and let us assume
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that the residue field of 2 is contained in the codrdinate domain K
(this is no essential restriction on £ if K is a universa! domain; see
VI, §5%). If v is the valuation determined by £, then »(y,[y;) is
meaningfu! for any 7,7=0, 1, .- -, n, provided y;#0, since y,/y; € k(V).
It is clear that there exists an index s such that o(y,[y)20 for i=
0,1,.--+,n For such an index s let Z(y,/y,)=b,e K. The b; are
not all zero (since b,=1) and thus determine a point Q=(b,, by, - - -, b,)
of PX. If t is another index such that «(y,;/y,) 20 for i=0,1,-.-,n
and if we set P(v;/y,)=c;, then bc,=1, whence b,#0, ¢,#0, and
furthermore, ¢;=2(y;[y:-¥y./y,) = b,c‘, i=0,1,.-.,n This shows that
the point Q above depends only on the place 9’ and not on the choice
of the index s. It is easily seen that Q belongs to V. For if f(Y,, Y,

, Y,) is any form in ‘the homogeneous ideal of V, then we have
f(yo/y,, Y1V o+ s ¥u/¥)=0, and since £ is a k-homomorphism it
follows that f(b,, by, - - -, ,) =0, showing that Q is on V. This point
Q is called the center of the place 2 on the variety V. The properties
(1)~(6) of the center of a place on an affine variety, given in VI, § 5bis,
continue to hold for projective varieties. The proofs are straightforward
and may be left to the reader (it is best to prove property 5 and to use
this property in the proof of the remaining properties).

In a similar way (i.e., by reduction to affine varieties) we can define
the center W, on V, of any valuation of A(V)/k: W will be a certain
irreducible subvariety of V (see VI, § 9, p. 38).

We now consider prime divisors of the function field A(V) of V.
Since k(V) is a field of algebraic functions, namely A(V)=k(x,, x,,

, x,), where x;=y,[y, (assuming that y,#0), the results of VI,
§ 14 are applicable. In particular, every prime divisor of A(V) is a
discrete valuation, of rank 1. Furthermore, every irreducible (r—1)-
dimensional subvariety W of V/k is the center of at least one and of at
most a finite number of prime divisors. To see this, we have only to
fix a genera! point Q of W/k and—assuming that Q belongs to the affine
variety V,—observe that the prime divisors of k(}’) having center W
on V coincide with the prime divisors of A(V,) (=k(V)) which have
center W, on V,, and then apply Theorem 32 of VI, § 14.

We say that our variety V' is normal at W if the local ring o(W; V)
(t.e., the local! ring of V at the general point Q of W/k) is integrally
closed. Clearly, V' is normal at W if and only if V, is normal at W,
[since o(W; VY=o(W,, V,)l. We say that V/k is normal, or locally
normal, if it is normal at each of its points. Theorem 33 of VI, § 14
continues to hold for normal varieties in the projective space: if V/k
is normal at W and dim W=7 —1, then there is only one prime divisor
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of k(V) having center W. We denote this divisor by vp,.  In particular,
if V/k is a normal variety then every irreducible (r—1)-dimensional
subvariety W of V/k is the center of a unique prime divisor of k(7).
We now assume that V' is normal and we introduce the free group of
divisors on V, i.e., the group generated by the irreducible (r—1)-
dimensional subvarieties W of V. Using the notations of VI, § 14,
p. 98, we can now define the divisor (w) of any function w0 in k(V):

ey (w) = 2 vp(w)-W,

where the sum is extended to all the irreducible (r—1)-dimensional
subvarieties of V/k. That the sum (1) is finite can be seen as follows:

In the first place, there is only a finite number of irreducible (r —1)-
dimensional subvarieties W of V such that (a) V/, contains the general
point of W, /k and (b) vy (w)s#0; this assertion concerns only the
affine variety ¥, and has been proved in VI, § 14 (p. 97).

In the second place, since the intersection of ¥ with the hyperplane
Y,=0 is at most (r—1)-dimensional, there is only a finite number of
(r—1)-dimensional irreducible subvarieties W of ¥ which do not
satisfy condition (a) above.

As has been proved in VI, § 14, p. 99, if w is not a constant, i.e., if w
1s not algebraic over k, then there exists at least one polar prime divisor
of w, i.e., for at least one W in (1) we must have vp(w)<0. Upon
replacing w by 1/w we see, under this same assumption, that we must
also have vy (w) > 0 for at least one W.

We now prove the following analogue of Theorem 34 of VI, § 14,
for normal varieties in the projective space:

THEOREM 16.  Let V/k be an irreducible variety in the projective space
P.K and let R=k[yg, ¥y, -~ -, ¥, be the homogeneous codrdinate ring of
VIk. A necessary and sufficient condition that V |k be normal is that the
conductor of R in the integral closure R of R be an irrelevant ideal.

PROOF. Assume that the conductor € of R in R is irrelevant and
let O=(z, 2y, - - -, 2,) be any point of V. We show that V is normal
at Q. Without loss of generality we may assume that z,#0. We set
xX;=¥;/Ve, a;=2;/2y and we call V, the affine variety consisting of
those points of ¥ which do not lie in the hyperplane Y,=0. The
point Q,=(ay, a,, - - -, a,) lies on V,, and to say that V is normal at
Q is the same as saying that V, is normal at Q,. Now, the ring
k[x,, x4, - - -, x,] is the non-homogeneous codrdinate ring of V,/k. We
shall show that this ring is integrally closed, whence it will follow that
V, is a normal variety. Let £ be an element of the integral closure of
k[x,, xg, - - -, x,l. Upon the substitution x; —v;/v,, and clearing
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denominators, an equation of integral dependence for ¢ over Alx,,
Xg, - - -, x,] takes the form

(2) y0h§y+f(l)(yo’y1» ctt ’yn)fy_l'l' te 'Lf(y)(yo»yp Tt ’yn) = 0,

where each f is a form of degree %, with coefficients in k. Relation
(2) implies that y#¢ € R.  Since the conductor € of R in R is irrelevant,
it contains a power of each y,. In particular, let, say, y,¥Y €€. Then
yNth& e R, and since ¢ is homogeneous of degree zero, we have
Y E=9(¥0, V1 - -+ » ¥n)» Where g is a form of degree N+h, with

coefficients in k. Hence §=g(1, x,, x4, - - -, x,) € R[xy, x5, - - -, x,].
Conversely, assume that 7 is normal. We have to show that there
exists an integer N such that yNR<R for :=0,1,---,n. Since R is

a finite R-module (Vol. I, Ch. V, § 4, Theorem 9) and since each ele-
ment of R is a sum of homogeneous elements of R (§ 2, Theorem 11),
it is sufficient to show that for any homogeneous element w of R there
exists an integer /N (depending on w) such that yNw € R, for =0, 1,

-, n. Let us show, for instance, that y,¥w € R for some N. Letv
be the degree of w(v=0) and let w satisfy an equation of integral
dependence over R, of degree g in w:

(3) wf+ A0ttt oo+ A4, =0, A eR.

Each coefficient 4; is a sum of homogeneous elements of R, and thus
the left-hand side of (3) is a sum of homogeneous elements of R.  Since
R is a graded ring, the sum of terms having the same degree must
vanish. In particular, the sum of terms of degree vg must be zero.
Hence we may assume that 4;is a form in y,, y,, - - -, ¥,, of degree vi.
But then (3) shows that w/y,” is integral over k[x,, x,, - - -, x,]. Since
V is normal, also ¥, is normal, and hence the ring klx,, x,, - - -, x,)
is integrally closed (VI, § 14, Theorem 34). Hence w/yy € klx,, x,,

<y X, e, oy =f(¥o, 1, - - 05 V)V, Where fis a form of degree s.
Hence y,—we R, as asserted. This completes the proof of the
theorem.

A variety V/k in P/X is said to be arithmetically normal if its homo-
geneous codrdinate ring R=~k[y,, y,, - - -, ¥, is integrally closed. It
follows from the preceding theorem that an arithmetically normal
variety is also normal. 'The converse is not always true, as can be shown
by examples.

For an arbitrary projective vartety V/k, we consider a finite algebraic
extension F of the field k(') and we denote by R the integral closure,
in F(y,), of the homogeneous cotdrdinate ring R of V/k. Since y, is a
transcendental over k(V) (we assume that v,#0) it follows from



§ 4bis FURTHER PROPERTIES OF PROJECTIVE VARIETIES 177

Corollary to Theorem 11 (§2) that R is a graded ring. Let R,
(respectively, R,) be the set of homogeneous elements of R (respectively
of R), of degree ¢g. Since, for each ¢=1, R, is a finite dimensional
vector space over k& and since R is a finite R-module (admitting an
R-basis consisting of homogeneous elements), it follows at once that
R, is also a finite-dimensional vector space over k. Let {uy, uy, - - -,
u,} be a k-basis of R, and let 7, be the projective variety whose general
point is (ug, #y, - - -, %,). A change of k-basis of R, leaves I, un-

q
changed, up to projective equivalence. Thus 7, is uniquely deter-

mined for each integer g2 0. We shall prove the gollowing:

If q is sufficiently large then V, is the derived normal model of V[k in
F,t and, moreover, V, is an arithmetically normal variety provided k is
maximally algebraic in F.

[The proof given below applies without modification to models over
“restricted” domain (VI, § 18) and yields another proof of Theorem 42
of VI, §18.]

Let o;=k[yo/y;, ¥1/¥5 - - = » ¥a/y;] and let V; be the affine model
V(o0,), so that V' is the union of V', V,, - - - | V. Let V', be the derived
normal model of V; in F, i.e., let V';=V(0";), where o’; is the integral
closure of v; in F. To prove that 7, is the derived norma! model
N(V, F) of V in F it will be sufficient to show that V", is a subset of
P, for i=0,1,. -, n (for, N(V, F) is the union of the affine models
Vi V'y -+, V'yand is a complete model, while V7, being a model,
is an irredundant set; see VI, §17). Let us show, for instance, that
Vo=V, if ¢ is sufficiently large.

Without loss of generality we may assume that the k-basis {ug, u,,
-+, u,} of R, includes the element y,2. Let, say, uy=y,% Let
0o=Fk[ufuy, ugfug, - - -, u,fug). Then the affine variety V{(d,) is a
subset of V,. We shall show that if q is sufficiently large then v'y=15,.
This will establish the inclusion V' ,=V,, for g large.

Let ¢ be any element of 3,. Then é=w/u,?, where w is a form, of
degree h, in wugy, uy, - - -, u,, with coefficients in k, whence w € R,,.
The element w satisfies a ““homogeneous” relation of integral depen-
dence over R, i.e., we have wf+a,wf~ 14 - .. +a,=0, where a; € R,.
Upon dividing this equation by ug* and observing that a;/u/t=
a;lyiite o, we see that £e€o’,. We have therefore shown that
5,<0’y (forany ¢). To prove the opposite inclusion o', <5, (for large )
we first observe that the monomials y2-1y; (1=0, 1, - - -, #) belong to

R,, hence also to R,, and thus are linear combinations of ug, uy, - - -,

+ Here V and ¥V, are regarded as models, i.e., as collections of local rings ; see
the opening paragraphs of VI, § 18.
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with coefficients in k. Therefore v;/y,=¥,;y,9" /tg € 55. Thus 0,=5,.
On the other hand, if 7 is any element of o’y then, upon writing an
equation of integral dependence of 1 on o,, we see at once that for large
g the product 7y,? is integral over R and therefore belongs to R,.
Since o', is a finite o,-module, it follows therefore that if {9, 7y, - - -,
7} 18 an og-basis of 0’y and ¢ is sufficiently large, then all the products
N.¥o? are linear combinations of u,, #,, « - -, u,, with coefficients in k,
and therefore the 7, belong to 5,. Since also o, is contained in 3, the
inclusion o’(< 3, is proved, for all large ¢.

It now remains to prove that I, is arithmetically normal, i.e., that
the homogeneous cobrdinate ring I=~RA[uy, uy,---,u,] of V [k is
integrally closed (for large ¢). Let I’ be the integral closure of [ in its
quotient field. Then I'isagraded ring: I'=1"g+I';+ -« - + I+ - ..
(the degree & of a homogeneous element of I’ being defined by stipu-
lating that u,, u,,-- -, u, are homogeneous elements of degree 1).
Since /<R, we have I'R and hence I',<R,,. We assert that I',=
Ry, To show this we first observe that R is integral over I, since
yael. Hence the elements of R, , being integral over R, are also
integral over I. Therefore, in order to show that R,,=I', we have
only to show that R,, is contained in the quotient field of I. This,
however, is obvious, since R,, < F-y?< F(u,) (assuming—as we may—
that u,=y7) and since F(u,) is precisely the quotient field of I, for
large g (we have just proved that if ¢ is large then V7, is a derived normal
model of V/k in F, whence—at any rate—k(P )=F). We thus have
shown that

4) I' = Ry+R,+Ry+ -+, g¢large,saygz o

Since R is a finite R-module, we can write R=Rz,+Rz,+ - .- + Rz,
and we may assume that the 2; are homogeneous elements of R. Let
s; be the degree of z; and let p=max (sy, 5o, - - -, §,, o), Where o is
defined in (4). We shall now show that if ¢ p then V,_ is arithmeti-
cally normal.

If g2 max (s,, 55, - - -, 5,) then we have clearly

(5) Ry= R, m+R,_ 2+ - +R,_, 2,

Q—Sz
Let j be any non-negative integer. Then:
R,., =R z+R

. [
qﬂ—sl q+1—szz 2 + Rq+1 sy R R

Therefore, a fortiori, we have R,.;=R R, It follows that R, =
(R)r. If, now, also (4) holds, i.e., if we have ¢=p, then we find
=Ry+R,+(R)%+ - -+ +(RY+ ---. Recalling that R =ku,+
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ku,+ - - - +ku,, we conclude that I'c R +1. Now, we have R,=k
and R,=*k since we have assumed that k is maximally algebraic in F
(and therefore also in F(y,)). Therefore I'<], ie., I'=1, showing
that 77 is arithmetically normal.

§ 5. Relations between non-homogeneous and homogeneous
ideals. We consider the polynomial rings R=k[X,,..., X,] and
FR=k[Yy Yy,---,Y,] in n and n+1 indeterminates, respectively,
over the same field k. Our aim is to establish a natural correspondence
between arbitrary ideals in R and homogeneous ideals in 2R, Given
any polynomial F(X,,- - -, X,)in R, different from zero, we first define
its homogenized polynomial *F in "R as follows:

) "F(Yo - -+, Y,) = YPOR(Y Y, - -+, Y,[Yy),

where 9(F) denotes, as usual, the (total) degree of F; the fact that *F
is actually a polynomial, and not merely a rational function with
denominator a power of Y, is clear. The homogenized polynomial
kF is a form having the same degree as F. We leave to the reader the
verification of the following formulas:

(2) HFG) = "F.hG,

3) Y AP HAOKF+G) = YIF+O[Y A0 hF 4 ¥ P hG].

Note that (3) reduces to {F+G)="F++G if F, G and F+ G have the
same degree and F+G#0. Note also that #F is never a multiple of Y,

Conversely, with every polynomial (Y, - - -, Y,) in 2R, we associate
the polynomial %p in R defined as follows:

(1’) “(p(Xl,-“,X,,) = 9’(1’X1”' : ’Xn)'
Then it is clear that we have

(2" (o) = -

(39 p+y) = ‘o2

Actually we shall apply the operation ¢ only to forms ¢, so that from
now on ¢ will always denote a form (unless the opposite is stated
explicitly). It is clear that if Y™ is the highest power of Y, which
divides g, then the degree of % is equal to d(p)—m.

We now study the relations between “#" and “". It follows immedi-
ately from the definitions that we have

*) “F) = F.
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On the other hand, we have (M) (Y, ---, Y,)= Y XD.99(Y,/Y,,
e Y Y ) =Y 0.1, Y[V, -+, YY) Hence

(5) h(a(P) — yoa("w)—b(tr—).%

or, by the preceding observation,

(5 Hp) = Yoo,

where Y " is the highest power of Y, which divides ¢. Thus #(4p)
is, in general, a divisor of . The inequality d(%p) < &(¢) can hold only
if @ is a multiple of Y,, and %(¢) is then the form obtained from ¢ by
deleting the factor Y " contained in . It follows that the homogeneous
polynomials of the form #F in %R (F € R) are exactly those polynomials
which do not contain Y as a factor.

We now extend the operations “#" and ““" to ideals. We shall
denote ideals in R by small German letters and ideals in #R by capital
German letters. Given an ideal a in R, the set of all forms *F, Fea,
is not the set of all forms belonging to some homogeneous ideal, for
this set does not contain any form which is divisible by Y,. However,
if we consider the set S of all forms Y -*F (m=0, F € a), then it is
easily seen that .S is the set of forms of a homogeneous ideal. To
show this we have only to show that the difference of two forms in S,
of like degree, is still in S, and that the product of any form in .S by an
arbitrary form in #R also belongs to S. For, if this is shown, then it
will follow that S is the set of all forms which belong to the ideal
generated by the elements of S. Now, all that will follow directly
from the following characterization of S: a form ¢ belongs to S if and
only if p € a. 'The proof is immediate and is as follows:

If 9p=Fea, then *%)="F, and thus, by (5'), p=Y"-*F€ S.
Conversely, if p=Y”-#F, with F in q, then 9p=49(*F)=F € q, by (4).

We denote by *a the homogeneous ideal in *R which is generated by the
forms belonging to S. Thus, a form ¢ belongs to *a if and only if ¢ is of
the type Y "(*F), m=0, F € a, or, equivalently, if and only if %p € a.

TurorReM 17. The operation a — *a maps distinct ideals in R into
distinct ideals in "R; it preserves inclusion and the usual ideal-theoretic
operations, i.e., it has the following properties:

[11 a>b = ha>%p.

[2] %a+Db) = ka+"p.

[3] #(ab) = *a-*p,

T4} Aa N B) = *a N *b.

I51 #(a:b) = ka:p.

6] (va) = Vha.
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Furthermore:
[7] If v is a prime ideal in R, then *v is also a prime ideal.
[8] If v is prime and q is an ideal primary for v in R, then *q is primary
Sfor p.
(9] If a=() a; is an irredundant primary representation of an ideal

a in R, then "a=() *q; is an trredundant primary representation
i

of ha.

PROO-!{: If a is an ideal in R then a coincides with the set of all
polynomials %p,  €*a. This shows that if a and b are distinct ideals
in R then #a#*b.

[1] is obvious, and [2] follows from the fact that, for any ideal a, *a
is generated by the forms #F where F ranges over a. Similarly, [3]
follows directly from (2) and from the definition of products of ideals.
A form ¢ belongs to #(a n b) if and only if %p € a N b, i.e., if and only if
@ belongs to *a and to #b, and this proves [4]. The inclusion #(a:b)<
ka:kp follows directly from [3] and [1] and from the definition of
quotients of ideals. Conversely, let ¢ €*a:#b and let F' be any poly-
nomial in b. Since #F e we have ¢-*F €*a, whence %p-*F)€a.
By (2') and (4) we have %(p-#F)=4p- F, and so the product %p- F belongs
to a, for every F in b. This implies that %p € a:b, ¢ € #(a:b), showing
ha:hp < h(a:b).

Relation [6] follows from the following equivalences: @ € #(V/a) <>
%9 eVa< (p)mea for some integer m21 <> %(p™) € a <> g™ € ha <>
peVh

Let q be a primary ideal in R and let ¢ and ¢ be two forms in *R
such that gy €*q,y ¢ 2q. Then ap-4f=4gpf)eq and 4 ¢ q. Con-
sequently, (%p)” € a for some m=1, showing that g™ e *q. It follows
now from Lemma 2, §2, that *q is primary. Similarly, it can be
shown that if p is prime then %p is prime, and this completes the proof
of [7] and [8], in view of [6].

As to [9], the fact that () *q; is a primary representation of *a

follows from [4] and [8] It remains to show that this representation
is irredundant. If j is any of the indices in the set {7} then a% n ;.

Hence, by the first assertion of the theorem and by [4], we have

ka# ) *a;. This completes the proof of the theorem.
17#)
Not every ideal in #R is of the form *a, where a is an ideal in R; in

fact, no ideal of the form *a, other than the unit ideal, can contain a
power of Y,. The question arises, therefore, of characterizing the
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class of ideals %o, acR. Before studying this question it will be
convenient to extend the operation ¢ to ideals in #R.

Given a homogeneous ideal % in #R the set of all polynomials of the
form %p, where @ ranges over the set of all forms in ¥, is easily seen to
be an ideal by using the formulas (2') and (3') and by observing that:
(a) if @ and ¢ are forms in ¥ and m=0())— (p)20, then the form
Y,"p—i is in % and we have (Y "p—y)=2% —a); (b) every poly-
nomial in R can be written in the form %p with ¢ a form in #R (see (4)).
We denote this ideal by #.

We note the following properties of the composite operations 4
and %4:

(6) a(ha) = a, for any ideal a in R,
) h(ax)>9Y, for any homogeneous ideal ¥ in *R,
(7" Y m(h(eA))<¥, for some integer m= 1.

If a is any ideal in R then it follows from the definition of #a (and it
has also been pointed out at the beginning of the proof of Theorem 17)
that a is the set of all polynomials 4p, where ¢ ranges over %a. In
other words, we have (6). Relation (7) is obvious, for if p € ¥ (p, 2
form) then ap € A and #(%p) € #(eA), whence @ € #(o), since ¢ is a
multiple of #(ap), by (5'). On the other hand, if ¢ is any form in
h(a%) then 4p =4} for some form ¢ in %, and hence, by (5), ¢ and ¢
can differ only by a factor which is a power of Y,. Thus, for every
form @ in A(@Y) there exists an integer s=s(p) such that Y p €.
Since #(#) has a finite basis, (7") follows.

THEOREM 18.  The operation A — %X maps the set of all homogeneous
ideals in "R onto the set of all ideals in R; it preserves inclusion and the
usual ideal-theoretic operations, i.e., it has the following properties (A
and B are homogeneous ideals in *R).:

{1} AS B = Wy,
{2} (A +B)=2A 4B,
{3} +(UB)=2%-2B.
{4} o(A N B)=2An V.
{5} ¥(A:B)=aA:2%B.
{6} A(VA)=+/=A.

Furthermore:

{7} *N is the unit ideal if and only if % contains a power of Y.
{8 *A=2B if and only if A: Yy =B:Y for some integer s (and
hence also for all s sufficiently large).
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{9} If B is a homogeneous prime ideal which is different from (0) and
does not contain Y, then *B is a proper prime ideal.

{10} If © is a homogeneous primary ideal which is different from (0)
and does not contain any power of Y, then °Q. is a proper primary
tdeal, and if B is the prime ideal of Q. then B is the prime ideal
of °Q.

{11} If A=\ Q; is an irredundant primary representation of ¥, all

the ; being homogeneous (see § 2, Theorem 9), then A=) *Q;

J
where the Q; are those primary components 2; of % which do not
contain any power of Y, and the representation “U=() *Q; is

j

primary and irredundant.

PROOF. We have a=49(*a), by (6), and this shows that the range of
the operation % — @ is the set of all ideals in R.

The relations {1}, {2} and {3} are obvious. The inclusion 4 n B)<
a1 neB follows from {1}. Conversely, let F be any polynomial in
U n4B. Then F=2% =2}, where p is a form in % and ¢ is a form in B.
It follows from (5") that o= Y "(*F) and = Y ' (*F), and therefore,
if say m'zm, then =Y " mp. Consequently $yeAnB, and
F=a) 4% nB), showing the opposite inclusion % n*B<4(A N B)
and proving {4}.

The inclusion %(%: B)< 2% :2B follows from B-(A:B)<¥, {3} and {1}.
On the other hand, let F be any polynomial in #%:4%8 and let m be an
integer such that (7') holds. Then we have:

(Y- "F)B< (Yo -"F)H(*B)) = Yo" -HF-2B)< Y- ())<=,
and therefore @ € A:B, where p= Y "-#F. Since %p=F, it follows
that F € 4(%:B), and this proves {5}.

The inclusion (VAP<9A, where p is some integer>1, implies, by
{1} and {3}, [(VA)]r<=%, whence 5(vVA)=+/2A. On the other hand,
if F is any polynomial in v/# and m is an integer satisfying (7’), then
we have, for a suitable integer p21: (Y- 2Fy e Y (H(N))<Y, i.e.,
p€ VA where p=Y"-*F. Since %=F, it follows therefore that
F ea(v/%). Hence V*A<4(1/A), and this proves {6}.

If Yy"e¥, for some m=1, then *%A=(1) since (Y, =1. Con-
versely, if “%=(1), then %p=1 for some form ¢ in %, and by (5'), such
a form is necessarily a power of Y,. This proves {7}.

We have, for any integer s> 1, (%: Y*)- YA (A: Y¥). Applying
the operation ¢ and using {1}, {3} and {7}, we find that a(: Y )=
Therefore, if A: Y =B:Y, for some s, then A=2B. Conversely,
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assume that A =4B. Since A:Y ji<A:Yi+! and similarly for B,

there exists an integer s such that A: Y '=A:Y 1= ... B:Y =
B:Y+l=.... Wehave q(A: Y )=A=2B=%B:Y,), hence
(8) M@ Yo%) = "(B:Y ).

On the other hand, we have, by (7"): Y "("(%: Y ))<= %A: Y, for some
integer m2>1, and therefore, by our choice of s, "(U: Y )=A: Y.
Consequently, by (7), we have #(%: Y #)=%:Y . Similarly we obtain
ha(B: Y )=B:Y . Therefore A: Y =B:Y 5, by (8), and this estab-
lishes {8}.

Let & be a homogeneous primary ideal in #R, different from (0) and
not containing any power of Y, and let F and G be two polynomials
in R such that FGe4Q, F¢4Q. From (7"), and from the fact that
FG € °9 it follows that Y "(*F)(*G) € £, for some m=1. Since L is
primary and F¢°Q, Y m¢°0, it follows that *Ge /D, whence
G=%*G) e 4(vVQ)=1/40. This shows that 4Q is primary, and thus
the first part of {10} is established. In a similar fashion one proves {9}.
The second part of {10} follows from {6}.

The first part of {11} follows from {4} and {7}. That all the Q, are
primary follows from {10}. To prove the assertion of irredundancy,
let v be any one of the indices j and let A, = ] ©;. We have %, £Q,

it
since (] £, is an irredundant representation. 4 fortiori, %,:(Y ) ¢ 0,
for all s21. On the other hand, since no power of Y, belongs to £,
we have Q,:(Y)=9, and hence A:(YF)=Q, :(Y#)=0, for all s.
Consequently, 2, :(Y#)#%A:(Y), for all 5. It follows then by {8}
that 9 #9, i.e., n 90 ;én 9. This completes the proof of {11}

and of Theorem 18
COROLLARY. If % is any homogeneous ideal in *R then, with the same
notations as in part {11} of Theorem 18 we have:

9) W) = (2

In particular, we have % =**) if and only if no prime ideal of A contains
Y. The set of ideals of the form *a, where a is an ideal in R, coincides
with the set of homogeneous ideals % in *R no prime ideal of which contains
Y,.

Relation (9) follows immediately from part {11} of Theorem 18, part
[4] of Theorem 17, and from relations (7) and (7'). The last assertion
of the corollary follows by observing that if % =%a then *% =4(*a)=a and
hence #(9) ="4a=9A.
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Note that the preceding corollary shows that for any homogeneous
ideal % the ideal #(*) can be characterized as the greatest homogeneous
ideal B such that 2B =29,

REMARK. Another method for studying the operation % — %X is to
notice the existence of two different ways for passing from #R=
KYg -5 Y] t0 R=kX,, - -, X,]:

(1) The mapping ¢ — %, where now ¢ is not necessarily a form, is,
by formulas (2") and (3"), a homomorphism of *R into R, and formula
(4) shows that it maps #R onto R. Its kernel is obviously the ideal
®=(Y,—1). If we identify R with #R/{, the ideal *¥ gets identified
with (X + &)/®. In other words: the passage from %R to R may be
regarded as a residue class ring formation. This proves, for example,
assertions {2} and {3} in Theorem 18.

(2) Another way of looking at the mapping % — 4% is to imbed
R=k[Xy---,X,}] in kY, ---,7,) by setting X,=Y,/Y, ---
X,=Y,/Y, Then R is contained in the quotient ring S=k[Y,, - -,
Y,]a» where M is the multiplicative system formed by the powers of
Y,; and we have

(10) R=k[Y /Yo -, VoY)l = SOKY /Yo, -+, ¥,/ Yo)

In fact, the inclusion RS NA(Y,/Yy -, Y,/Y,) is clear. Con-
versely, if a rational function P(Y,,---, Y,)/Y ¢ (P=polynomial)
belongs to A(Y,/Yq, - -+, Y,/Y,), it remains invariant if we multiply
the variables Y, - - -, ¥, by one and the same quantity, whence P is a
homogeneous polynomial of degree g, and our rational function belongs
to kK[Y{/ Yo, - -+, Yo/ Yol

By this identification the polynomial (%p) (X7, - - -, X,) corresponding
to a form ¢ of degree g becomes (Y, - - -, Y)/Y?=9(1, YV,/Y,, - - -,
Y.Y,). Thus if %A is a homogeneous ideal, *¥ becomes the ideal
generated in R by (and—in fact—consisting of) the elements (Y, - - -,
Y,)]Y,? where ¢ is a form in 2 and where ¢ is its degree. It is clear
that this ideal is contained in AR[Y,,---, Y]y nk[Y{/ Yo - -,
Y,/Y,). Conversely, if a polynomial P(Y,/Y,, ---, Y,/Y,) belongs
to the ideal AR[Y,, Yy, -, Y]y it may be written in the form
A(Yy -+, Y)Y, where A(Y)e¥U; as P(Y{/Yy - -, Y, /Y=
Yo+, Y)Y, where ¢ is a form of degree r, not a multiple of
Y, this implies that g=# and that A=Y 7. Hence 4 is a form of
degree ¢, and P(X,, - -, X,)=4(1, Xy, - - -, X,) is an element of .
Hence

(10,) A = Qlk[ym T Yn]M n k( Yl/YO’ B} Yn/yo)~

b
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We have already mentioned above that the representation of “¥ as
(A + R®)/® proves immediately assertions {2} and {3} in Theorem 18.
On the other hand, formula (10') proves immediately the assertions
{4}, {6}, {9} and {10} in Theorem 18, provided one takes into account
the behavior of intersections, radical, prime ideals and primary ideals
under quotient ring formation and under contraction (Vol. I, Ch. IV,
§§ 8 and 10).

We shall end this section with a discussion of the extension of the
preceding results to arbitrary finite integral domains S=~Alx,, x,, - - -,
x,]. Guided by the imbedding (10) of the polynomial ring R=
R[X,, X, -+, X,] in the field &Y, ¥V,,---,7,), we proceed as
follows:

We adjoin a transcendental y, to the quotient field of .S, we set
¥;=¥oX;1=1,2, - -, n,and we denote by AS the ring k[ vo, ¥y, - - -, ¥,
It is immediately seen that 2S is a homogeneous ring over k (compare with
the proof of the lemma in §4). For every homogeneous element
a=¢(¥gp, Y1 - - = » V) Of degree g, where ¢ is a form, we set %a=¢(1,
Xy, Xg, ¢ 0 0, Xy =0afye?. Since ¢ i1s determined by «, %« depends only
ona. If we attempt now to define #a for any element a in .S by analogy
with the definition given in the case of polynomial rings, we meet a
difficulty arising from the fact that there are in general infinitely many
polynomials F(X,, X,, - -, X,) with the property that F(x,, x5, - - -,
x,y=a. Were we to agree to take for F a polynomial of smallest
possible degree, say v, and then define #a to be v¢’F(¥v,/vo, Vo/Vor - * - »
¥al¥o), we would find that the relation #(ab)="a*b is not necessarily
satisfied. However, we do not need a definition of the operation * for
elements of S; what we need is only to define that operation for ideals
in S. The definition is the same as in the case of polynomial rings,
namely: if a is an ideal in S, %o is the ideal! generated by the homo-
geneous elements ¢ of AS such that %p €a. On the other hand, if %
is any homogeneous ideal in AS we define ¥ as the ideal consisting of al!
elements of S of the form %p, where ¢ is any homogeneous element of
A. With these definitions, Theorems 17 and 18 remain valid if R,
kR and Y, are replaced by S, *S and vy respectively. Similarly, formulas
(6), (7) and (7') as well as the corollary to Theorem 18 remain valid.
We shall briefly prove this assertion.

Let 7 be the k-homomorphism of the polynomial ring R=~k[X,,
Xy -+, X,] onto S=klx, x,,---,x,], such that X;7=x;, and let
n be the kernel of 7. 'We can extend 7 to a homomorphism (which we
shall continue to denote by the same letter 7) of k[Y,, ¥,,---, ¥, 1 by
setting Y r=y,. Then 7 induces a homomorphism of the subring *R of
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kYo X, - -+, X,] (note that ¥;=YX;) onto %S such that Y=y,
The kernel of this homomorphism of #R onto %S is easily seen to be the
ideal 'n. From now on we shall identify S with R/n and %S with
kR

(11) S = Rfn, A4S = AR/,
We note that, by (6), we can also write
(119 kS = kR[N, S = a(*R)/*N,

where Rt ="n.

Now the canonical homomorphism of R onto R/n maps in (1, 1)
fashion the set of all ideals of R which contain the kernel n onto the
set of all ideals in S, and this mapping preserves inclusion and al! the
usual ideal-theoretic operations (see Vol. I, Ch. III, §7, formulae
(11)~(16)); this mapping also sends prime and primary ideals into
prime and primary ideals respectively (see Vol. I, Ch. III, § 8, Theorem
11 and III, §9, Theorem 14), and transforms irredundant primary
representations into irredundant primary representations (Vol. I, Ch. IV,
§ 5, Remark at the end of the section). A similar statement holds
for the canonical homomorphism of #R onto %S and for the induced
mapping of the set of all homogeneous ideals of #R which contain the
kernel ! ="n onto the set of all homogeneous ideals of #S. In view of
these facts, it is seen at once that the validity of Theorems 17 and 18
for R and %R implies their validity for S and %S.

§ 6. Relations between affine and projective varieties. With
every point P=(x;, x5, - - -, %,) of AKX we associate the point ¢(P)
of P,K having {1, x,, x,, - - -, x,,} as a set of homogeneous co6rdinates.
The mapping P — ¢(P) of A, into P,X is one to one, for if two
points (P)=(1, xy, Xy, - - -, x,) and @(P)=(1, x'y, &'y, - - -, x’,) coin-
cide, then we must have, for some ¢t in K, 1=1¢-1, x’;=tx,, showing that
t=1,x";=x;, P’=P. 'This mapping isnot onto, for no pointof the form
(¥o» Yv * + + » ¥n) With ¥9=0 can be in ¢(A4,K). However, every other
point of PX is in ¢(A4,K), for if y,#0 and if we set x;=v,/y,, then
the point (y¢, ¥, - - +» ¥,) in P,X is the p-image of the point (x,, x,,
<o, x,) of AKX, Thus, the mapping ¢ identifies the affine space AKX
with the complement of the hyperplane Y =0 in the projective space
P K. We think of having carried out this identification and we shall
regard therefore the affine space 4,X as a subset of the projective space
PK._ The hyperplane Y,=0 is called the hyperplane at infinity (for
the above identification), and the points or varieties which are contained
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in the hyperplane at infinity are said to be at infinity. The points not
in the hyperplane Y,=0 are said to be at finite distance.

In this section we shall denote algebraic varieties in the projective
space by capital letters such as V, W, - - - | while algebraic varieties in
the affine space will be denoted by small letters such as v, o, ---.
Similarly, capital German letters %, B, --. will be used to denote
homogeneous ideals in kY, Y, - .-, Y,], while small German letters
a, b, - -+, will denote ideals (homogeneous or non-homogeneous) in
R[X,, Xs -+, X,}]. If Vis a variety in P,X we shall denote by ¢V
the intersection of V with A X and we shall call *V the affine restriction
of V:

(1 ¥V =VnAK

The fact that ¢V is also a variety (an affine variety) is included in the
following relation: If % is a homogeneous ideal in (Y, V,,---, Y ]
then

2 AP @) = V(.

(It is understood that in (2) the operator ¥~ has two different meanings
according as it is applied to 2 homogeneous or non-homogeneous ideal:
¥°(%) means the projective variety of the homogeneous ideal 9, while
7(*%) stands for the affine variety of the ideal 4%.) The proof of (2)
is straightforward: a point P=(1, x,, x,, - - -, x,) of P,K belongs to
¥ () if and only if (1, xy, x5, - -+, x,)=0 for all forms ¢(Y,, Y,
.-+, Y,) in the ideal %, and since % consists of all the polynomials
o(1, X, Xy, - -+, X)) such that (Y, Yy, -+, V) is a form in %, we
see that a point P of 4,X belongs to ¥ (%) if and only if the n-tuple
(%1, xg, - + -, x,) of its non-homogeneous codrdinates is a zero of the
ideal “¥, and this proves (2) and shows that 4(¥"(%)) is an affine variety.

If v is any affine variety we denote by v the least algebraic (projective)
variety containing v, or equivalently, using the topology in P X intro-
duced in § 4:

3) hy = closure of v in P X,

We call *v the projective extension of v.
THEOREM 19. If v is an affine variety in A,X then

€y ahy = p.

The mapping v — *v maps in (1, 1) fashion the set of all affine varieties
in AKX onto the set of all projective varieties having no irreducible com-
ponents at infinity. If v is irreducible, so is v, and if |J v; is the irredun-

T
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dant decomposition of an affine variety v into irreducible components, then
U "o, is the irredundant decomposition of "v into irreducible components.

3
If V is an irreducible projective variety, not at infinity, then 2V is irreducible
and

(5) ka = V.

pPROOF. We first observe that if a is any ideal in R[X,, X,, - - -, X,]

then
() (') = ¥ (a)
This follows immediately by setting % ="%a in (2) and by recalling that
ahg=qa (§ 5, (6)). Now, let v be a given affine variety. Then v=7"(a)
for some ideal a in k[X,, X,, -+ -, X,]. Formula (6) shows that there
exists a projective variety V such that V=0 (namely, the variety
¥ (*a)). Since v is the smallest projective variety containing v, it
follows a fortiori that *v=wv, which proves (4). Formula (4) also
shows that if »; and v, are distinct affine varieties then v, #"v,, for
a(hy,)=v,#v,=%"v,). Hence the mapping v — *v is (1, 1).

Let v be an irreducible non-empty variety and let o=V, U V, where
V, and V, are projective varieties. We have, by (4): v=4V,u V,)=
sV, U4V, Since v is irreducible, either ¢V or 4V, coincides with v.
Let, say, aV;=v. Then V/;>v and hence V/; 2" (by definition of *v),
i.e., Vy=m. This shows that "o is irreducible. Note that since v is
non-empty, *o is not at infinity.

Let v be an arbitrary affine variety and let v=|]J v; be the irredundant

1
decomposition of v into irreducible varieties. We know that each
variety #v, is irreducible, and it is clear that v =|J *v; (the closure of

i
a finite union of sets is the union of the closures). It remains to show
that the representation |J #v; is irredundant. If it were not irredun-
7

dant, say if %o, were superfluous, then we would have %, <%, for some
i#1 (see § 3, Remark following the proof of Theorem 13) and hence,
by (4), v,<v;, which is impossible.

Let I be an irreducible projective variety in P, K, not at infinity.
By (4) we have @}/ =4V i.e., the two projective varieties #} and V
differ only by points at infinity. If, then, we denote by L, the hyper-
plane at infinity, then (*V)uL,>V. Since V is irreducible and
L,3V, it follows that #}/> V. On the other hand, V' contains 4V
and therefore V'>%), which proves (5). The irreducibility of 4V
follows from (5), from the irreducibility of V and the preceding part
of the theorem.
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We have just shown that every irreducible projective variety V7, not
at infinity, is-the map of some affine variety under the operation %,
namely of V. This, and the other assertions of the theorem which
have already been established, show that the mapping v — *v maps the
set of affine varieties onto the set of projective varieties having no
irreducible components at infinity. This completes the proof of the
theorem.

COROLLARY. The mapping V — <V maps the set of all projective
varieties in P,X onto the set of all affine varieties in AKX. If V=V,
is the irredundant decomposition of V into irreducible components, then
aV=J *V; where the V; are those irreducible components of V which
are not at infinity, and |} V' is the irredundant decomposition of «V into
irreducible components. If V and V' are two projective varieties then
aV=aV"if and only if V and V' differ at most by irreducible components
which are at infinity.

The first assertion of the corollary follows from (4). It is clear
that «V={J «V; if V={J V; (the notations being as in the corollary),

for eV, is émpty for any V; which isnot a V;. From Theorem 19 we
know that each ¢V is an irreducible variety. If;’and ;" are two distinct
indices j then neither of the two varieties ;. and V. contains the other.
Hence, by (5), neither of the two varieties “V/;. and *V;. contains the
other. This shows that the decomposition “V'={J *V; is irredundant.

J
The last part of the corollary now follows immediately.
In addition to formula (2) the following ideal-theoretic relations
may be pointed out:

™ HI(V)) = (),
® HSI (@) = S(),
(9) Y(U) = A (@),
(10) V() = M ().

(For the sake of symmetry we have reproduced here in (9) the
formula (2).)

In these relations, V" and v denote arbitrary varieties, projective and
affine respectively, % is an arbitrary homogeneous ideal in k[Y,, ¥,
.-+, Y, land a is an arbitrary idea! in A[X,;, X,, -- -, X,]. The sym-
bols £(V) and #("v) refer to the homogeneous ideals of V and %2 in
kY, Y, ---, Y] while #£(v) and £(?V) denote the ideals of the
affine varieties v and ¢V in A[X,, X,, - - -, X,].

To prove (7), we observe that if F(X,, X,,---,X,) is any poly-
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nomial in kX, X,, - - -, X,] and if p="~4F (see §5), then Fe S£(¢V) if
and only if the form ¢(Y,, Y,, - -, Y,) vanishes at each point of
al/, or—equivalently, if and only if =Y pe A(V). We thus see
that F € #(«V) if and only if there exists a form ¢ in #(V) such that
as=F, t.e., if and only if F e ¢(A(V)).

Ifaforme(Yy Yy, -+, Y,)isin #(*v) then (1, X;, Xy, - -+, X)) €
S(v), whence (Y, Yy, -+, Y,)€XHA(v)). On the other hand, if a
form ¢(Y,, Yy, - -+, Y,) belongs to #(#(v)), then it is clear that this
form vanishes at every point of v, t.e., at all points of #o which are at
finite distance (since *v N 4,X=v). Since *v has no irreducible com-
ponents at infinity, it follows at once that ¢ vanishes on %2, and this
proves (8).

As to (10), let 4, vy, - - -, p, be the isolated prime ideals of a. By
Theorem 17 (§ 5), #9,, #p,, - - - , #p, are the isolated prime ideals of *#a.
If we set v,=%(p,) and V,;=7"("p,), then v, v,,---,v, are the
irreducible components of ¥7(a), while V', V,, - -, V, are the irre-
ducible components of ¥"(*a). Since p,=%p,, it follows from (9) that
v;=2V,;. Therefore, by (5), V;="v; and consequently, by Theorem
19, the irreducible components of #(¥"(a)) are also V,, V,,---, V..
This establishes (10). Note that in the proof of (10) we used implicitly
the Hilbert Nullstellensatz (or equivalent consequences).

We conclude this section by comparing corresponding irreducible
varieties in P, X and 4,X. Let W be an irreducible variety in P X, not
contained in the hyperplane at infinity, and let B be its prime ideal in
kK[Yy ---,Y,]. Then its affine restriction w=4W is an irreducible
affine variety in 4,X (Theorem 19). We have, as was seen above:

w =W, W = hy,

and every irreducible affine variety may be written as W, with W
irreducible.

For studying the prime ideal v of w, we use formula (10°) in §5
which gives (after identifying X; with Y;/Y):

Y Y,
(11) p=‘B'k[yo,-u,Y,,]Mﬂk(T:’---,-TO),

where M denotes the multiplicative system {1, Y, - - -, Yo%, - - - }. Let
y; be the PB-residue of Y. The ring k[Yy, - -, Y Ip/B-k[Y,, -,
Y, laris, (Vol. I, Ch. IV, § 10, form. 1) (and since » n M =), isomorphic
to the quotient ring k[y,, - - -, y,Jar where M’ is the multiplicative
system {1,y,,---,¥¢% - -,} in the homogeneous codrdinate ring
k[yg, - -+, ¥,). By formula (11) the affine codrdinate ring kfx,, - - -,
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x,] of w=2W (which is R[X, - - -, X, 1/o=k[Y,[ Yy, - -+, Y, [Y,l[p) is
a subring of k[y,, - -+, ¥,ly. More precisely, it is the intersection of

this ring with the field k(x;, - - -+, %) =R(¥1/Vo» - = * » YulVo). We have
therefore

(12)  Rlxy oo, %] = Ry, oo Yalae DR Yor - - o 5 YulYo)-

It follows from this that the function field of w=2°W is equal to the
function field of W. Thus, in particular, an irreducible projective
variety (not contained in Y,=0) has the same dimension as its affine
restriction; and an irreducible affine variety has the same dimension as
its projective extension.

If the homogeneous codrdinate ring of W is integrally closed, then
k(Yo -+ -, Yular 1s integrally closed (Vol. I, Ch. V, §3, Example 2,
p- 261). It follows then from (12) that the coordinate ring of W is also
integrally closed. In other words, if W is arithmetically normal then
s is normal. This result is included in the results proved in § 4%is.

§ 7. Dimension theory in finite integral domains. The basic
theorems of dimension theory in finite integral domains are essentially
included in, or are easy consequences of, two general theorems on
noetherian rings: the lemma on minimal prime ideals proved in VI,
§14 (p. 91) and the “‘principal ideal theorem” proved in Vol. I,
Ch. IV, § 14 (Theorem 29). To derive the main facts of dimension
theory in finite integral domains from these two general theorems will
be our first object in this section. The proofs in this theory are, as a
rule, of inductive character, and the induction is carried out by passage
to residue class rings modulo a prime ideal. It is therefore not feasible
to deal with the dimension theory of polynomial rings separately,
outside the general framework of dimension theory of arbitrary finite
integral domains. It is for this reason that we do not confine ourselves
in this section to polynomial rings.

Our second object in this section will be to derive the dimension
theory ab initio, without presupposing the two general theorems cited
above, but rather proving again these two theorems (in the special
case of finite integral domains) by using special properties of finite
integral domains. The specia! properties which play a particular role
are those expressed by the “normalization theorem” (Theorem 25) and
by the lemma preceding that theorem.

Let k be an arbitrary ground field and let R=~[x,, x5, - - -, x,] be 2
finite integral domain over k (the x; are not necessarily algebraically
independent over k). We denote by 7 the transcendence degree of R
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over k. We recall our definition of the dimension of a prime ideal p
in R (VI, § 14, p. 90): the dimension of v is the transcendence degree
of R/v over k (it is tacitly assumed that »# R and that consequently
R/p contains k; if v=R, we may define the dimension of R/p as —1).
The lemma proved in VI, § 14, p. 91, states that if p is a minimal
prime ideal in R then diim p=r—1. We recall also from Vol. I, Ch. IV,
§ 14, p. 240, that if 1 ="A(y), resp. d=d(y), is the height, resp. the depth,
of v, then there exists at least one strictly ascending chain

(1) Po<Py< -+ <P 1 <P =9,

resp. at least one strictly descending chain

) R>py>p,> -+ >p, ,>p, =9

of prime ideals and there does not exist such a chain with more than
h+1 (resp. d+ 1) prime ideals. We note that in the case of an integral
domain R, the first term p, in the above ascending chain is necessarily
the ideal (0).
In all that follows it is necessary to bear in mind that if p and p’ are
two prime ideals in R then
dim p >dim p’,
2) “p<p” implies{h(p) <h(n"),
d(p) > d(y’).
The first inequality follows from the fact that the canonical homo-
morphism of R/p onto R/y’ 1s proper (cf. Vol. I, Ch. II, § 12, Theorems
28 and 29), the last two inequalities are self-evident. In particular, it
follows that every proper prime ideal has dimension <7.
The main theorem of dimension theory is the following:
THEOREM 20. If p# R is a prime ideal of dimension s, then

3) h(p) = r—s,
3’ d(v) = s.

PROOF. We shall prove (3) by induction from s+1 to s, since (3) is
trivial if s=7 (in which case p=(0)). We assume p#(0). From (1)
it follows that r>dim p,> --- >dimv,_,>dim p=s, and hence
h(v)=7r—s (note that p,=(0), whence dim p,=r). At any rate, i(p)
is finite, and we can therefore find a prime ideal b’ in R such that
p’ < p (since p##(0)) and such that there are nc prime ideals between
p" and v. Then p/v’ is a minimal prime ideal in the finite integral
domain R=R/y’, and hence, by the cited lemma of VI, § 14, we have
1+dim p/p’=dim p’, i.e., dim p’=s5s+1 (since dim p/p’=dim p). By
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our induction hypothesis we have h(»')=r—s—1, and hence A(p)=
r—s. This establishes (3).

We shall prove (3') by induction from s—1 to s since (3') is trivial
if s=0 (in which case p is necessarily a maximal idea!). From (1) it
follows that 0=dim py<dimp,< --- <dimyp, ;<dimp=s, and
hence d(p)<s. We now consider the finite integral domain R=R/v,
and we fix a minimal prime ideal §’ in R. Let ' be the prime ideal in
R which contains v and is such that p’/p=5". Since R has trans-
cendence degree s, we have dim p'=dim b’'=s—1 (by the cited lemma
of VI, § 14). By our induction hypothesis we have therefore d(»')=
s—1, and consequently d(»)>s. This establishes (3') and completes
the proof of the theorem.

CoroLLARY 1. If v and v’ are two prime ideals in R such that p <yp’
and if s and s’ are the dimensions of v and v’ respectively, then there exists
at least one strictly ascending chain of s—s'+1 prime ideals connecting
pand p':

) PSP <Pe< - <Py <Y,

and there does not exist any such chain with more than s—s'+1 ideals.
Furthermore, any strictly ascending chain of q--1 prime ideals connecting
P and v', g<s—s', can be refined to a chain (4) of maximum length.

The first assertion of the corollary follows from the fact that in the
ring R/p, which has transcendence degree s over k, the prime ideal
p’/p, which has dimension s’, must have height s—s’. The second part
of the corollary follows by applying the first part to each pair of con-
secutive members of the given chain of ¢+ 1 prime ideals.

COROLLARY 2. If v and v' are prime ideals in R such that <y’
and such that no prime ideal can be inserted between » and v, then the
dimensions of v and v’ differ by unity, and so do their heights and depths.

Obvious.

CoRrROLLARY 3. In a finite integral domain R of transcendence degree

r >0 there exist proper prime ideals of all dimensions 0,1,2, .-, r—1.
This follows from the theorem, in the special case p = (0).
COROLLARY 4. Let *R=Fk[yy, v,, -+, ¥, be a homogeneous finite

integral domain and let B and B’ be prime ideals in "R, of dimension
s+1 and s'+1 respectively, such that B <B'. If B and B' are homo-
geneous, then there exists at least one strictly ascending chain of s—s' +1
prime homogeneous ideals connecting B and B'.

Assuming that v,#0 we set x;=v;/vy, i=1,2,---,n, and we con-
sider the integral domain R=k[x,, x,, - - -, x,]. We apply the results
proved in § 5 in regard to the relationship between homogeneous ideals
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in *R and arbitrary ideals in R. We set v=2% and »'=2p'. Then p
and p’ are prime ideals of dimensions s and s’ respectively, and we
have p<yp’. By Corollary 1 we have a chain (4) of s—s'+1 prime
ideals connecting p and p’. Then the chain P<rp, <kp,< - <
hy _.._1< B’ satisfies the required conditions.

COROLLARY 5. In a homogeneous finite integral domain *R of trans-
cendence degree r + 1 there exist proper homogeneous ideals of all dimensions
0,1,2,..-,r.

We note, in regard to Corollary 5, that the irrelevant prime ideal in
kR is the only prime homogeneous ideal of dimension 0, since every
homogeneous ideal (different from the unit ideal) is contained in the
irrelevant prime ideal. We recall also from § 4 that if a homogeneous
prime ideal p in.%R has dimension s-+1 then its projective dimension
is 5, and s is also the dimension of the variety ¥"(p) of p.

The preceding results have an immediate geometric interpretation in
terms of algebraic varieties, in view of the (1, 1) correspondence that
exists between the homogeneous prime ideals in the polynomial ring
k[Yy Yy, -+, Y, and the irreducible algebraic varieties in the pro-
jective space P,K (see §4). Thus the lemma proved in VI, § 14, con-
cerning minimal prime ideals, signifies, geometrically speaking, that
every maximal irreducible (proper) subvariety of an r-dimensional irre-
ducible variety has dimension r—1. This is true for both projective and
affine varieties. Corollary 3 implies that every irreducible affine
variety V, of dimension 7 >0, carries points of all dimension 0,1, - - -,
r—1, and in particular V carries algebraic points. This yields another
proof of the Hilbert Nullstellensatz. As a matter of fact, Corollary 3
implies that if a finite integral domain R is a field (hence has no proper
prime ideals), then its transcendence degree is 0, and this is precisely
the lemma which we have proved in § 3 and from which we were able
to derive the Nullstellensatz in a straightforward manner.

Other important consequences of the lemma proved in VI, § 14 are
obtained by making use of the “principal ideal theorem” proved in
Vol. I, Ch. IV, § 14 (Theorem 29). We have namely

THEOREM 21. If R is a finite integral domain, of transcendence degree
7, and f#0 is a non-unit in R, then every isolated prime ideal of Rf has
dimension r— 1.

This is simply a re-statement of the “principal ideal theorem” in
which use is made of the knowledge that every minimal prime ideal in
R has dimension r—1.

CoRrOLLARY. If %R is a homogeneous finite integral domain, of trans-
cendence degree r+1, and f is a homogeneous element of "R, different
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Jfrom zero and of positive degree, then every isolated prime ideal of *R-f
has projective dimension r—1.

Obvious, since f is a non-unit, #R-f is a homogeneous ideal and every
prime idea! of #R-f is homogeneous (§ 2, Theorem 9).

In geometric terms, the above corollary may be stated as follows: if
V is an irreducible r-dimensional algebraic variety in the projective space
PKand f(Yo, Yy, -+, YYisaformin R[Y, Y,, ---, Y\, of positive
degree, such that the hypersurface H:f(Y)=0 does not contain V, then
each irreducible component of the intersection V 0 H has dimension r—1.
To see this we have only to take for #R the homogeneous codrdinate ring
klyo y1, - - -, ¥a] of the variety V' (§ 4, p. 170), observe that our assump-
tion concerning the form f(Y,, Y,, -- -, Y,) signifies that the element
e ¥1> - +» yu) of *R is different from zero and finally recall (§ 3,
Theorem 14, Corollary 3) that the irreducible components of Hn V
are the varieties of the isolated prime ideals of the principal ideal
generated in "R by f(ye, 1, - - - » ¥n)-

In the same way as Theorem 21 represents a re-statement of the
“principal ideal theorem” (Vol. I, Ch. IV, § 14, Theorem 29), the
following generalization of Theorem 21 is a re-statement of Theorem
30 of IV, § 14:

THEOREM 22. If R is a finite integral domain, of transcendence degree r,
and % is a proper ideal in R which admits a basis of s elements, then every
isolated prime ideal of % has dimension Zr—s.

CorOLLARY. If *R is a homogeneous finite integral domain, of trans-
cendence degree r+1, and U is a proper homogeneous ideal in R which
admits a basis of s elements, then every isolated prime ideal of % has
projective dimension Zr—s.

The maximum of the dimensions of the isolated prime ideals of an
ideal % in a finite integral domain R is called the dimension of A. If Ris
a homogeneous finite integral domain and % is a homogeneous ideal in
R, then one uses preferably the projective dimension of %, which is
defined as the dimension of % diminished by unity. Theorem 22 and
its corollary assert that, under the conditions stated, the dimension,
resp. the projective dimension of %, is not less than r—s.

An ideal % in a finite integral domain R is said te be unmixed (or
equidimensional) if all its prime ideals have the same dimension. It
is clear that an unmixed ideal has no imbedded prime ideals. A
previous theorem on principal ideals in noetherian integrally closed
domains (Vol. I, Ch. V, §6, Theorem 14) permits us to strengthen
Theorem 22 in the case in which R is integrally closed (in particular,
then, if R is a polynomial ring):
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Tueorem 23. If R is an integrally closed finite integral domain, of
transcendence degree r, then every proper principal ideal in R is unmixed,
of dimension r—1. If, in addition, R is also a unique factorization
domain (in particular, if R is a polynomial ring), then also the converse is
true, i.e., every unmixed ideal of dimension r—1 is principal.

pROOF. The first part of the theorem is a restatement of Theorem 14
inVol. I, Ch. V, § 6. Conversely, if % is an unmixed ideal, of dimension
r—1, then all its prime ideals p; are minimal, and if R is a UFD then
each p; is a principal ideal (G,) and each primary ideal having v, as
associated prime ideal is a power (G;1) of ;. We have therefore, for
suitable integers v;, A={) (G?1). Since R is a UFD and the G; are

two by two relatively prime, it follows that % coincides with the princi-
pal ideal generated by [T G Q.E.D.

For polynomial rings we have the following special result concerning
zero-dimensional (whence maximal) prime ideals.

THEOREM 24. Every zero-dimensional prime ideal v in a polynomial
ring R=k[X,, X,, ---, X,] in n indeterminates (k, a field) has a basis
of n elements.

(NoTe. By Theorem 22, b can have no basis of less than 7 elements.)

PROOF. We shall proceed by induction with respect to n, the case
n=0 being trivial. Since p is zero-dimensional, each X; is algebraic
over k modulo yp, i.e., v N k[X;]#(0). Consider p,=p nk[X,]. The
ideal b, is principal, say (f1(X,)), where fi(X,) is necessarily an irre-
ducible polynomial in k[X,]. Let R=R/R-p,=k[e,, X,,---, X)),
where a, is the p;-residue of X, and X,, X, - - -, X, are the R-y,-
residues of X,, X, - - -, X, respectively. Since «, is algebraic over &
(being a root of f1(X,)), we have k[a,]=k(e,) is a field. It is clear that

2» X3, - - -, X, are algebraically independent over k(a,), since Ry, is
the principal ideal generated by f,(X,). Hence R is a polynomial ring
in n—1 variables Xy, X,, - - -, X, over the field k(a,). By our induc-
tion hypothesis, the zero-dimensional prime ideal ¥ =19/Ryp, in R has a
basis of n—1 elements, say {f5, f, - - -+, o} If, then, f; is any element
in R whose Ry, residue is f; (i=2,3,---,n) then {fy,f5,---,f,} isa
basis of .

REMARK. It follows from the above proof that the prime ideal v has
a basis consisting of # polynomials of the form

fl(Xl)’ fz(Xl» Xz)» ] fn(Xl’ X2’ ] Xn—l’ Xn)'

If a), -, a, are the p-residues of X,, X,,--- X, respectively,
then we can take for fi(X,, X,, - - -, X;) any polynomial in A[X;, X,,
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-+, X1 such that f(«,, @, - - -, @;,_4, X,) is the minimal polynomial
of o; over k(ay, ag, - -, ;) (=klay, ay, - -+, @;_4]). The following
additional conditions determine the polynomials f; uniquely and lead
to a canonical basis of p (relative to the ordering X,, X,, - - -, X,, of the
variables):

(1) Each f; is of degree v; in X, where v;=[k(a,, ay, - - -, &) : k(ey,
oy, + ¢, &;_4)], and is monic as a polynomial in X.

(2) Each f; is of degree <v;in X}, forj=1,2,...,i—1.

If % is algebraically closed, then the «; are in &, and p has the follow-
ing basis:

X, —ay Xog— 0+, X, — a,.

Before proceeding any further in dimension theory we shall show how
all the preceding results can be obtained without recourse to general
theorems on noetherian rings. It is clear that Theorem 21 is the key
result, from which all the theorems proved in this section (and also the
two earlier results, namely the lemma of VI, § 14 and Theorem 29 of
Vol. I, Ch. IV, § 14, in the special case of finite integral domains)
follow as immediate consequences. We shall therefore show how
Theorem 21 can be proved directly by using special properties of finite
integral domains. Actually, we shall find it essential, in this new
treatment, to deal only with homogeneous finite integral domains.
Therefore, what we shall prove directly is Theorem 21 in the case of
homogeneous domains R, i.e., we shall prove the corollary of Theorem 21.
In view of the relationship between ideals in R and R, established in
§ 5, Theorem 21 in the general case is an immediate consequence of
the “homogeneous” formulation given in the corollary of that theorem.

We first prove a general lemma on finitely generated homogeneous
rings. Let R=A4lyq, ¥y - -,¥,] be such a ring, where 4 is an
arbitrary commutative ring (with element 1). A set of homogeneous
elements 2z, 24, - - -, 2, of R, of positive degrees, is said to be a homo-
geneous system of integrity,.if the ring R is integral over the ring S=
Alzg, 21,00y 2,0

LemMA. In order that a set {2, 24, - - -, 2,,} of homogeneous elements
of R, of positive degrees, be a homogeneous system of integrity it is necessary
and sufficient that the ideal 3 generated in R by 2, 2, - - -, 2,, be irrele-
vant.

PROOF. We first observe that it is sufficient to prove the lemma
under the assumption that the m -+ 1 elements 2; are of the same degree.
For if, say, v; is the degree of z; and if we set u,=2/", where v=
vgvy * -+ v, then the m+1 elements wuy, 4y, - -, u, of R are homo-
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geneous, of the same degree v. It is clear that the ideal generated
by 2¢ 2y * - *» ¥, In R is irrelevant if and only if the ideal generated
by #g, #y, - - + , U, is irrelevant.  On the other hand, since #; € S and
since the 2, are integral over the ring Alu,, #,, - - -, u,,], it follows that
R is integral over S if and only if R is integral over Alug, u,, - - -, u,].
We shall therefore assume that the 2; have the same degree v.

Assume that {2, 24, - - +, 2,,} i a homogeneous system of integrity.
Each of the elements y; is then integral over the ring S=A4[z, 2,,
.-+, 3,). Consider one of the y,’s, say y,. Let

(5) (Vo5 Zor B> " " * 5 Bm)
= 90+ @B 21 5 IRV T - (B By 5 2, = 0

be an equation of integral dependence for y, over S. Here each ¢, is
a polynomial with coefficients in 4. We have 2;=F(¥¢, Y1, - * * » Yu)
where F; is a form, of degree v, with coefficients in 4. We set G(Y,,
Yoo, Y=Y Fo(Yo, Yy, - -+, Yy), Fo(Yo Yy,o--, 1Y), -+,
Fo Yo Yoo o+, Y.)).

We have then G(yq, ¥1, - - -, ¥,)=0. Since R is a homogeneous ring
it follows that we must have G (¥, ¥1, - - +, ¥,) =0, for every homo-
geneous component G, of the polynomial G(Y,, Y,,---, 7). In
particular, we have G(¥¢, ¥y, - - -, ¥,)=0. If we denote by ¢; (Z,,
Zy, -+, Z,) the homogeneous component of degree p of p; (j=s-1,
§—2,---,0), then we find that G(Y, Y, ---,Y,)=Ys+

2. PocpfFo(V), Fy(Y), - - -, F(Y)) Yo', where s'=[s/v]. Hence
p=1

(6) yos+¢:—v)1(20’ ST zm)yos—"‘f‘
‘P:-zv,z(zo’ Byt By T4 - = 0.

This is still a relation of integral dependence for y, over S, but now
the coefficients @,_, 1, @;_s,,2 * - - are homogeneous in the z;’s, of positive
degrees 1, 2, - - -, respectively. It follows from (6) that y,° belongs to
the ideal 8. Similarly, some power of each of the elements y,, v,,
-++, %, belongs to 8. Hence 3 is an irrelevant ideal.

Conversely, let us assume that the ideal 3 is irrelevant. To prove
that R is integral over S it will be sufficient to prove that R is a finite
S-module (see Vol. I, Ch. V, § 1, condition (c"); actually, these two pro-
perties of R are equivalent, in view of Vol. I, Ch. V, § 1, Theorem 1). Let
t be an exponent such that < 38, where 9 is the prime irrelevant ideal
generated by yq, ¥y, + + + , ¥y and let {w;} be the (finite) set of monomials
Yo®oy1®1 - - - yon of degree ag+oy+ - - +a,<t. We shall show that
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every monomial ¢ in the y’s can be written in the form > a,w;, witha; € S,

and thus establish that the monomials w; form a ba;is of R over S.
We proceed by induction with respect to the degree 9(¢) of the
monomial ¢, for the assertion is trivial if 9(€)<t. We therefore
assume that &(£) 2 ¢ and we write £ = MG, where M is a monomial of
degree ¢t and G is 2 monomial of degree 8(£)—¢. Since M e 9*< 3, we

can write M = > H,z;, where we may assume (since R is 2 homogeneous
i

ring) that each H; is a homogeneous element of R, of degree t— &(z;).
Substituting into the above expression of ¢ we find £ = Z GHz;. 'The

coefficient GH; of z; is homogeneous, of degree 8(¢)—t+1—9(3;)=
(&) — 8(=;) < 8(£), and is therefore a linear combination of monomials
VoY1 -+ - ¥, of degree < 9(€), with coeflicients in 4. By our induc-

tion hypothesis we have therefore GH; = z o; jw;, witho; ;€S. Hence

J
&= ; ojw;, where o;= Z 0;,;%;€S. This completes the proof of the

lemma.

The following application of the preceding lemma is an extension of
the normalization theorem which was proved in Vol. I, Ch. V, §4
(Theorem 8) only for infinite ground fields:

THEOREM 25. (Normalization theorem.) If R=R[x,, xy, - -+, x,] is
a finite integral domain over a ground field k and r is the transcendence
degree of R over k, then there exist sets of r elements 2, 25, - -+, 2, in R
such that R is integral over the ring k[z,, 2,,---,2,). If R is homo-
geneous, then the z; can be chosen so as to be homogeneous, and for one of
the z; we can choose an arbitrary homogeneous element of positive degree.

PROOF. We first consider the case in which R is a homogeneous ring.
By the preceding lemma we have only to show that there exists a set of
homogeneous elements 2,, 2,, - -+, 2, in R, of positive degree, such
that the ideal 3 generated by these elements is irrelevant. To say
that a proper homogeneous ideal 8 is irrelevant is the same as saying
that it is of dimension zero, for the irrelevant prime ideal (x,, x,, - - -, x,)
is the only zero-dimensional prime homogeneous ideal in Rand the prime
ideals of 2 homogeneous ideal areall homogeneous (§ 2, Theorem 9). To
prove that there exist homogeneous elements 2y, 2,, - - -, 2,, of positive
degree, having the property that the ideal 3 is irrelevant, it will be
sufficient to show that we can choose the elements 2, 2,, - - « 2, in such
a way as to satisfy the following condition: if B; is the ideal generated
by 24,39, ++, 25, 0=1,2,+ -+, 7, and 3, denotes the zero ideal, then

(7) dim 8,>dim 8,> --- >dim 8,,

I
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where 3, is, of course, the ideal 8. For if (7) holds then it follows that
dim 8;=r—1, i=1,2,-.-,r, since dim 8,=7 and dim 8,20 (the
elements 2; being all of positive degree, the ideal 8 is not the unit
ideal).

We choose for z, an arbitrary homogeneous element of positive
degree and different from zero. Then, of course, we will have r >
dim 8;. Assume that we have already found elements 2, 25, - - -, 2;

such that r >dim 8, >dim 8,> .- - >dim 8;. Let p,, p,,---, p; be

the isolated prime ideals of 3,. For anyj=1,2,-.-,% we can find 2
homogeneous element #; which belongs to (] p, but does not belong to
vy

p;. Upon replacing each of the & elements u,, u,, - - -, 4, by a suitable
power of that element, we can arrange matters so that the elements u;
are all of the same degree. Then the element z; ,=u;+u,+ - -+ +u,
does not belong to any of the ideals »;. Let p be the dimension of the
ideal 8,,, generated by z,, 2,, - - -, 2;,,, and let p be a prime ideal of
8;.1 which has dimension p. The ideal p contains also 8; and thus
contains at least one of the ideals py, p,,---, p,. Let, say, p>p,.
Since z;,; € p and 2, ¢ p;, we have p > p;. Therefore p=dim 8;,,=
dim p<dim p,<dim 8;. This completes the proof of the theorem in
the homogeneous case.

In the general case we adjoin a transcendental y, to the field A(x,,
Xg -+, X,), We set y;,=y,x; and we consider the homogeneous finite
integral domain *R=k[yg, y,,---,¥,). This domain has transcen-
dence degree r+1. By the preceding case, there exists a homogeneous
system of integrity {u,, %, - - -, %,} in *R consisting of r+1 elements,
and we can take as one of these elements an arbitrary non-zero homo-
geneous element of positive degree. We take for u, the element y,,.
If v; is the degree of u; we replace {ug, uy, - - -, u,} by the following
homogeneous system of integrity {vy, vy, - - -, 9,}: Vo=9¢", v;=u/",
where v=v, - - -»,. The elements v; of this new system of integrity
are all of the same degree v. For each element y, (1=1,2,...,n)
there exists a relation of integral dependence over k[vy, vy, -- -, 9,]
which has the form:

) ¥ +ex(ve vy, -+ 1y VYT 9oV Uy, - -0, DY A - = 0,
where @, is a form of degree ¢ (see proof of Lemma, equation (6)). If
we set z;=v;[vy,-j=1,2,.--,7, and divide (8) by y,, relation (8)

yields the following relation:

xis“l'?’l(l» LS T z,)x;"”+q32(1, LS TL P z')xis—2v+ e = 0)
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and this is an equation of integral dependence for x; over k[z,, 2,,
z,]. This completes the proof.

We shall now proceed to our stated objective of giving a self-contained
proof of Theorem 21 based on the above lemma and on the normalization
theorem just proved. For reasons explained earlier we shall deal only
with the homogeneous case of Theorem 21, i.e., with the corollary to
Theorem 21. We shall denote by R (instead of by *R, as in the
corollary) our homogeneous ring k[yq, ¥4, * - -, ¥,], but we continue to
denote by 7+ 1 the transcendence degree of R/k. Let f be a non-zero
homogeneous element of R, of positive degree. We set z,=f and we
choose r other homogeneous elements 2y, 2,, - - -, 2, in R, of positive
degree, such that the set {2, 24, - - -, 2,} is 2 homogeneous system of
integrity of R (Theorem 25). Note that since R has transcendence
degree r+1 over k and the y, are integral over klzq, 2, - - -, 2,], the
7+ 1 elements z; are algebraically independent over k.

Let p be any isolated prime ideal of the principal ideal Rf (= Rz,)
and let 2; be the p-residue of 2;. We shall prove that 2,, 2,, - - -, 3,
are algebratcally independent over k. ‘'This will establish the fact that p
has (affine) dimension r (and projective dimension r—1) and will
settle Theorem 21.

Let #(Z,, Z,,---, Z,) be any non-zero polynomial in r indeter-
minates, with coefficients in k.. 'We have to prove that A(2,, %5, - - -, 3,)
#0, or—equivalently—that A(z,, 25, - - -, 2,) ¢ . Since this has to be
shown to be true for any isolated prime ideal p of Rz, we see that
what we are asserting is equivalent to the assertion that the element
h(2)=h(zq, 25, - - -, 2,) is prime to the radical vV Rz, i.e., that we have:

9 VRz,:R-k(z) = V Rz,

Let 7 be any element of vV Rzy:R-h(2). We have then, upon denoting
by £ a suitable power 7? of 7:

(10) [h(x)lP¢ = uzy, (WER, &= 7).

Let .

(11)  w+ay(zg 2y, -+, 23U+ - - +af2g, 2y, 0+, %) =0

be the equation of least degree which u satisfies over the field k(z,
2y -+, %) Since u is integral over [z, 2,,---,2,] and since
g, %1y * -+, %, are algebraically independent over & (whence k[z, 2,

, %,] 1s an integrally closed domain), it follows that (11) must be
an equation of integral dependence for u over k[2g, 2,, - - -, 2,] (Vol. I,
Ch. V, §3, Theorem 4), ie., the a[2,, 2,, - -, 2,) are polynomials,



§8 SPECIAL PROPERTIES OF POLYNOMIAL RINGS 203

with coefficients in .. From (10) and (11) we deduce that the equation
of least degree that ¢ satisfies over k(2 2,, - - -, 2,) is the following:

s al(z()’ LV zr)zo‘ s—1 4 . .. as(z(!’ Byttt zr)zo' _
S A7)
Since also £ is integrally dependent over k[2,, 2,, - - -, 2,], it follows
again by the cited Theorem 4 of Vol. I, Ch. V, § 3, that the quotients
a;(%e 21, - * » 2,)[[P(2)}P/ must be polynomials (in the algebraically inde-
pendent elements 2y, 2,,---,%2,). Then (12) shows at once that
&eR 2 ie, £€ VR -z, Therefore also 7 belongs to VR -z, (since
¢=7#). This proves (9) and completes the proof of Theorem 21.

§ 8. Special dimension-theoretic properties of polynomial
rings. In this section we are going to prove two special results of
dimension-theoretic nature which hold in polynomial rings and which
do not extend to arbitrary finite integral domains.

THEOREM 26 (MACAULAY). Let U be an ideal in R=k[X,, ..., X,],
of dimension n—h. If % is generated by h elements F,, - - -, F,, then
A is unmixed.

PROOF. We proceed by induction on £, the case £=0 being trivial
(and the case £=1 having already been treated in Theorem 23, §7).
We have to show that every associated prime ideal p of % is (n—h)-
dimensional. Let d be the dimension of p. Since % is (n—h)-
dimensional, we already know that d<n—h. Since k[X,, -, X,]/p
has transcendence degree d, d of the variables X, say X, - - -, X, are
algebraically independent mod p. In other words we have p n k[X,,
-+, X,1=(0), whence the multiplicatively closed set M of non-zero
elements of £[X,, - - -, X! has no element in common with p.

We consider the quotient ring R,; and the extended ideals AR, and
pR,,. It has been seen in Vol. I, Ch. IV, § 10 (Theorems 16 and 17)
that pR,, is an associated prime ideal of AR,,. Now R,, is obviously
the polynomial ring

k(Xl’ T Xd)[Xd+1’ R} X]

n.

Since R/p and R, /pR,, have the same quotient field, R;,/pR,, has
transcendence degree d over k, whence it has transcendence degree 0
over k(X,,---,X,). In other words, pR,, is a maximal ideal. In
order to show that d=n—#, i.e., that h=n—d, we argue by contra-
diction and suppose that h<n—d. Then we have, in the polynomial
ring R, in n—d variables, an ideal %AR,, generated by 2 <#n —d elements
and admitting a zero-dimensional associated prime ideal. Furthermore,
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it is easily seen that the ideal AR,, has dimension n—d—#%. For, the
prime ideals of AR;, are the ideals of the form oR;,, where v is any
prime ideal of % which does not intersect M. If s is the dimension of o
then the above argument, given for the ideal v, shows that oR,, has
dimension s—d<n—h—d, sinces<n—h. Hence dim ARy, Sn—d—4,
and since ARy, is generated by % elements we must have dim AR, =
n—d—#, in view of Theorem 22 (§ 7).

We shall show, however, coming back to the notations of Theorem 26,
that if Z<n and p is any prime zero-dimensional ideal then b is not an
associated prime ideal of %. This result, when applied to the poly-
nomial ring R,,, will contradict our assumption that z<n—d and will
complete the proof of the theorem.

We consider the ideal =(F,, ---, F;_;). Since it is generated by
h—1 elements, its dimension is at least n—/A+1 (Theorem 22, § 7).
If the dimension of B were greater than n—A+1, B would admit an
isolated prime ideal v of dimension >n—%-+1. Then all the isolated
prime ideals of (b, F,) would be of dimension >#n—#% (Theorem 21,
§ 7, applied to k[X,, - - -, X,]/v), and this would contradict the fact
that they contain %. Thus the dimension of B is n—4-+1, and our
induction hypothesis implies that all the associated prime ideals
vy, - -+, 9, of B have dimension n—%+1. We denote by v, ,,---, v,
the associated prime ideals of % which are of dimension n—#4. Since
h<n, none of the ideals v; (1<j<7’) is maximal. We are going to
construct an element D of the maximal ideal p, of a particular type,
which does not belong to any v;. For this we need alemma:

Lemva 1. Given a finite family {v,, - - -, v,.} of non-maximal prime
tdeals in RIX,, ---,X,], there exists an index t and a polynomial
o(Xy, - - -, X,_,) such that the v -residue of ¥, =X, +o(X,,---, X,_,)
is transcendental over k for every j.

PROOF OF LEMMA 1. We renumber the v; in such a way that:

(a) The v;-residue of X, is transcendental over k.for j=1, -- -, r(1)
and algebraic over & for j >r(1);
(b) The v;-residue of X, is transcendental over & for j=r(1)+

1,- .-, r(2), and algebraic over k for j >r(2);t

and so on. Since, for every j, one at least of the elements X, - - -, X,
has a transcendental v -residue (b; having dimension >0), all the

ideals v; are included in our renumbering; in other words: there exists

an index t <z such that, for j=r(t—1)+1, .- -, 7, the v -residue of XX,

+ If the p;-residue of X is algebraic for all j(1=j=7’) then, of course, the set
of indices 1,2, - -, 7(1) is empty. A similar remark applies to the set of
indices r(1)+1, - - -, 7(2) introduced in (b).
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is transcendental over & and the v-residues of X,,---,X, , are
algebraic over k. Thus, for any polynomial (X, - - -, X,_,), and for
j=r(t—1)+1,. .-, 7, the v-residue of X, + (X, -+, X, ) is trans-

cendental over k. We take now j so as to satisfy the inequality
r(t—2)+1=j<#(t—1). Then, since X, , is transcendental over &,
mod v, there is at most one exponent a such that X, +X, .2 is alge-
braic over k, mod v; (otherwise some differences X, *—X, > (a#b)
would be algebraic over k, mod v;, whence also X, | would be alge-
braic over k£, mod v;). 'We can thus find an exponent a(¢— 1) such that

X,+X, %=V is transcendental over k, mod v; for j=r(t—2)+1,-- -,

r(t—1), and also for j=r(t—1)+1,---,7 in view of what has been
seen above about X, +¢(X, - -, X,_).
Since X, ---, X, , are algebraic over k, modv; for j>r(t—2),

it follows that, for any polynomial (X, ---, X, ,) and for any
j>r(t=2), X,+ X, ¢ V+d(X,, -, X,_,) is transcendental over &,
mod v;. As above, for every j such that r(t—3)+1=j=<r(t—2),
there exists at most one exponent a such that X, + X, 4¢-V1 X, ais
algebraic over k£ mod v;. Thus we can find an exponent a(¢—2) such
that X, +X, ,2¢-D+X, ,9¢-2 is transcendental over k& mod v; for
r(t=3)+1=j=r(t—2), and also for j>r(¢t—2) from what has been
seen above. Continuing in the same manner, we get a polynomial
YV,=X,+X, ¢V + ... + X9 whose v;-residue is transcendental
over k for everyj. 'This completes the proof of the lemma.

We now return to the proof of Theorem 26. From the structure of the
polynomial Y, we immediately see that

k[Xb ) Xn] = k[Xb R Xz—b Yn X:-}-b R Xn]'

Since the ideal p is maximal, the p-residue y, of Y, 1s algebraic over k.
Let D=f(Y,) be the minimal polynomial of y, over k. We have
Dep. Since the v;-residue of Y, is transcendental over & for every j,
D does not belong to any v;. It is clear that the residue class ring
k[X,, -+, X,J(D) is isomorphic with the polynomial ring k(y,)[X,
T Xt—l’ X:+b T Xn}'

Let now a be an element of R=~k[X, - - -, X,] such that ap<=A=
(Fy,---,F,). We then have aDeU=(%B, F,) and there exists an
element b in R such that aD—bF, € 8. Thus bF, € (B, D).

Now, F,, does not belong to any associated prime ideal B of the ideal
(8, D). In fact, since (B, D)/(D) is generated by A—1 elements in
R/(D) (namely by the classes of Fy,---, F, |, mod D), since its
dimension is n— & (for D has been chosen outside of the prime ideals of
B) and since R/(D) is a polynomial ring in n— 1 variables, the induction
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hypothesis shows that every associated prime ideal B/(D) of (8, D)/(D),
whence also every.associated prime ideal B of (8, D), is of dimension
n—h. If such a prime ideal 8 were to contain F), it would contain ¥,
in contradiction with the fact that D has been chosen outside of the
(n— h)-dimensional prime ideals of %.

This being so, the relation &F), € (B, D) implies b € (B, D) (Vol. I,
Ch. IV, § 6, Theorem 11). Thus there exists an element ¢ in R such
that b—cD € 8. This relation, together with the relation aD — bF), € 8B,
implies that (a—cF,)D € 8. But, since D has been chosen outside all
the associated prime ideals of B, we deduce that a—cF, € B, and that
consequently a € (B, F,)=%. This shows that (%:p)=%, whence p
cannot be an associated prime ideal of %. This concludes the proof of
Macaulay’s Theorem.

Before proving an important result about the dimension of the sum
of two ideals, we need a lemma about unmixed ideals:

LemMma 2. Let % be an ideal in R=k[X,, - - -, X}, different from
R, and let {z,, - - -, 2} be a finite set of algebraically independent elements
of R/ over k such that R|¥ is integral over k[z). Then % has dimension
d, and a necessary and sufficient condition that N be unmixed is that no
element of k[z), different from zero, be a zero divisor in R/%.

PROOF. Let p be any prime ideal of R containing %, and let p=p/%A.
Then R/p is integral over R[2]/(b n k[2]), whence the dimension of
p is =d. On the other hand, there exists a prime ideal § of R/%
which contracts to (0) in &[] (Vol. I, Ch. V, § 2, Theorem 3), and for
such an ideal b the corresponding prime ideal p of R (i.e., the ideal p
such that pS% and p=yp/%A) has dimension d. This proves that %
has dimension d, and, moreover, that the associated prime ideals p
of % which are of dimension d are those for which (b/%) n k[z1=(0).

Now, in R/%, the set of zero divisors is |J (p,/%), where the p, are

the associated prime ideals of %« (Vol. I, Ch. IV, §6, Theorem 11,
Corollary 3). Thus the condition that no element of A[2], different
from zero, is a zero divisor in R/%, is equivalent to the condition that
we have (p,/%) n kTz]=(0) for every i, i.e., that all the ideals p; be of
dimension d. The proof of the lemma is now complete.

Let % and B be two ideals in an arbitrary finite integral domain
R. If %A is a prime ideal of dimension a, and B an ideal of dimension
b generated by n—b elements, then the application of Theorem 22 (§ 7)
to R/% shows that if A+ B#(1), then all the isolated prime ideals of
A+B have dimension 2a—(m—b)=a+b—n. This result continues
to be true if % is not a prime ideal, provided we suppose that all the
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isolated prime ideals p; of A have dimension a: in fact every isolated
prime ideal q of A +NB contains some »; and is therefore an isolated
prime ideal of p; - 8. Therefore the dimension of every isolated prime
ideal of A+ B is at least a+ b—n. This fact will be usefu! in the proof
of the next theorem where we show that in the special case of a poly-
nomia! ring this same result remains valid without the assumption that
9B is generated by exactly #—b elements:

THEOREM 27. Let % and B be two prime ideals in R=k[X,, - - -, X,]
of dimensions a and b.  If A+ B is not the unit ideal, then all the isolated
prime ideals of A+ B have dimension 2a+b—n.

PROOF. We introduce a second copy k[X'y, - - -, X',] of k[X,, - - -,
X,] and denote by ¥’ the idea! in A[X",, - - -, X",] corresponding to 9.
In the polynomial ring in 27 variables k[X,,---, X, X'y, ---, X',
we consider the ideal 1 generated by % and ¥, and the ideal B generated
by X'1—X,, -+, X ,—X,. We first prove that there is a 1-1
correspondence between the isolated prime ideals of A+ B (in k[XT)
and the isolated prime ideals of 1+ % (in k[X, X'1), and that this
correspondence preserves dimensions.

With every prime idea! p in k[X], we shall associate the ideal
p=( X1—Xy, -, X, —X,)ink[X, X']. The k-homomorphism of
k[X, X'] onto R[X] defined by o(X;)=¢(X’,)=X; obviously admits B
as kernel. Since ¢~}(p)=Dp, p is a prime idea! and has the same
dimension as p. Furthermore, the inverse image @~(% + B) contains
A, B’ and B, whence it also contains U +B. Conversely, if F(X, X') €
P I(A+ V) we have F(X, X)e A+ B, and we may write F(X, X)=
A(X)+B(X), (A(X)e ¥, B(X)eB). Since F(X, X)=F(X, X) mod
B, and since B(X)=B(X) mod B, we have F(X, X")=4(X)~
B(X") mod 8, i.e., F(X, X")eN+B. Therefore N+ DB is the inverse
image of % + B under ¢, and this proves that oY) is an isolated prime
ideal of W+ B, if and only if v is an isolated prime ideal of A+ B (Vol. I,
Ch. IV, Remark at the end of § 5, p. 213).

The consideration of ¢ proves also that % is a prime idea! of dimen-
sion n. Since it is generated by 7 elements (e.g., by X', —X,,-- -,
X',—X,), the remark preceding Theorem 27 shows that Theorem 27
will be proved if we prove that all the isolated prime ideals of U have
dimension a+b: in fact, every isolated prime ideal p of N+ B will
have then dimension 2a+b+n—2n=a+b—n, and hence also every
isolated prime ideal of A+ B will have dimension 2a+b—n.

We shall even prove that U is an unmixed ideal of dimension a4+,
and for this purpose we shall use Lemma 2 and the results on tensor

products established in Vol. I, Ch. III, § 14.
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We set k[x] =kl X]/%, where X stands for {X,, X,, - - -, X}, x stands
for {x, x5, - - -, x,} 'and x; denotes the A-residue of X,. Similarly, we
denote by k[x"] the ring A[X"1/B’. We know that k[ X, X1 is a tensor
product of k[X] and k[X'], over k (Vol. I, Ch. III, § 14, p. 184). It
follows from Theorem 35 of Vol. I, Ch. III, §14, that the rings
k[x] ® k[x"] and k[X, X']/1 are k-isomorphic and that there exists a
k-isomorphism f of the first ring onto the second such that if F(X) is
any element of k[.X] then f sends F(x) into the U-residue of F(X) and
F(x') into the U-residue of F(X").

By the normalization theorem we can find a algebraically independent
elements 2, 2y, + -+, 2, In k[x] and b algebraically independent ele-
ments 'y, 2y, - + -, ¥’ In k[x'] such that k[x] is integral over k[z] and
k[x'] is integral over k[z'] (§7, Theorem 25). Then, by the linear
disjointness of k[x] and k[x'] in k[x] ® k[x'] (after identification of the
rings k[x] and k[x'] with the corresponding subrings in the tensor
product; see Vol. I, Ch. III, § 14, p. 183), the a+b elements z, 2’ are
algebraically independent over %, and it is clear that the ring k[x] ®
k[x'] is integrally dependent over i[z, 2']. Since % and % are prime
ideals, the rings k[x] and A[x'] are integral domains. Hence by
Theorem 36 of Vol. I, Ch. III, § 14 it follows that no element of
k[z, 2"l (=k[z] ® k[2']), different from zero, is a zero divisor in
k[x] ® k[x']. If we now carry over these conclusions to the ring
k[X, X')/1, by means of the isomorphism f, and if we use Lemma 2,
we find at once that the ideal 1 is unmixed and has dimension a+ b.
Q.E.D.

Theorem 27 has the following geometric application. Let Vand W
be two irreducible varieties in affine space 4,X. The dimensions of
their prime ideals 2%, % in k[X,, -, X,] are dim (V) and dim (I¥),
respectively. We have seen that V' n W is the variety of the ideal
A+ B (§3, formula (2)), and that the irreducible components of this
variety are the varieties of the isolated prime ideals of A+ % (§3,
Theorem 14, Corollary 3). Therefore, Theorem 27 may be translated
into:

THeOREM 27'. If V and W are two irreducible varieties in A,X and if
the intersection V 0 W is non-empty, then every irreducible component of
V n W has a dimension Zdim (V)+dim (W)—n.

REMARK. Theorem 27 does not extend to arbitrary finite integral
domains. In other words, if V' and W are two subvarieties of an
ambient variety Z, then it is not necessarily true that, for every irre-
ducible component C of V' n W, we have

(1) dim (C) 2 dim (V) + dim (W) — dim (Z).
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For example, we take for Z the cone in 4K, with equation X, X,—
X,X,=0. The planes V(X,=X,=0) and W(X,=X,=0) are sub-
varieties of Z, and their intersection C is reduced to the origin. We
have dim (Z)=3, dim (V)=dim (W)=2, dim (C)=0, and the above
inequality is not verified. However, it can be proved that this inequality
holds for every irreducible component C of V n W which is simple
on Z.

For non-empty varieties V, W in projective space P,X, the inequality
(1) is still valid for every irreducible component C of V nW. In fact,
the homogeneous prime ideals %, B of V" and Win k[Y, Y,,---, V,]
have projective dimensions dim (V') and dim (I¥), whence their ordinary
dimensions are dim (V)+1 and dim (W)+1, respectively. Further-
more, A+ B (1), for both A and B are contained in the irrelevant ideal
(Yo, Yy, -+, Y,). Hence, if C is an irreducible component of
V n W, its prime ideal p, being an isolated prime ideal of A + B, has an
ordinary dimension = (dim (V)+1)+(dim (W)+1)—(n+1)=dim (V)
+dim (W) —n+1, and a projective dimension = dim (V) +dim (W) —n.
Note that in the projective case we have established the inequality (1)
without assuming that V' n W is non-empty. Hence in the projective
case we have the following result (which has no affine analogue):

If dim (V) + dim (W) Zn, then V n W is non-empty.

Again we note that this last result is not generally true if the ambient
variety of IV and W is an arbitrary variety Z. In other words, if the
dimensions a and b of two subvarieties I/ and W of an n-dimensional
irreducible projective variety Z satisfy the inequality a+b=n, then it
is not necessarily true that /' n W is non-empty (even if Z is a variety
free from singularities). The simplest example is the following:
Z is a ruled irreducible quadric surface (n=2) and V, W are straight
lines on Z (a=b=1) which belong to the same ruling of Z (and are
therefore skew lines).

§9. Normalization theorems. In this section we intend to give
a new version of the ‘‘normalization theorem’’ proved in § 7 (Theorem
25), together with a systematic treatment of the so-called ‘‘normaliza-
tion methods.” These methods partly reduce the study of arbitrary
ideals in a polynomial ring (or in a power series ring) to the study of the
ideals generated by a certain number of the variables. The treatment
we give, as well as the treatment given in the second half of §7, is
independent of the dimension theory developed in the first part of § 7.
Moreover in our present treatment we shall deal simultaneously with
polynomial rings and power series rings. In the next section we shail
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apply the normalization methods to the study of the dimension theory
of power series rings.

Let R denote either the polynomial ring A[ X, - - -, X, or the power
series ring A[TX,, - - -, X,]1 in n variables over an arbitrary commuta-
tive ring A (with unit element, as usual). We recall (§ 7, p. 198) that
a system of n forms (Fy,---,F,), with strictly positive degrees, is
said to be a homogeneous system of integrity in R=AlX,, X,, - - -, X,]
if the elements X, - - -, X, are integral over the ring S= A[F,, - - -, F,).

In the case of a power series ring R=A[[X,, X,,---, X,]] we
modify this definition by requiring that X;, X,, - -, X, be integral
over the ring S=A[lF,, F,,---, F,]]. By replacing the forms F; by
suitable powers, we can always reduce the study of a homogeneous
system of integrity to that of a homogeneous system of integrity con-
sisting of forms of ke degrees. 'The following lemma is useful.

Lemma 1. If {F,,-- -, F,} are n forms of like degree d which con-
stitute a homogeneous system of integrity in R, then each indeterminate X;
satisfies a relation of the form

Xt y(Fyp oo, F) X704 o tg, o(Fy, -+, F) = 0,

n

where @; ; is a form of degree s—j and s is a suitable integer.
PROOF. We consider a relation of integral dependence

M Xty ((F)X 7 e 2ih(F) = 0

satisfed by X, over S. We single out the terms on the left-hand side
which are of degree ¢ in X;, X,, -+, X,, and obtain

(2) X% (F)XS 5 - +g*(E) = O,

In this relation, s * must be a form, and ¢ ;*(F) must be either zero or
a form of degree t—jin X,,---, X,. Since Fy, .-, F, are forms of
degree d, the degree ¢ —j of ¢ *(F) (considered as a formin X, - - -, X,)
must be a multiple of d, say ¢t—j=dm (unless y *(F) is zero). Hence
relation (2) may be written as follows:

3 S R

where @ *=¢*, ., is a form of degree j. Factoring out a suitable
power of X;, we see that we may assume that # is a multiple sd of d,
and this proves Lemma 1.

Lemma 1 has the following easy consequences:

(1) The notion of homogeneous system of integrity is the same for
polynomials and power series. More precisely, a system of n forms
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{Fy, - - -, F,} is a homogeneous system of integrity in A[[X,, - - -, X,]]
if and only if it is a homogeneous system of integrity in 4A[ X, - - -, X,].

(2) It follows from Lemma 1 that, if {F;, - - - F,} is a homogeneous
system of integrity, then the ideal (Fy,-- -, F,) is irrelevant: in fact,
since the forms g, ; have strictly positive degrees, the relation given in
Lemma 1 implies that X9 e (Fy, - - -, F,). This result, together with
its converse, has already been proved in the lemma of § 7 (see p. 198)
for the case of polynomial rings (and also, more generally, for the case of
finitely generated homogeneous rings). The converse result holds also
in the case of power series, i.e., we have that if the ideal (Fy, - - -, F,)
is irrelevant (the F; being forms), then every X; is integral over
A[[Fy,---,F,]]. In fact, we can even prove the following result
(which is not a trivial consequence of the integrity of X, - - -, X, over
A[[Fy, - -+, F,]], in contrast with the case of polynomials): If F,,
-+, F, are forms such that the ideal (Fy,- - -, F,) is irrelevant, then
R=A[X,,-- -, X,]] is a finite module over S= A[[F,, -, F,]]. For
the proof we first observe that the proof of the above cited lemma
(§7, p. 198) provides us with a finite system {w; of monomials in
X, -+, X, such that every monomial m(X) can be written in the

form m(X)= Z a,jw; with a,; in S. Hence, in order to prove our
J

assertion it suffices to show that the coefficients a,; may be chosen in
such a way that their orders (in A[[X;, .-, X,1]) tend to infinity
with the order of m(X). We may assume (since we can replace the
F;’s by suitable powers) that the forms F; have the same degree d.
Then, as in the proof of Lemma 1, we write a,; as a power series

$.;(F), and we decompose i,; into an infinite sum ¢, = z%j(@ of
g

forms (p,;(® having degree ¢). Singling out the terms of degree
d(m (X)) in the sum Z a,w;, we get
J

aj

m(X) = ]Zq Poi U F)e

the summation being extended to all pairs (j, ¢) of integers such that
o(m(X))=dg+ ¢(w;). This proves our assertion.

The last result, together with its analogue for polynomials, may be
generalized in such a way as to make the notion of homogeneous
system of integrity useful also for questions which arise in a non-
homogeneous set-up.

THEOREM 28. Let {G,,---,G,} be a system of n elements in R
having a homogeneous system of integrity {F,,---,F,} as system of
tnitial forms in the power series case (of highest degree forms in the
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polynomial case). Then R is a finite module over T=AG,, - - -, G,]
(or over T=A[Gy, - - -, G,]).

PROOF. Upon replacing Gy, - - -, G, by suitable powers, we may
assume that the forms F,, - - - | F, have like degree d. We have just
proved the existence of a finite set of monomials w (X)) which is a basis
of R over S=A[lF,,.--,F1 (or ATF,, .-, F,]). Furthermore, we
have seen that every form #(X) in R may be written as

Q) uX) = ]Z%(F)wf(X )

where ¢, is a form such that d-9(¢,)+ d(w;)=0(u). Now, if v(X) is
any element of R, we apply (4) to each monomial #(X) which occurs in
9(X), and by addition of terms we find a relation of the form

*) o(X) = JZ!l'f(F')wf(X )

where the i (F) are power series in F;, F,, - - -, F, (or polynomials in
F,, F,, - - -, F,), and where

(5) d-o(;) 2 o(v)—o(w;) in the power series case,

with equality for at least one value of j;
(59 d-9(f;) < 9(v)— 0(w,) in the polynomial case,

again with equality for at least one value of j.
We prove that {w,(X)} is also a basis of R over T, and thus will
prove Theorem 28. For every v(X) in R, we consider the difference

o(X)— ,Z J(G)w;(X), where v(X)=JZ J(Fwi(X) (formula (4)). In

the power series case, replacing the F,’s by the G,’s leaves unchanged
the initial form of the element Z Ji(F)w(X) of R, for the equality sign

holds in (5) for at least one valu]e of j.  We therefore have
(©) o(o(X) - 2 PG (X)) > 0(v(X))-

Suppose, by induction on s, that we have found power series i, (G)

such that o(v(X)— 2 Y (G)w,(X))2s. We can then write, by (4')
J

(X)) — ; ‘)l'j:(G)wj(X ) = ; Xjs(F)w (X)),

where, by (5), the order o(x ;,) satisfies the inequality d-o(x;,) 2 s — o(w;).
If we set b, .., =4, +x;, and replace the F’s by the G’s, we get

o(o(X)— 3 4y, 1(Go (X)) 25+ 1.
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Furthermore the inequalities - o(x;,) 2 s — 0(w;) show that the sequences

{4; s} are Cauchy sequences in the power series ring in 7 variables. Let

p; be the limit of {f; }. By passage to the limit we obviously have

o(X)= Z p;(G)w;(X), and this proves our assertion in the power series
J

case.

In the polynomial case we proceed by induction on the degree s of
2(X). The case s=0 is straightforward, if care has been taken to
include the monomial 1 among the wi(X)’s. As above, we write

o(X )=Z J(F)wi(X), and consider the differences o'(X)=v(X)—

Z:/:j(G)ij(X ). Since the replacement of the F;’s by the G,’s leaves

tjhe highest degree form of Z ¥, (F)w;(X) unchanged, we have d(v') <

o(v), and our induction hy;)othesis shows that v’(X):Z x;(G)w (X)
J

with suitable polynomials x;. Therefore v(X) is also a linear com-

bination of the monomials w;(X), with coefficients in A[G,,- - -, G,].
Q.E.D.

A system of n elements G,, - - -, G, of R satisfying the conditions
of Theorem 28 is called a normal system of integrity of R.

THEoREM 29. Let A be an integral domain and let G, - - -, G, be a

normal system of integrity in R=A[[X,,---,X,]] (or R=A4[X,, -,
X,)). Then the elements G,, - - -, G, are analytically (or algebraically)
independent over A.

PRoOF. We first treat the polynomial case, which is quite simple.
Let K be the quotient field of 4. Since every X, is integral over
A[G,, - - -, G,), the field K(X,, - - -, X,) is algebraic over K(G,, - - -,
G,). As the former has transcendence degree » over K| it follows that
{Gy,---,G,} is a transcendence basis of this field (Vol. I, Ch. II,
§ 12, Theorem 25). Therefore these elements are algebraically inde-
pendent over K, and, a fortiori, over 4.

In the power series case, suppose that we have a non-zero power
series (Y, - - -, Y,) in n variables over 4 such that (G4, - - -, G,)=0.
We denote by F; the initial form of G;, and by dj; its degree. With
every monomial p= Y% - - - Y% appearing with a non-zero coefficient
in @, we associate the integer w(u) =s,d,+ - - - +5,d,. The monomials
p for which w(u) takes its smallest value ¢ are finite in number. Thus
the sum of the corresponding terms of ¢ is a polynomial 30, and
the difference ¢ —3i contains only monomials p for which w(u)>gq.
From this it follows that ¢(G,, - -, G,)—¢(Fy, - - -, F,), considered
as a power series in X, .-, X,, contains only terms of degree >g.
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Now, since {Fy, - - -, F,} is a homogeneous system of integrity, the first
part of the proof.shows that the element (Fy, - - -, F,) of ATX,,-- -,
X,] is different from 0. Since it is a form of degree ¢, it follows that
o(Gy, - -+, G,) is a power series of order ¢ in X,, X,,---,X,, in
contradiction with the hypothests that ¢(G,, - - -, G,)=0. Therefore
the relation ¢(G,,---,G,)=0 implies ¢=0, and this proves our
assertion.

REMARK. The conclusion in Theorem 29 remains valid if we suppose
only that 4 is a ring without nilpotent elements.

The key to the so-called normalization methods is the following
theorem, which is contained in the ‘“normalization theorem” proved in
§ 7 (Theorem 25). We, however, give here a proof which is independent
of dimension theory.

TueoreM 30. Let k be a field, and let F be a non-constant form in
R=R[X,,---,X,). Then there exists a homogeneous system of integrity
{F,- -, F,}in R such that F,=F.

PROOF. We first study the case in which k& 1s an infinite field, in which
case the proof is a mere repetition of the proof of the normalization
lemma given in Vol. I, Ch. V, §4 (Theorem 8). Namely, we choose
elements a,, - - -, a, of k such that F(1,a,, ---,a,)#0. Then, if we
set G(X,,- -+, X,)=F(X,, X;+a,X,,- -, X,+a,X,;) and d=0F, the
coeficient of X4 in G 1s F(1,ay, -+, a,)#0. The relation F(X,,
-, X)) =G6G(X,, Xy—a,X,, - -+, X,—a,X,) shows that the ideal A
generated by F, X,—a,X,,- -, X,—a,X, contains X?F(1,a,,---,
a,) (=G(X,,0,---,0)), and hence it contains also X9, since F(1,
as -+, a,)#0. Since A contains X;? and X;—q, X, for any j=2, it
contains X4 Hence % is irrelevant, and {F, Xp—a,Xq, -, X,—
a,X,} is 2 homogeneous system of integrity.

If k 1s a finite field, we proceed by induction on the number 7 of
variables. For #=1 our assertion is trivial. The case n=2 requires a
special proof (which does not make use of the finiteness of k). We
set X,/X,=T and write F(X,, X,)=X?F(1, T), where d=0F. The
polynomial F(1,T) is #0. We choose a polynomial G(T) in k[T]
which is relatively prime to F(1, T), and denote by r its degree. It is
well known that every polynomial H(T) of degree <d+r—1 may be
written in the form

H(T) = A(TYF(t, T)+ BIDYG(T),
where 04 <0G =r and 0B< &(F(1, T))<d. In particular, for every ¢
such that 0<g¢=<d+r—1, we have

Tv = A(T)F(, T)~ B(T)G(T),
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where ¢4, <7 and ¢B,<d. Upon multiplication by X471, we get
X1 Xyt = (XA THF(X,, Xo) +(X@1B(T))- (X G(T)).

As X, 1A (T), X4 'B(T) and X,"G(T) are forms in X, and X,, this
shows that the idea! generated by F(X,, X,) and X,"G(T) contains all
the monomials of degree d+r—1. It is therefore irrelevant, and our
assertion is proved for n=2.

We now study the passage from n—1 to n, under the assumptions
that n is 23 and that & is a field of characteristic p#0 (this is implied
by the hypothesis that k is finite). For every power ¢ of p, the g-th
power F(X,,---, X)) is a polynomial in X,9,-.., X ¢, which we
shall denote by F (X,4,-- -, X,9). By renumbering the variables, we
may assume that X, actually occurs in F. We assert that there exists
a power ¢ of p and a form G(X,,.--, X, ;) of degree ¢ such that
Fy (X9, X,1% G(Xy, -+, X, )#0. In fact, F(X,,---, X)),
considered as a polynomial in X, over A(X,, .-, X,_,), has only a
finite number of roots in the algebraic closure K of A(X,,---, X, ;).
On the other hand, since n—122, there exists, for any power g of p,
a form GW(X,, - - -, X,_,) of degree ¢ which is not the p-th power of
any element of k(X y,---, X, ;). Thusthe elements vVG@(X,,---, X, ,)
of K are all distinct, since their minima! equations 7?2—G@ =0 have
distinct degrees. Therefore one of them must be distinct from the roots
of the polynomial F(X,, .-, X)) (regarded as a polynomial in X,).
If we take for G this polynomial G@, we have F(X9,.-., X 9,
G(X,, -+, X,_1))#0, as asserted.

This being so we denote by H the form F (X9, - .-, X, 9, G(X,,

-, X,_1))- By our induction hypothesis there exist n—2 forms
Hy---,H, , in R[X,,---,X, ;] such that the ideal generated by
H H, ---,H, ,isirrelevantin k[X,,---, X, _;]. On the other hand
H is congruent to F? modulo X, 2—G(X, - - -, X,,_,), whence H belongs
to the ideal generated by Fand X,9—G. Therefore the ideal generated
by F, X,2—G, H,, - -+, H,_, 1s irrelevant in k[X,, -- -, X|], and this
proves our assertion.

REMARK. In characteristic 0, we can still find an exponent ¢ and a
form G(X,,---, X,_,) of degree ¢ such that the g-th roots of G are
distinct from the roots of F (considered as a polynomial in X,).
Then the last part of the proof may be extended to the case of
characteristic 0 if we take for H(X,,---,X, ,) the so-called
“resultant” of the elimination of X, between F(X,,-.-,X,) and
an_G(Xl’ ) Xn—l)’

CoROLLARY. Let kbe a field. Anynon-constant (resp. non-invertible)
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element F of R=k[X,, - - -, X,] (resp. k([ X,, - - -, X,11) may be included
is some normal system of integrity of R.

We apply Theorem 30 to the highest (resp. lowest) degree form of F,
and then use Theorem 28.

As our last topic in this section, we now define the notion of system
of integrity. A system of n elements F,, - - -, F,in R=AlX,,--., X1
(resp. ATTX,, -, X,]]) is called a system of integrity of R if R is a
finite module over A[F,, .- -, F,] (resp. A[TF,,---, F". It follows
from Theorem 28 that a normal system of integrity (in particular, a
homogeneous system of integrity) is actually a system of integrity. 'The
two theorems which are given below give the existence of systems of
integrity which are “‘adapted” to the study of a given chain of ideals.
As these theorems will mostly be used for studying the dimension
theory of power series rings, and in order to avoid tedious repetitions,
these theorems will only be stated and proved in the power series case.
Statements and proofs in the polynomial case are entirely analogous.

THEOREM 31. Let k be a field and U a proper ideal in R=
R[[X,, -+, X,)]. There exists a system of integrity {Fy, - - -, F,} of R,
such that, if we set S=R[[F,, - - -, F,11, then the ideal % 0 S is generated
by Fy, - --, F,, where d is an integer, 1 <d<n. The classes f, ,,-- -, [,
of Fy,y, - -+, F, mod U are analytically independent over k, and R/ is a
finite module over R[[f, 4, - - -, [, 1]

PROOF. Among the finite subsets of % which are contained in
systems of integrity of R, we choose one with the greatest possible
number d of elements. Let {F,,---, F;} be such a subset and let
{F,, - - -, F,} be a corresponding system of integrity. We assert that

() AN k[[Fdn, coe, BV =(0).
In fact, assuming the contrary we could introduce an element P, ,#0
of this intersection in some normal system of integrity {P, ,,---, P,}

of k[{F,.,,- -, F,]1 (Corollary to Theorem 30), since, by Theorem
29, this ring is a power series ring. Then RI[[F,,,, -- -, F,]1 would be
a finite module over R[[P,. ,,---, P, whence also k[[F,,-- -, F,]]
would be a finite module over k[[F,,---,F, P, ---,P,]], and
therefore A[[X, - - -, X,]] would be a finite module over k[[F,, - - - | F,
P,y---,P]. Hence{F,, ---,F,P,,,---,P,) would beasystem
of integrity of R such that {F,,-.-, F, P, ,}<%, in contradiction
with the maximality of d.

Since the ideal A NS contains Fy, - --, F, and since relation (7)
holds, it follows that % 0 S is generated by Fy,---, F,. Thus R/

contains S/(Fy, - - -, F))=k[[fs.1,-- -, f,]} as a subring, and relation
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(7) proves that f, ,,---,f, are analytically independent over k.
Finally, since R is a finite module over S, R/% is obviously a finite
module over k[T f, ,,---,f11. QE.D.

The analogue of Theorem 31 in the polynomial case contains the
normalization theorem of § 7 (Theorem 25).

THEOREM 32. Let A, =A< - - - <A, be a sequence of proper ideals in
R=Ek[[X,, -+, X,11. Then there exists a system of integrity {F,, - - -,
F,} of R and q integers 1=d,<d,< --- =d ,<n such that, if we set
S=k[[Fy, .-+, F,)), then %;nS is generated by F,,---,F,. The
classes fg oxy -5 fuof Fgns- -+ F, module ¥ ; are analytically indepen-
dent over k, and R|; is a finite module over k[[fy .y, - - -, f]]-

pPROOF. In case ¢=1, Theorem 32 reduces to Theorem 31. We
proceed by induction on ¢, and suppose that we have a system of
integrity {G,, - - -, G,} of Rand ¢— 1 integers d,<d,< - -- =d,_, such
that, in the ring T=k[[G,, - - -, G,]], the ideal T n¥; is generated by
Gy, Gy forj=1,---,¢-1.

The ideal %, n T contains Gy, - - -, qu_l since %, 2%, _,. We con-
sider the subring T'=k[[qu_l v Gl of T, which is a power
series ring, by Theorem 29. If %A n7'=(0), we take d,=d,_,,
F;=G,;, S=T, and then S n ¥ is generated by F,, - - -, F, as asserted.
Otherwise we apply Theorem 31 to the ring 7" and to the ideal %, 0 T":
there exists an integer d, such that 1<d <n-d, _, and a system of in-
tegrity {(Hy _ v+, Hy, -, H} of T"such that A 0 T"nK[[H, .,
-+, H,]] 1s generated by H; ., ---,H,. Then it is easily seen
that {Gy, -+, Gy, Hy s+ H,} is a system of integrity of R,
and that for this system of integrity all the assertions about the ideals
Sn¥%; (=1,2,-- -, q) are satisfied. The other assertions are easily
verified, as in Theorem 31. Q.E.D.

§ 10. Dimension theory in power series rings. As was shown in
§ 7, the normalization methods provide a smooth treatment of dimension
theory of finite integral domains. In this section we shall give a similar
treatment of dimension theory in power series rings, over a field.
However, since, in this case, the elementary methods of §7, based
upon the notion of transcendence degree, are not available, it will be
necessary to use some deeper results of the general theory of prime
ideals in noetherian domains.

We first consider the situation described in Theorem 32 (§ 9), in the
case in which ,, ..., %A, are distinct (proper) prime ideals. Since
R=FK[[X,, ---, X,]] is integral over S=k[[F,,---, F,]], the ideals
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;0SS must be distinct (Vol. I, Ch. V, §2, Theorem 3, Complement
1). Therefore we must have d,<d,< --- <d,. Since the integers
d; all lie between 0 and #, it follows that g<#z. As also (0) is a prime
ideal in R, we have therefore:

TueorREM 33. In R=Fk[[X,,---, X, any chain of prime ideals
distinct from R has at most n+1 terms.

The existence of maximal chains of prime ideals of R, i.e., of chains
of prime ideals (£ R) with n+1 terms, is immediately proved by the
example of (0) < (X)) < (X, Xp)< - -+ <(Xy, -+, X,). Now we have
a more precise result:

THEOREM 34.  Any chain v, <p,< --- <p, of prime ideals (distinct
from R)in R=R['X,, - - -, X,]] can be refined into a chain of n+1 prime
ideals (distinct from R).

PROOF. We again use Theorem 32 (§ 9): there exists a system of
integrity {F,, - - -, F,} of R and a sequence of integers d, <d,< --- =d,
such that, in S=k[[F,,---,F,]], the ideal ;.S is generated by
F,---,F 4 As was pointed out above, the integers d; are distinct.
Let ¥(0<7<n) be the prime ideal in S generated by F,,.--, F;
(we set F,=(0)). To prove the theorem it will be sufficient to show
that, given any index ¢ (0 £7<#) distinct from d,, - - -, d,, there exists
at least one prime ideal p in R such that » N .S=g; and such that the
family of ideals {p, ,, - - -, 9.} is still totally ordered by inclusion.

We assume that there exists an index r such that d,<i<d, , (the
cases { <d, and d, <7 are treated in a similar, and even simpler, manner).
We consider the factor ring R'=R/p,, its subring S’ =.S/p, n §=S5/F,,
the prime ideals §' =5, , /&, and &"=,/F4, in S’ and the prime ideal
p’=p,,./p, in R. The ring R’ is an integral domain, integral over
S’, and we have "<& and ' N S'=F'. Since S’ is integrally closed
(as it is a power series ring over a field; see Theorem 6, § 1), we may
apply the “‘going down Theorem” (Vol. I, Ch. V, § 3, Theorem 6):
there exists a prime ideal »” in R’ such that p"<yp’ and »" N S =F".
If we set p"=yp/v, we deduce from this that » N S=F; and that
p,<p<yp,., QE.D.

CoOROLLARY 1. Given any prime ideal p in R=Fk[X,,---, X1, its
height and its depth satisfy the relation h(y)+d(p)=n.

Consider, in fact, two chains of prime ideals p,=(0)< Pr< - <
Yoy Where Py =5 and Q=P <0< - -+ <Oy where 04, is a maxi-
mal ideal (actually the unique maximal ideal of R). Their reunion is a
chain with A(p)+d(p)+1 terms, which cannot be refined any more.
Thus A(p)+d(p)+1=n+1.

COROLLARY 2. Ifypand v’ are two prime ideals in R=k[[X,, - - -, X, 11
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such that v < 9" and such that no prime ideal can be inserted between p
and v', then their heights differ by unity, and so do their depths.

In fact there exists a chain (¢) of n+1 prime ideals in R admitting
p and p’ as terms. Since A(p)-d(v)=n and A(»")+d(b")=n, the
ideals v and »’ must necessarily be the (A(p) -~ 1)-st and the (A(p") - 1)-st
terms of this chain. Since their indices in (¢) differ by unity, our
assertions follow.

REMARK (1). The depth of a prime ideal » of R=Ek[[X, -, X,]]
is sometimes called its dimension. Thus the unique prime ideal of
dimension 0 of R is its maximal ideal. On the other hand, Theorem 34
shows that the (n—1)-dimensional prime ideals of R are its minimal
prime ideals; they are principal since R is a unique factorization domain
(§ 1, Theorem 6).

REMARK (2). It follows from the proof of Theorem 34 that, if
{Fy,---, F,} is a system of integrity such that p N k[[F,---, F,11 is
generated by Fy, - - -, F, (cf. Theorem 31, §9), then the dimension of
p is n—gq. This shows that, in the case of a prime ideal, the integer ¢
is independent of the chosen system of integrity {F, - - -, F,}. Weaiso
see immediately that the factor ring k[[X, - - -, X,11/p is integral over
a power series ring in d(p) variables; the integer d(v) is also called the
dimension of the ring kX, - - -, X,11/p; this notion shall be generalized
in VIII, § 9 (in the framework of the dimension theory of local rings).

REMARK (3). Conversely, if v is a prime ideal in R=k[[X,, -,
X,]1 such that R/p is integral over a power series ring S’ in 4 variables,
then d is the dimension d(p) of . In fact, a chain of d(b)+1 distinct
prime ideals in R/p gives, by contraction, a chain of d(p)+1 distinct
prime ideals in S’, whence d(p)<d by Theorem 33. On the other
hand, a chain of d+1 prime ideals in S’ gives, by application of the
“going up Theorem” (Vol. I, Ch. V, § 2, Theorem 3, Corollary) a chain
of d-1 prime ideals in R/p, whence d < d(p).

REMARK (4). Remarks (2) and (3) give a characterization of the
dimension d(p) of a prime ideal p in R=k[[X,,---, X,]]: it is the
number of variables of any power series ring over which R/ is integral.
Here stops the analogy with the polynomial case. In fact, the following
sentence ‘‘the maximum number of elements of R/p which are analyti-
cally independent over k" cannot be taken as a convenient definition of
the dimension of p, since this number is always infinite as soon as the
depth of p is larger than 1. For proving this it suffices to show the
existence of infinitely many analytically independent power series in
the power series ring in two variables k[lx, y11. It is even sufficient to
prove the existence of three analytically independent power series



220 POLYNOMIAL AND POWER SERIES RINGS Ch. VII

a, b, ¢ in kITx, v, since, as k[[a, 11 contains three analytically indepen-
dent power series u, v, w, the power series u, v, w, ¢ are also analytically
independent; by repeated applications we then get infinitely many
analytically independent power series in kfTx, y17.

For constructing three analytically independent power series in
kTx, y11, we first notice that, if the power series s\(x),- - -, s,(x) are
algebraically independent over k, then the power series ys,(x), - - -, ys,(x)
are analytically independent over k. For, if ¢ is a power series such that

@(ys1(x), - - -, ¥5,(%))=0, and if we write = > ®;, ; denoting a form
i=0

of degree j, we get > yipi(sy(x), - - -, 5,(x)) =0, whence @ (s:(x), - - -,
=0

5,(x))=0 and @;=0 since the series s,(x), - - -, 5,(x) are algebraically
independent over k.

It is therefore sufficient to prove the existence of three algebraically
independent power series in k[[x]], for example 1, x and s(x), where
s(x) 1s transcendental over k(x). The existence of such a transcendental
power series may be proved by various methods, some of these using
cardinality arguments, others (valid only in characteristic 0) using the
existence of transcendental analytic functions like e* or sin x. We give
here a third method, inspired by Liouville’s construction of trans-
cendental numbers, and prove that the series

s(x) = 1 txtx2i8le oL Lpnt L -,

is transcendental (over k(x)). Suppose that s(x) is a root of a poly-
nomial F(T) of degree ¢: F(T)=ay(x)+a,(x)T+ --- +ax)T?, with
a/{x) € klx), and let d be the maximum of the degrees of the poly-
nomials a;(x). We may assume that F(T) is irreducible over k(x).
For any polynomial p(x), the series s(x)—p(x) is a root of the poly-
nomial G(T)=F(T+p(x)). We set

G(T) = by(x)+by(x)T+ - - - +b,(x)T7,
where by(x)=a,(x) +a,(x)p(x)+ - - - +a,(x)p(x)?. We have by(x)#0
since G(T) is irreducible over k(x). On the other hand, we have
0by<d—+q-dp, where 0 denotes, as usual, the degree of a polynomial.
We take for p(x) the polynomial 1 +x-+ax? +x3+ ... £ x(n-D!" where
n is an integer such that n#>d-+1 and n>¢-+1. We then have
op=(n-1)! and 0bSd+q-dp<(n—-1)+(n—Dn-1)!<(n-1)!+
(n—1)n—1)!=n!, whence dby<n!. On the other hand, in the relation

G(s(x) = p(x)) = bofx) +by(a)(an! +almtDi4 oy o
b ()= o) =0,
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all the terms, except those of by(x), have x' as a factor. This contra-
dicts the facts that by(x)#0 and that dby<n!.

§ 11. Extension of the ground field. Let & be a field and let K be
an extension field of k. The polynomial ring R=~k[X]=Fk[X,, X,,
.-+, X,] may be considered as a subring of the polynomial ring S=
K[X]=K[X,, X,,---,X,]. We shall study in this section the
extension to S of ideals in R. Most of the results of this section can
also be derived from properties of tensor products and free joins
(Vol. I, Ch. III, §§ 14, 15). However, on the whole we shall deal with
our present topic ab initio, for the following reasons: (1) in view of the
special importance of polynomial ideals and their extensions it seems
desirable to have a self-contained treatment which can be given at an
early stage, without having to develop first the machinery of tensor
products; (2) most of the results concerning the behavior of poly-
nomial ideals under ground field extensions admit direct and simple
proofs. However, we shall constantly emphasize the connection
between the results of this section and those of Sections 14 and 15 of
Chapter III. This connection is based on the following two facts:
(1) the polynomial ring S is a tensor product of K and the polynomial
ring R, over k; (2) if a is an ideal in R, then the extension a¢ of a to S
may be viewed as the ideal generated in the tensor product R ® K by
the ideal a of R and the ideal (0) of K, and hence Theorem 35 of Vol. I,
Ch. II1, § 14 is applicable. In other words, we have that the residue
class ring S/a¢ is k-isomorphic with the tensor product Rja ® K.

The notational conventions will be the same as in Vol. I, Ch. IV, § 8.
Ideals in R and in S will be denoted respectively by small and capital
German letters. All the formulas (1)-(8) concerning extensions and
contraction of ideals, given in Vol. I, Ch. IV, § 8, naturally continue to
hold in the present case. However, some of the inclusions given there
can now be improved to equalities. Namely, we now have the following
equalities:

(N ae = q;
2 (@ nDb) = aenDe
(3) (a:b)e = ac:be,

whereas in the general case treated in Vol. I, Ch. IV, § 8, we could only
assert that a*>gq, (anb)*<acnbe and (a:b)’cac:pe. We shall now
prove relations (1)—(3).

We fix once and for always a basis {,} of K over k. 'This basis may
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of course have infinitely many elements, and we agree to include the
element 1 of & in the basis; let, say, u,=1. It is clear that the u; are
also linearly independent over the polynomial ring R=k[X}, X,, - - -,
X,], and every element of .S has a unique expression of the form
> u; f(X), where the f,(X) belong to R and all but a finite number of
the f,(X) are zero.

Since S=3 Ru, it follows that a¢=Jau,. Hence if z is any element
of a¢ then 2=3 u,2;, 3; €a. Now if 2z € R then the relation (z; —2)~
> u;z;=0 and the linear independence of the u; over R implies
i%1
z=2z,;€a. We have thus proved that a®<q, and this establishes (1).

To prove (2), let zea*nb*=3 au; N >bu;. Then in the unique
expression = u;2; of z as a linear combination of the u; with co-
efficients in R, the z; belong both to a and to b. This shows that
z € (anb) and establishes (2).

Finally, let z€a®:b, 2= u;2;, 3;€ R. If b is any element of b
then we must have 2b=3 u;2;b € a¢, whence 2,b € a, 2; € a:b, showing
that z € (a:b)e. This proves (3).

We observe that relation (1) is also a consequence of the above
cited Theorem 35 of Vol. I, Ch. III, § 14. In fact, according to that
theorem we have (a, b)) N R=a, where b is now the ideal (0) in K and
(a, b) is therefore the ideal ac.

In view of relation (1), the ring R/a may be regarded as a subring of
Slac.  We shall assume from now on that a# R. In that case we may
also regard the field K as being contained in S/a°. Furthermore, since
S is generated by X,, X,, .-+, X, and the elements of K, and since
the ac-residues of the X; belong to R/, it follows that S/a¢ is generated
by its two subrings K and Rfa. By the cited Theorem 35 of Vol. I,
Ch. III, § 14 the ring S/a¢ must be a tensor product of R/a and K,
over k; in other words, K and Rj/a are linearly disjoint over k. This
can be verified directly as follows:

Let v, v, - - -, U, be elements of K which are linearly independent
over k, and assume that we have a relation of the form 3 v;3; €as
where the z; are in R.  We have to prove that the z; belong to the ideal
a. This time we fix a basis {;} of K/k which includes the elements v;:
say, u;=v;, for j=1,2,---,9. Then we have 3 v;z;=3 ux;, x; €0,
and from the linear independence of the u; over R we deduce that
zj=x;€0a,j=1,2,...,¢q, as asserted.

Before we proceed with the general case of an arbitrary extension
field K of k we need a result concerning the special case in which K
is a pure transcendental extenston of k. For convenience, we adopt
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from now on the following notation: if p is a prime ideal in ring R,
different from R, then we denote by F(b) the quotient field of R/».

THEOREM 35. Let p be a prime ideal in R and o a primary ideal in R
having v as associated prime ideal. If K is a pure transcendental extension
of k, then v° is a prime ideal, a¢ is a primary ideal having v¢ as associated
prime ideal, and v¢ has the same dimension as p. Furthermore, if {t;} is
a set of algebraically independent generators of K|k then F(p¢)= F(v)({t;})
and the t; are also algebraically independent over F().

PROOF. Assume that the theorem has already been proved in the
case in which K has finite transcendence degree over k. It is then
easy to see that the theorem holds in the general case. Namely, to
prove that ¢ is prime, assume that we have F(X)G(X) € v¢, where F
and G belong to S. We write F(X)G(X)=> A(X)p{X), where
A{(X)e S and ¢ (X)ep. The coefficients of the polynomials F, G
and A4; belong already to some intermediate field K’ between k and K
which has finite transcendence degree over k and is itself a pure trans-
cendental extension of k. If we use the superscript ¢ to denote
extension of ideals to R'=K'TX, X,,---, X,], we have then that
F(X)G(X) € »*. Hence, by the finite case, either F or G belong to
p¢’ and therefore also to p¢. This shows that pe is prime.

Similarly, to show that q¢ is primary and has p¢ as associated prime
ideal, we have only to show that if we have a relation of the form
F(X)G(X) € q¢, where F and G belong to S, and if F(X) ¢ pe then
G(X) € a¢ (since the relations q°< p¢ and pec v/ q¢ are obvious). Now,
this assertion follows again easily by considering a suitable inter-
mediate field K between % and K, having finite transcendence degree
over k. In a similar way one deals with the other parts of the theorem.

We may therefore assume that K has finite transcendence degree
over k. This allows us to use induction with respect to the trans-
cendence degree of K/k and reduce the proof of the theorem to the case
in which K is a simple transcendental extension of k. Let then K=*~k(u),
u being a transcendental over &.

Let x4, x5, - - -, x,, denote the p-residues of X;, X,,---, X,. We
have S/pe=~k(u)[xy, x5, - - -, x,), and Rlx;, x5, - - -, x,] is an integral
domain. Hence in order to prove that v is prime, i.e., that S/p¢is an
integral domain, we have only to show that « is a transcendental over
k(xq, 29, - -+, x,). In other words, we have to show that if we have a
relation of the form > zuf € p¢, where z; € R, then 2; € p. But this is
obvious, since the powers of u are linearly independent over R and
since p°=3 pv;, where {v;} is any basis of K/k (choose a basis {v;}
which includes the powers of ).
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We have therefore that u is a transcendental over F(v)=k(x,, x,,
.-+, x,) and that'F(p¢)=F(p)(u). It follows that tr.d. k(x;, x,, - - -,
X, w)[k(u)=tr.d. k(xy, x4, - - -, x,)/k. This proves that dim pe=dim p
and that p¢ is a prime ideal.

Let B be a prime ideal of g&. To complete the proof of the theorem
we have only to show that B=ype. It is clear that > pe, since B> q
and therefore > 9. We shall now show that R < pe.

Let F(X) be any element of R:

F(X) = (y"‘um+ym_1um—l+ e *yo)/f(u)»

where y; € R and f(u) € k[u]. Since P is a prime ideal of q¢, ¢¢is a
proper subset of the ideal g:SF. Let G(X) be an element of this
ideal, not contained in q¢:

G(X) = (s +2, w4 - - - +3)[g(w),

where 2;€ R and g(u) € k[u]. At least one of the polynomials z;
does not belong to q. If the leading polynomial z, belongs to g, then
we replace G(X) by G(X)=G(X)—z u*/g(u) and observe that also
G(X) belongs to q¢:SF and does not belong to ¢¢. We therefore
may assume that 3, ¢ 9. From F(X)G(X)e€ g¢ follows that y,z, € q
and hence y,, € p since 2z, ¢ 9. Since p<*%, it follows that also the
polynomial

Fy(X) = (ynaw" 1+ - - +0)f ()

belongs to B and hence we conclude, as before, that y,,_; €. Con-
tinuing in this fashion we conclude that all y; are in », whence F(X) € pe.
This concludes the proof of the theorem.

Those assertions of the theorem which concern the prime idea! p
and its extension p¢ are easy consequences of Vol. I, Ch. III, § 14,
Theorem 36 and Corollary. In fact, if we denote by K’ the quotient
field of F(p) then, by the cited theorem, the ring S/pe is a subring of
the tensor product K @ K’, and by the corollary to that theorem
(Vol. I, Ch. III, § 14, p. 186) the generators ¢, are also algebraically
independent over K'. It follows that K ® K’ is an integral domain,
that the quotient field of K @ K’ is the purely transcendental extension
K'({t;}) of K’ and that the transcendence degree of K'[k is the same as
the transcendence degree of K'({t;})/k({t;}). Since it is obvious that
the ring K @ K’ and its subring S/p¢ have the same quotient field,
everything is proved.

We now go back to arbitrary extensions K of k and we prove

THEOREM 36. If a is a primary ideal in R and p=+/q then the prime
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ideals of o¢ are those and only those prime ideals B in S which satisfy
the conditions Be=y and dim B =dim p.

PROOF. Let B be a prime ideal of ¢q¢. We have PBc>q, whence
P> p since Be is prime.  We also have g°: 8 > q¢, and hence a fortior:
qe: Bee > q¢, since PecP. By (3) we can write qf:Bee=(q: Be)e.
Hence we have (q: B)e > g¢, and therefore taking contractions in R and
using (1) we find q:B<>a. Therefore Bc< p, showing that Pe=yp.

Let K’ be an intermediate field between & and K such that K' is a
pure transcendental extension of £ and K is an algebraic extension of K'.
We denote by R’ the polynomial ring K'[X,, X,, ---, X,] and by
p’, o’ the extended ideals R’y and R'a. The ideal ¢¢ is also the exten-
sion of o’ to S. Since, by the preceding theorem, q' is primary and
p'=4/¢, it follows, by the preceding part of proof, that B N R =y'.
Since K is algebraic over K', S is integral over R'. Hence dim B =
dim p' (Vol. I, Ch. V, § 2, Lemma 1). Since, by the preceding theorem,
we have dim »' =dim p, we conclude that dim 3 =dim p.

Conversely, assume that *B is a prime ideal in S such that B¢=p and
dim $=dim p. Since B> p> q, we have B D g¢ and therefore B must
contain at least one prime ideal of q¢. However, if B, is a prime ideal
of ¢¢ contained in ‘B, then 98, must coincide with B, since dim B, =
dim ¢ (dim 3, =dim p, by preceding part of the proof, and dim B =
dim p, by hypothesis). This completes the proof of the theorem.

CoRrOLLARY 1. If ais an unmixed ideal in R, then also a¢ is an unmixed
ideal, of the same dimension as a.

If a=q is a primary ideal, then all the prime ideals of q¢ have the
same dimension, equal to the dimension of p=4/q. Thus ¢¢ is un-
mixed, of the same dimension as q. If now a is an arbitrary ideal, the
corollary follows from relation (2).

CoroLLARY 2. If K is a purely inseparable extension of k and q is a
primary ideal in R, then also o is primary.

For let ¥ be a prime ideal of qe. If F e, then for some integer
£z 0 the polynomial F?' is contained in R and therefore belongs to ¢,
ie., to p, where p=1/q. Conversely, if F is a polynomial in S=
K[X,, X,, -+, X,] such that F?' belongs to p for some integer >0,
then Fr' € 9 and hence I" € %, since ' is prime. Hence 9B is uniquely
characterized as the set of all polynomials F in S such that F*' € p for
some integer f>'0. Thus g¢ has only one prime ideal and is therefore
primary.

COROLLARY 3. If q is a primary ideal in R and v=/q then the prime
ideals of a¢ cotncide with the prime ideals of ye.

Obvious.
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We shal! now study in more detail the behavior of a prime idea! » in
R under extension to S. We give the following definitions:

(1) v splits in S if pe is not a primary ideal.

(2) v is unramified in S if p¢ is an intersection of prime ideals (or,
equivalently, if ve=1/p¢). In the contrary case p is said to be ramified
in S.

(3) v is absolutely prime if for every extension K of k the ideal pe is
prime. In other words: p is absolutely prime if it is unramified and
does not split, for any extension K of &.

(4) v is quasi-absolutely prime if p¢ is a primary ideal for any extension
K of k.

(5) v is absolutely unramified if v is unramified for any extension
K of k.

Since the ring S/pe is the tensor product K @ R/v» over k, we can
state the following lemma:

Levmva. If v is a prime ideal in R then

(1) v does not split in S if and only if every zero divisor in K @ R/[v is
nilpotent (or—equivalently—if and only if the zero ideal in the tensor pro-
duct K @ Ry is primary);

(2) v is unramified in S if and only if zero is the only nilpotent element
in KQ Rfp;

(3) veis a prime ideal if and only if K @ R|v is an integral domain.

In Vol. I, Ch. III, § 15 (Theorem 39) we have proved that if K and
K' are two integral domains containing a field & and if the quotient

field of one of these domains is separable over &, then K ® K’ has no
k
proper nilpotent elements. This yields at once the following conse-

quence of the above lemma:

COROLLARY. If either K or the quotient field F(p) of R[v is separable
over k, then p is unramified in S. In particular, if F(p) is separable over
k, then v is an absolutely unramified prime ideal. If k is a perfect field (in
particular, if k is a field of characteristic zero) then every prime ideal in the
polynomial ring R=k[X,, X,, - - -, X,] is absolutely unramified.

The sufficient condition for absolutely unramified prime ideals, gtven
in the above corollary, is actually also a necessary condition. We have
therefore the following

THEOREM 37. A4 necessary and sufficient condition for a prime ideal v
in the polynomial ring R=k[ X, X,, - - -, X,] to be absolutely unramified
is that the quotient field of R|v be separable over k.

PROOF. If v is absolutely unramified we take for K the field k?7!
(we may assume that p#0). Let x, x,, - -, x, be the p-residues of
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X, X, -+ -+, X, respectively. We have R[p=Fk[x,, x,, - -+, x,] and
S/pe=Kl[xy, x5, - -+, 2,] =K & k[xl’ Xgy *+ Xl

By assumption, pe is an intersection of prime ideals. By Corollary 2
to Theorem 36, p¢ is a primary ideal. Hence p¢ is a prime ideal, and
K[xy, x4, - - -, x,] is an integral domain. By the definition of tensor
products, R/p and K are linearly disjoint in K ® R/p. We have there-
fore that the quotient field of R/p and the field k#7! are linearly disjoint,
over k, in their common overfield 227! (x,, x, - - -, &,), and the theorem
now follows from the definition of separability (Vol. I, Ch. II, § 15,
p. 113). Q.E.D.

We now characterize the prime ideals which are quasi-absolutely
prime. If K is a subfield of a field 2, we say, as in Vol. I, Ch. III, § 15
(p. 196), that K is quasi-maximally algebraic in £ if every element of Q2
which is separable algebraic over K belongs to K (or equivalently: if
every element of £ which is algebraic over K is purely inseparable over
K). We say that K is maximally algebraic in 2 if K is algebraically
closed in £, i.e., if every element of 2 which is algebraic over K belongs
to K.

THeorRem 38. If v is a prime ideal in a polynomial ring R=
R[X\, Xy, - -+, X)), then v is quasi-absolutely prime if and only if k is
g.m.a. in the field F(p) (=quotient field of R/[y).

PROOF. Assume that b is quasi-absolutely prime and let o be an
element of F(v) which is separable algebraic over .. We shall show
that o € k.

Let G(T)=T%+a,_, T*"'+ - .- La,, a; €k, be the minima! poly-
nomial of « over k. We take for K a normal extension of & such that
G(T) factors completely in linear factors over K:

4) G(T) = (T—=c' (T=c)---(T—¢p), ek

Since a € F(p), there exist polynomials A(X), B(X) in R such that
o= A(x)/B(x), where x,, x,, - - - , x, are the p-residues of X, X,, - - - , X,
and B(x)#0. Upon substitution in (4) and after clearing denominators,
the equation G(«)=0 yields the relation

1 (4B = 0.

This is to be viewed as a relation in the ring K[X]/p¢ and is therefore
equivalent to

(5) TT (40 -¢ By e v



228 POLYNOMIAL AND POWER SERIES RINGS  Ch. VII

By assumption, p¢ is a primary ideal, and its radical B is therefore a
prime ideal. Hence, at least one of the ¢ factors on the left-hand side
of (5) must belong to B. Now, v¢, and therefore also %, is invariant
under all the k-automorphisms of K (more precisely: under all the
k[ X] — automorphism of K[ X1 which are extensions of k-automorphisms
of K), and the k-automorphisms of K act transitively on the g roots ¢’; of
G(T). Hence all the q factors A(X)—c';B(X) belong to . Now, the
g roots ¢’; are distinct, since G(T') is a separable polynom:al. If ¢
were greater than 1, it would then follow that B(X) belongs to 8. Then
some power of B(X) would belong to ¢ and hence also to v, since

ec=p. Hence B(X) itself would belong to v, in contradiction with
the fact that B(x)#0. Hence ¢ must be equal to 1, and this proves
that « € &.

We now assume that k is q.m.a. in F(p). We consider an arbitrary
extension K of k and we must prove that the extended ideal »¢ of p in
K[X,, X, -+, X,] is primary. Let K’ be an intermediate field be-
tween k and K such that K’ is a pure transcendental extension of k and
K is an algebraic extension of K’. By Theorem 35, the ideal p'=
p-K'[X] is prime. Furthermore, the field F(»") (=quotient field of
K'[X]/y’) is a pure transcendental extension of the field F(p), and if say
{t.} is a set of generators of K’ over k consisting of algebraically inde-
pendent elements over &, then F(»")=F(p) ({t,}), and the ¢, are also
algebraically independent over F(p) (Theorem 35). Hence, by the
lemma proved in Vol. I, Ch. III, § 15 (p. 196), the field K’ is q.m.a.
in F(p'). Since y¢ is also the extension of ' to K[X], we see that we
have now achieved a reduction to the case of ground fields K’ and K in
which the bigger ground field K is an algebraic extension of the smaller
one, K'. We may therefore assume that K is an algebraic extension of k.

We fix a prime ideal B of p¢. To show that p¢ is primary we have
only to show that = v/pe. It will be sufficient to show that B< /e,
since the opposite inclusion is obvious. Let F(X) be any element of B
and let &; denote the P-residue of X;. Then §; is also the p-residue of
X, since Be=yp (see Theorem 36), and we have F(£{)=0. We fix a suit-
able power p° of the characteristic p such that the coefficients of the
polynomial G(X)=[F(X)}?* are separable algebraic over k. Let « be
a primitive element of the field generated by the coeflicients of G(X)
over k and let f(T') be the minimal polynomial of « over k. If g is the
degree of f(T), then we can write G(X) in the form

©) G(X) =3 G(Xpes, GX) kX1
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We have G(£)=0, i.e.,

(7) Z G&)i = 0.

If the coefficients G;(£) in (7) are not all zero, then (7) is a relation of
algebraic dependence for « over F(b) (=k(£)) and it is of degree <g.
However, the assumption that k is g.m.a. in F(p) implies that the poly-
nomial f(T') remains irreducible in F(p)[T]. This follows from the fact
that f(T') is a separable polynomial. In fact, if f,(T') is a factor of f(T)
in F(p)[T] and if we assume that the leading coefficient of f,(T) 1s 1,
then the coefficients of f,(T) are elements of F(p) which are separable
algebraic over k (since these coefficients belong to a decomposition field
of the separable polynomial f(7")) and therefore must belong to k. Thus
f(T) must divide f(T) already in k[7T] and therefore must coincide
with f(T). From the irreducibility of f(T) over F(p) follows that all
the coefficients G,(£) in (7) must be zero. That signifies that the poly-
nomials G;(X) belong to p. Hence, by (6), G(X)eve, and conse-
quently F(X )€ V/ve, since G(X) is the p*-th power of F(X). This
completes the proof of Theorem 38.

The preceding theorem can also be derived from two basic theorems
on free joins of integral domains, namely Theorems 38 and 40 of Vol. I,
Ch. III, §15. We first observe that by the above lemma and by
Theorem 38 of Vol. I, Ch. III, § 15 and its corollary 2 (Vol. I, p. 195} it
follows that  does not split in S if and only if R/p and K are quasi-
linearly disjoint over .. Hence by Theorem 40 of Vol. I, Ch. II1, § 15,
it follows at once that if & is q.m.a. in F(p) then p is quasi-absolutely
prime. Conversely, if b is quasi-absolutely prime and if o is an element
of F(p) which is separable algebraic over &, then we take for K the field
k() and we then conclude, by Theorem 40 of Vol. I, Ch. III, § 15, that
F(p) and k(«) must be quasi-linearly disjoint over k. Now suppose
that o does not belong to k. Then 1 and « are linearly independent
over k. Since « is separable algebraic over &, it follows that for any
integer s the elements 1 and o?® are also linearly independent over k
(see Vol. I, Ch. II, § 23, Theorem 8). By the quasi-linear disjointness
of k(a) and F(p) over k it would then follow that 1 and e are also linearly
independent over F(p), and this is in contradiction with the fact that «
belongs to F(p).

From the preceding results we obtain at once a characterization of
absolutely prime ideals. Let us say that a field F is a regular extension
of a subfield k of F if the following two conditions are satisfied: (1) F
is a separable extension of k and (2) & is maximally algebraic in F. We
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observe that in the presence of condition (1), condition (2) can be
replaced by the weaker condition (2') that k be g.m.a. in F. For, if (1)
and (2') hold and o is any element of F which is algebraic over %, then
also it follows from the very definition of separability in terms of linear
disjointness (Vol. I, Ch. I, § 15, p. 113) that k(c), as a subfield of F, 1s
also separable over k. Hence o is separable algebraic over k and thus
belongs to k. This shows that (2) holds.

THEOREM 39. Let p be a prime ideal in a polynomial ring R=
R(X,, Xo, -+ -. X,). A necessary and sufficient condition that v be abso-
lutely prime is that the field F(v) be a regular extension of k.

PROOF. [t is clear that b is absolutely prime if and only if p 1s both
quasi-absolutely prime and absolutely unramified. Our theorem is
therefore a direct consequence of Theorems 37 and 38, in view of the
remark just made above in regard to the equivalence of the conditions
(2) and (2') (in presence of condition (1)).

REMARK. The results derived in this section give us information not
only about the behavior of a given prime idea! p under various exten-
sions K of the ground field but also about the behavior of the various
prime ideals p in R under a fixed extension K of k. Thus we have
shown that (1) if K is a pure transcendental extension of k then pe is
prime for every p (Theorem 35); (2) if K is a separable extension of &
then p¢ is an intersection of prime ideals for every p (Corollary of
Lemma); (3) and finally, if K is a pure inseparable extension of k then
pe¢ is primary for every p. To these results we can now add the fol-
lowing: (4) If kis g.m.a. in K then v¢ is primary for every p; (5) If K'isa
regular extension of k then p¢ is prime for every p. (4) follows directly
from Theorem 40 of Vol. I, Ch. III, § 15 (but could also be derived
from the results established in this section).

§ 12. Characteristic functions of graded modules and homo-
geneous ideals. Let R be a graded ring (§ 2). We recall that if R,
denotes the set of all homogeneous elements of R, of degree ¢, we have

R= 3 R, where the sum is direct. In this section we restrict our-
=

selves to graded rings for which we have R, =(0) for g<0. We also

recall that R R,< R,

q+r:
A graded module M over R is a module M, together with a direct sum

decomposition
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of the additive group of M, such that, for every pair of integers (g, ), we

bave

RM, = M,,,.
The elements of MM, are said to be homogeneous of degree g. Given any
element x € M, we can write, in a unique way,

+o

x=Sx,

where x, € M, and where all terms, except a finite number, are zero.

The element x, is called the homogeneous component of degree q of x.

The notation M, for the additive group of homogeneous elements of
degree ¢ of M will be used without further warning.

A submodule N of M is said to be homogeneous if the relation x € N
implies that all the homogeneous components of x belong to N.

The homogeneous submodules of R, where R is considered as a
module over itself, are obviously its homogeneous ideals (§2). As in
the case of ideals (Theorem 7, § 2) one proves that, in order for a sub-
module N of a graded module M to be homogeneous, it is necessary and
sufficient that IV be generated by homogeneous elements of M. It is
a straightforward matter to verify that a homogeneous submodule N
of a graded module M is itself a graded module, and that the difference
module M — N is also a graded module. The proof is the same as that
of Lemma 1, part (b), § 2.

Given two graded R-modules M and M’ and an integer d, a homo-
morphism 6 of M into M’ is said to be homogeneous of degree d if
6(M)=M',, , for every g (i.e., if the image of any homogeneous element
of degree ¢ of M is a homogeneous element of degree d+¢ in M’).
For example, if a; is a2 homogeneous element of degree d in R, the
mapping x — azx of M into itself is 2 homogeneous homomorphism of
degree d.

If 6 is a homogeneous homomorphism of degree d of the graded module
M into the graded module M, then the kernel 6-1(0) of 6 is a homo-
geneous submodule of M, and the #mage 6(M) is a homogeneous sub-
module of M’. In fact, if 63 x,)=0 (x, € M), we have > 6(x,)=0.
As the 6(x,) are homogeneous elements of distinct degrees, this relation
implies 6(x,)=0 for every ¢, whence x_, € 6-%(0), and the kernel §-1(0)
is homogeneous. Similarly, if y€6(M), then y=6003 x,) (x,€M)),
y=2 6(x,) is the decomposition of y in homogeneous components, and
these components belong to §(M). Thus the image §(M) is homo-
geneous. The difference module M’ —6(M) is called the cokernel of 6
it is also a graded module.
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Tueorem 40.  Let A be a ring and M a graded module over the poly-
nomial ring R=A[X,, - - -, X,]. Let M=73 M, be the direct sum decom-
position of M. Then each M, is an A-module. If, furthermore, M is a
finitely generated R-module, then each M, is a finitely generated A-module.

PROOF. Since 4 coincides with the set R, of elements of degree 0 of
R, the first assertion is clear. If, now, M is finitely generated, M admits
a finite set {y,, - - -, y,} of homogeneous generators, since the homogeneous
components of the elements of any basis of M themselves generate M.
This being so, each element y of M, may be written in the form
y=2 Pi(X)-y;, where Py(X) is a form of degree ¢—d°(y;) where d°
denotes the degree of a homogeneous element. Then the elements
m(X)y; (m(X): monomials of degree ¢—d°(y;)) constitute a finite set
of generators of the 4-module M.

THeoOREM 41 (Hilbert-Serre). Let A4 be a ring satisfying the descending
chain condition (d.c.c.), M a finitely generated graded module over
R=A[X,,---,X,} and M=3 M, the direct sum decomposition of M.
Then M, considered as an A-module, has a finite length @p(q). For
sufficiently large q, the function @y,(q) is a polynomial in q whose degree is
at most n— 1.+

PROOF. The fact that the length ¢,(g) of M, is finite follows im-
mediately from Theorem 40 and from the fact that 4 is a ring with d.c.c.
In order to prove that gy(g) is a polynomial in ¢ for ¢ large enough, we
proceed by induction on the number 7 of variables.

For n=0, R is reduced to 4=R,. Since M admits a finite system of
homogeneous generators {y,,---,y,}, the non-zero homogeneous
elements of M can only be of degree d°(v,) for some 7. Thus, for ¢ >
max (d°(y;)), we have M, =(0), whence ¢,(q)=0. This proves our
assertion for n=0.

In the general case, consider the homomorphism 6: y — X, -y of M
into M. It is a homogeneous homomorphism, of degree 1. Let
N=6-1(0) be its kernel, and let P=M—6(M) (the difference module)
be its co-kernel. Both N and P have X in their orders (see Vol. I,
Ch. II1, § 6). 'They can therefore be construed as graded modules over
K[X,,---X, ] (see Vol. I, Ch. III, § 6) and the induction hypothesis
may be applied to them. We write N=3 N,, P=3 P,.

Consider the following sequence of modules and homomorphisms:

(1) 0>NSMSMLpPoso,

+ For the purposes of this theorem we attach to the zero polynomial the
degree —1. The proof of the Hilbert theorem given below is essentially due to
Serre, at least in its cohomological formulation.
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where all homomorphisms, except the one in the middle, are natural
homomorphisms. (7 is the inclusion isomorphism into M, j the canonical
homomorphism of M onto the difference module P.) In this sequence,
the image of each homomorphism is equal to the kernel of the following
one. In the terminology of cohomological algebra this is expressed by
saying that the sequence (1) is exact. If we start from the homo-
geneous elements of degree g of N or M, we get the exact sequence

(2) 0—N, —>M —>M_L1—> 21— 0.

We now use the following lemma (a proof of this lemma will be given
immediately after the proof of the theorem):

Lemva. Let 0 > E;, -~ E,— .- - — E, — 0 be an exact sequence of
A-modules, having finite lengths {(E,). Then the alternating sum {(E,)—
{(Ey)+{(Eg)— - -+ +(—=1)""Y(E,) of the lengths of these modules is equal
to 0.

In our particular case, and with the notation which has been intro-
duced before, the lemma gives the relation

3) Pug+ 1) — o) = pplg+1)—pn(9).

By the induction hypothesis, for ¢ large enough @p(g+1) and py(g) are
polynomials in ¢, of degree at most n—2. Hence the first difference
en(g+1)—@u(q) is, for g large, a polynomial of degree at mostn—2 in
¢, and this polynomial takes integral values for all large values of q.

We now observe that since ¢F=s!(%) +a polynomial in ¢, of degree
s—1, it follows that every polynomial f(g) in g, of degree less than or
equal than a given integer d, can be written in the form

flg) = co@+era2)+ - - - +eama(D+eq

with suitable coefficients ¢;. Now, we assert that if f(g) takes integral
values for all large values of ¢ then the coefficients c; are integers. We
prove this by induction with respect to d since the case d=0 is trivial.
If we make use of the identity

S ¢IN-@ = (L
we find the following expression for the first difference f(g+1)—f(q):
flg+1)—f(g) = coladn) +ex(alo)+ -+ +caoy

Since the first difference also takes integral values for large ¢ and since
it is a polynomial of degree at most d— 1, it follows from our induction
hypothesis that ¢g, ¢y, -+ ,c4_, are integers. Since the binomial
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coefficients (9) are integers for all ¢ and s it follows from the above ex-
pression of f(g) that also ¢, is an integer, and this proves our assertion.

Applying this result to the first difference g, (m) — @, (m—1), where
m is a sufficiently high integer, say m > N, we can write

) eulm)—eu(m—1) = ay(323)+~a,(725)+ -+ - +a,_5, (m2 N)
where the a; are integers. Let us also write
(6) @u(m)—pp(m—1) = ay(723)+ay(723)+ - - + a2+ Cp

m=273,---,N-1,
eum(l) = ¢y,

where we set () =0 if t<s and where ¢, ¢y, - - -, ¢y_; are integers. If
we add relations (4) for h=g—1, g—2, - - -, s—1 we find the identity

@ = @ZD+ED+ - - +(E)+,

and using this identity we find, by adding the relations (5) for m=gq,
g—1,---, Nand the N—1 relations (6):

‘PM(q) = ao(ngl)+al(n52)+ Tt +an—2(¥)+an—l’ (9 2 N)

where a,_; is a suitable constant, necessarily an integer, since a,,
a - --,a, , are integers and since py,(q) takes integral values for all
large g. This completes the proof of the theorem.

We now give a proof of the lemma. We consider the homomorphism
fitE,—E, . (i=1,2,-.-,n) where E,. is the module (0) and f,, is the
zero homomorphism. Since f(E;) is isomorphic with E,/f,~%(0), we
have the relation

UE) = UEN SO, i=1,2---,n.
Since the sequence is exact, this relation may also be written as follows:

UE) = (O - £(f710), 1=1,2,---,n—1
UE,) = (£, (0)).
Thus the alternating sum /(E|)—£(Ey) ~ - - - +(—1)""Y(E,) is equal to
£(f,-%(0)). Since f; is an isomorphism, we have f,-'(0)=0, and this
completes the proof of the lemma.

REMARK (1). The most important case in which Theorem 41 may be
applied is the one in which 4 is a field k and M is a residue class ring
RIX,, -+, XU of RIX,, ---,X,] modulo a homogeneous ideal 9.
Then the function g,,(g) is denoted by x(; ¢) and is called the char-
acteristic function of the ideal . The integer x(¥;¢q) is the greatest
number of forms of degree ¢ in A[X,, X,, --- X,] which are linearly
independent modulo % over k.
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REMARK (2). Let E and F be two homogeneous submodules of the
graded module M. Since (E+F),=E,+F and (EnF) =E, nF, the
o-modules (E+ F) [E and F_[(E 0 F), are isomorphic. Therefore we
have for every g, the relation:

) Pe(9) - 2r(9) = Ppor(9) + Prn #Q)-

In the case of two homogeneous ideals %, B in the polynomial ring R,
(7) gives the relation

3) x5 )+ x(Bsq) = x(A+B;9)+x(& n B;q).

REMARK (3). Let E be a homogeneous submodule of a graded
module M. Since E,= M, we have the relation

9 ?e(9) = pm(9)-

In the case of two homogeneous ideals %, B such that %< B, relation (9)
gives:

(10) x(%:9) 2 x(%B; g)-

REMARK (4). It is often necessary to distinguish the characteristic
function @g(g) (or x(¥; ¢)) from the polynomial which is equal to this
function for g large enough. In such a case we denote this polynomial
by @z (or %(¥;q)). We call this polynomial the characteristic poly-
nomial of E (or %).

The degree of the characteristic polynomial of 2 homogeneous ideal
A is closely related to the dimension of %. More precisely, we have
the following theorem:

THEOREM 42. Let U be a homogeneous ideal in k[ X, X,, ---, X,].
Then the degree of the characteristic polynomial %(; q) of U is equal to
the projective dimension of U (see § 4).

PROOF. Theorem 42 is a particular case of:

THEOREM 42'. Let E be a finitely generated graded module over
R=Fk[X,,---,X,) and F a homogeneous submodule of E. Then the
degree of g r(q) is equal to the greatest projective dimension of the asso-
ciated prime ideals p; of the submodule F (see Vol. 1, Ch. IV, Appendix).

PROOF. We recall that the radical w of the submodule F is the set
of all elements a € R for which there exists an exponent s such that
aEcF (Vol. I, Ch. IV, Appendix). As in Theorem 8, § 2, it is easily
seen that 1o is & homogeneous ideal in R. It follows from Vol. I, Ch. IV,
Appendix, that the isolated prime ideals p; of F are the (necessarily
isolated) prime ideals of w. These ideals are therefore homogeneous
(Theorem 9, Corollary, § 2). Let d—1 be the greatest integer among
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their projective dimensions. By normalization (§ 9, Theorem 31) there
exists a homogeneous system of integrity {G,, - - -, G,) composed of
forms of like degree % in k[X, - - -, X,] such that w n kG, .- . G, 1=
(Ggovs -+ +» G,). Since v is the radical of F, there exists an exponent
k' such that G E<CF for j=d+1,---,7r. Thus, if we set F;=G/',
k[F,, .- -, F,) is a homogeneous subring of k[X, .-, X 1 and, since
kX, -+, X,] is a finite module over k[F,, - - -, F,], E is also a finite
graded module over k[F,,---, F,]. Since E/F is annihilated by the
ideal (F,, 4, -, F,), E[Fisactually a graded module over k[F, - - . | F,1.
Then Theorem 41 shows that the degree of ¢z x(q) is at most d—1.

On the other hand, no non-zero element of k[F,, - - -, F,] is in the
radical of the submodule (0) of E/F. Let (a4, - -, «,) be a finite basis
of M=E|F over S=k[F,,---,F,], composed of homogeneous ele-
ments. The radical of (0) in S«,, i.e., the set %, of elements x € S such
that x¢a; =0 for some ¢, is an ideal in .S (and even a homogeneous one).
Since (¥, is obviously contained in the radical of (0) in M, we have
N, =(0), and this implies that some %, say %, is the ideal (0) (as S is
an integral domain). In particular, we have xo # 0 for every x#0 in S.
Thus S«, is a free submodule of M=E/F. If we denote by ¢ the degree
of «;, the vector space (E[F),,,,, contains, as subspace, the set of all
elements f(Fy, - - -, F oy, where f is a form of degree ¢ (remember that
F; is a form of degree hk"). Since the space of forms of degree ¢ in 4
variables has dimension {g)=(?}47"), which is a polynomial of degree
d—1 in ¢, and since we have the inequality

@gr(t+hh'q) 2 Y(q), for large ¢,

it follows that the degree of Gp is at least d—1, and this proves
Theorem 42'.

If % is a homogeneous ideal in k[X,, X,,---, X,], of projective
dimension 7, we have

X% q) = af)+a,(, 8+ - +a,_y(D)+a,

where the coefficients ag, a,, - - -, a, are integers (see Theorem 41).
Here a, is necessarily a positive integer, since ¥(2(;¢) is positive for
large positive integers g. This coefficient a,, is called the degree of the
ideal %. 'The integer p (N)=(—1)(a,—1) is called the arithmetic genus
of A. If Ais a prime ‘deal, the degree and the arithmetic genus of A cor-
respond to well-defined geometric characters of the irreducible 7-dimen-
sional variety V' =%7(%). Thus, if k is algebraically closed, then q, is
the order of the wvariety V, i.e., the number of intersections of V
with a general (n—7)-dimensional subspace of S,. If I/ is a curve
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(r=1) without singular points, then p (%) is the ordinary genus of the
curve.

§ 13. Chains of syzygies. In this section 4 denotes a noetherian
ring, and all the 4-modules are tacitly assumed to be unitary and finitely
generated.

Given any finite 4-module M, and any finite basis {x, - - -, x,} of M,
we may consider M as a difference module F(M)—S(M) of the free
module F(M)= A? generated over 4 by ¢ basic elements. (We may take
for A9 the g-fold direct sum A®AD - - - DA.) The submodule S(M)
of A9 is called the module of the relations satisfied by the elements
Xy, -+, %, in fact its elements are the “vectors”t {ay, - - -, a,} € A¢
which satisfy a,x,+ --- +a,x,=0. One says also that S(M) is the
first module of syzygies of M (with respect to the basis {x,, - - -, x,}).

Since S(M) is a submodule of the finite 4-module 47=F(M), itis a
finite A-module. Let {y,,---,y,} be any finite basis of S(M). We
can then consider S() as a difference module F(S(M))— S(S(M)) of a
free module by the first module of syzygies of S(M). We set F(S(M))=
Fy(M), S(S(M))=Sy(M). This procedure can be continued, and we
set, inductively, F, (M)=F(S,(M))and S, ,(M)=S(S,(M)). Thus:
S (M)=F, (M)-S,,,(M). The module S, (M) is called the nth-
module of syzygies of M. Notice that this module depends on the choice
of the bases in M, S,(M), - - -, S,_y(M). Here F,(M)and S,(M)stand
respectively for F(M) and S(M).

The situation we have just described may be conveniently described
in terms of an exact sequence

[ Pn—1 %o
(1) F..(M)—>FM)—F, (M)— ---—F(M)—M-—0.

Here ¢, is the natural homomorphism of F, (M) onto S,(M) and may
be considered as a homomorphism of F, (M) into F,(M). Its image
is S,(M), and, by definition, its kernel is .S, (M). Thus the image of
@, is equal to the kernel of ¢, ;. This proves the exactness of our
sequence, since the homomorphism g, is onto.

The exact sequence (1) is called a chain of syzygies of the module M.
We say that a chain of syzygies

Tn-1

--—>F —>F, > -—>F,—->M—->0

of an A-module M terminates at the n-th term if the module of syzygies

+ For convenience, we shall use in this section the term ‘“‘vector” in a wider
sense than in Vol. I, Ch. I, § 21, i.e., also if 4 is not a field.
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S,_, is a free module. We can then complete the exact sequence by
setting F,=S,_4, ,,,=0:

0-F,»>F, ,—~---—>F,—>M-—0.

We now study the influence of the choice of bases upon the structure
of the modules of syzygies. Let{x,, - - -, x,},{y1, - - -, 3.} be two bases
of the A-module M, and let M=F—S and M=F'— S’ be the repre-
sentations of M as difference module of free modules deduced from these
bases. We may take {x,, ---, X, ¥y, -, ,} as basis of M and write
M=Ar+—T. Thesyzygy module T is the set of vectors {a;, b} € A+
such that 3 ax;+> b;y;=0. It contains a submodule which can be
identified with .S, namely the set of vectors {a;, 0} such that > a,x;=0.
Now, since {x,} is a basis of M, we can write y;=3 ¢;;x;,and the vector
ti={ci1 5 Cjp0,---,0,-1,0,---,0} belongs to T; here the
number of zeros which precede — 1 isequal to j—1. These ¢ vectors ¢;
are obviously linearly independent over A, mod A~, whence a fortiori
mod S. Furthermore, T is generated by S and by the vectors ¢;: if

{a;, b} T, we have 0=3 ax;+3 bjy;=> ax;+2 b J,x,—z (a +
z bjc;;)x;=0; thus the vector {a;, b,}+z bit;={a; +Z €50 0} belongs

to S. 'This proves that T is the a'zrect sum of S ana’ a free module.
Similarly T is also the direct sum of S’ and a free module. If we call
equivalent two A-modules S, S’ for which there exist free A-modules
L, L' such that the direct sums S®OL, S'@L’ are zsomorpluc, then we
have proved:

LemMa 1. Two first modules of svzygies S, S’ of an A-module M with
respect to two bases of M are equivalent.

In order to prove that all the modules of syzygies of M are uniquely
determined up to equivalence we need only to observe that the notion of
equivalent modules is actually an equivalence relation and to prove the
following:

Lemma 2. If M and M’ are equivalent modules, and if S and S’ are
two first modules of syzygies of M and M’, then S and S’ are equivalent.

PROOF. We have, by assumption, MOL~ M'SL’, where L and L’
are free modules. If {x,, x,,-- -, x,,} is a basis of M with respect to
which S is derived and if {2y, 2,,-- -, 2} is a free basis of L, then
{%3, X9y +  +y Xy 2y, Zay -+ + 5 2y} 18 @ basis of M®L. Since any relation
2 ax;+2 b;z;=implies > a;x;=0 and b;=0, it follows that the first
module of syzygies of M®L, relative to the basis {x;, x,, - - -, X,
Ry, Xgy -+ + 5 By}, 18 isomorphic with S.  Similarly, S’ is isomorphic with
the first module of syzygies of M'®L’, relative to a suitable basis.
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Since two first modules of syzygies of isomorphic modules M®L and
M'®L’ are equivalent by Lemma 1, it follows that also S and S’ are
equivalent. Q.E.D.

In the case of a graded module M over a graded ring A (see § 12) we
shall restrict ourselves to graded modules of syzygies. They are con-
structed in the following way: we take 2 finite basis {x,, - - -, x,} of M
composed of homogeneous elements and denote by d; the degree of x;.
Let F be the free A-module generated by ¢ elements X, - - -, X, X;
being considered as having degree d; (whence the additive group of
homogeneous elements of degree n of Fis 3 4, ; X,). The homomor-
phism ¢ of F onto M defined by ¢(X;)=x; is homogeneous of degree 0.
Its kernel .S, which is the first module of syzygies of M with respect to
{xy, - - -, x}, is therefore a graded module. We apply the same pro-
cedure to S, etc. Thus, in the exact sequence

@ P P
F,,+1—>F,,—I>F,,_1—>- o> F->M-—0
all the homomorphisms are now homogeneous, of degree 0.
From now on we make one of the following assumptions

(a) Either Ais a graded ring Zo A;, with A, a field, and M is a graded

A-module, in which case we tacitly limit ourselves to graded modules of
syzygies;
(b) or A is a local ring.

We denote by m the ideal > A, in case (a), the maximal ideal of 4
i=1
in case (b). In both cases, 4/m is a field. We have stipulated earlier
in this section that, given a chain of syzygies

Pn-1 Po
F,—F, ,—»>---—>F,—->M-—>0

for the module M, the assertion that it stops at the #n-th step means that
the module S,_;=¢, (F,)=@,_,"}0)is free. We prove that, in either
case (a) or (b), this property is independent of the choice of the chain of M.
In fact, in another chain of syzygies, the (n—1)-th module S’,_; of
syzygies is equivalent to S, ;, by Lemma 2. We thus have to show
that a module which is equivalent to a free module is itself a free module.
In view of the definition of equivalence, this assertion will follow from
the following lemma:

Lemma 3. Under hypotheses (a) or (b), if a module E and a free
module F are such that the direct sum EQF is a free module G, then E is
Jree.
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PROOF. It is suffcient to prove the lemma in the case in which F is
generated by a single element x. Let {g,,-- -, g,} be a linearly inde-
pendent basis of G, the g; and x being homogeneous in case (a). We set
g:;=e;+ax (e;c E, a; € 4, both e; and a; being uniquely determined).
For any element u of E we can write u=3> c¢,g;, whence u=> ce;+
(S c;a;)x. Since E n Ax=(0), it follows that >¢,a;=0. Therefore the
module E is generated by the elements e,, - - -, ¢,.

On the other hand, we may write x=> b,g; (b, A), whence
x=> be;~(3 ba;)x. This implies > be;=0and > b,a;,=1. If Aisa
graded ring, the elements q;, b; of 4 are homogeneous, and the relation
> b,a;=1 implies that at least one of the b,, say 4,, is different from 0 and
is of degree 0. If A4 is alocal ring, > b,a;,=1 implies that at least one of
the b, say b, is outside the maximal ideal m. In both cases 4, is a unit,
and the relation 3 b.e;=0 shows that E is generated by e,, - - -, e,.

We now show that these g— 1 elements e,, e, - - -, ¢, are linearly in-

q
dependent. Given any relation > c,e;=0 (c; € A), we have
=1

3 i

0= 2 c{gi—ax) = 2 Ci(gi“ai ,Z bjgj) = Z (Ci"b; jZ ajcj)gb

whence ¢;= (Z ajcj)b,- for every i. Thus every relation satisfied by
i

ey, - - -, e, is proportional to > be;=0. Since b, is invertible, only the
trivia!l relation does not contain e;. Q.E.D.
We now strengthen our assumptions. Namely, we shall assume that

(2)’ either the ring A is a polynomial ring in n variables over a field k, or
(b)" the ring A is a regular local ring of dimension n (see VIII, § 11).

In both cases, there exist n elements &4, - - -, £, of 4 such that

[11 The ideal m is generated by &,, - - -, .5

12} If m; denotes the ideal (¢4, - - -, &;), then (m;_;:m)=m._,. In
fact, in case (a)’ we take for £, - - -, &, the variables in 4 (and these
elements are homogeneous). In case (b) we take for {¢,,---, ¢} a
regular system of parameters of 4 (VIII, § 11). Then

Tueorem 43 (Hilbert). Under hypothesis (a)’ or (b)Y, any chain of
syzygies of any A-module M terminates at the (n-+1)-st step. If M is a
submodule of a free module, any chain of syzygies of M terminates at the
n-th step.

PROOF. The first assertion follows from the second, since the first
module of syzygies of any module is a submodule of a free module. We
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thus suppose that M is a submodyle of a free module F,, we set M=.S,,
and we consider a chain of syzygies

Px—-1 ()
o> Fp—F, ,—>---—>F,—->M-—0

of M; as usual we set S,=¢, (Fy.,)=¢,_; %0). We now prove a
lemma:

LEMMA 4.
For 0<j<n and k>j we have

If M is a submodule of a free module then the equality (2) holds also for
j=Fk.

PROOF. The assertion is trivial for j=0, m, denoting the zero ideal.
We proceed by induction with respect to 7. We thus assume that (2)
is true for given 720 for every k>j, and for every k2j if M is a
submodule of a free module, and we proceed to prove that S, n m, ,F,=
m;, S, if 7>7+1, and also if =5+ 1 provided M is a submodule of a
free module. We have only to prove that any element d of S, n m; ,F,
belongsto m; ;S,. Letd=¢,a,+€a,+ -+ +€;,,a;,4(a;€F,). Since
de S, we have

0 =9,1(d) = &xp,a(@a) + g, 1(a) + - - + €549, 4(a,1)-
If r—1>0, F,_, is afree module. Therefore m;F, ;:(§;.,)=mF,_,,

in view of property [2] of the ideals m;, and consjequ;ently

(3) ¢r—1(aj+l) € m]Fr—

Now, if r>j+1, then r—1>0. Thus (3) holds unconditionally if
r>j+1. Assume, however, that r=5j+1 and r—1=0, whence j=0,
r=1. In that case, d=¢£,a,, £,p4(a,)=0. If M is a submodule of a
free module, the relation £;p.(a,)=0 implies ¢y(a,)=0, and hence (3)
still holds in this case.

Using (3) we now set ¢, 4(a;,1)=§,0,+ - - - + &0, with v, € F,_
Aso, 4(a;,,) € S, ;,ourinduction hypothesis shows that we may assume
that v, €S, ;. Wesetv,=¢, (b)), b, €F,.

Consider the elements a';=a;+¢;,,0; (i=1,---,j), and a'; ;=

aj ,—&by— ---—=§b; of F,. It is clear that d=¢a'+ --- +
£a i+ §]+1a j+1- Ontheother hand, we have ¢,_y(a’;,1) =9, 1(a;,1)

J
_Zl Eip, ()=, y(a;.1)— Z ¢,0,=0, whence a’ i+1€S,. If weapply

the induction hypothesis to the element d—¢§;, 4a';.,=§a'y+ - +
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sa’;of S, n m,F,, we see that this element belongs to m_F,. Therefore
d belongs to m;_,F,.

This completes the proof of Lemma 4, and we now continue with the
proof of the theorem. Let us suppose that we have chosen, for con-
structing S,,, ,, a basis (u,, - - -, u,) of S, in which no element is a linear
combination of the others (the u; being, of course, homogeneous in
case (a)’). Then, in any relation > «;u;=0, all the elements «; belong
to m, otherwise one of them would be invertible (in the graded case we
must decompose first > o;#;=0 into homogeneous components). In
other words, we have S,.;<mF, ;=mF, ;. By Lemma 4 we know
that S, ,nm/F, . ,=m.S,.,. Hence S, ,=mS, ,=mS,. ;. This
same reasoning and Lemma 4 show that if M is a submodule of a free
module, then S,=mS,.

Now, the relation S;=mS; (where 7 is either n or n+1) implies
S;=(0). In the graded case, to see this we need only to consider a
homogeneous element «#0 of S;, of smallest degree. In the local
case, we take a finite basis {2y, - -, 2,} of S, write 2;=> p;32, with

14

pj,€m, ie, > (8;,,—pn;)3=0; this implies dz,=0, where d=
det (8;,—u;,); and since d=1 (mod m), d is invertible, whence 2,=0
for every v, and S;=(0).

The fact that .S;=(0) signifies that S, ; is free, and this proves
Theorem 43.

From now on we suppose that hypothesis (a") or (b") holds.

The smallest integer d such that any chain of syzygies of the 4 module
M terminates at the (d - 1)-th step is called the cohomological dimension
of M, and is denoted by 8( M). We set §(0)= —1, by convention. For
M+#0 to be free, it is necessary and sufficient that 8(M)=0. IfMisa
factor module F[S of a free module F and is not itself free, then

(4) §(M) = 1+8(S).

For comparing cohomological dimensions of modules, submodules and
factor modules the following lemma is useful.

LemMMA 5. Let M be an A-module, M' a submodule of M, M" the
Sactor module M[M', S’ a first module of syzygies of M' and S" a first
module of syzygies of M". Then M has a first module of syzygies S admit-
ting S’ as submodule and S" as corresponding factor module.

PROOF. Let {x,}, {7,} be systems of generators of M’ and M" giving
rise to S" and S”: .S’ is the kerne! of the homomorphism ¢’ of the free
module F'=3 AX; onto M’ defined by ¢'(X,)=x;, and S” is the kernel
of the homomorphism ¢” of the free module F"=3 AY; onto M" de-
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fined by ¢"(Y;)=7,;. Choose any element y; of M in the residue class
¥;» and define a homomorphism ¢ of the direct sum F=F'©QF" into
M by setting o(X;)=x;, p(Y;)=y;. Itis easily verified that p maps F
onto M. The kernel S of ¢ contains all the pairs (s', 0) € F such that
s’ € §’, and S’ may therefore be identified with a submodule of S. On
the other hand the canonical homomorphism 7 of F onto F” maps S
onto S”, and the kernel 7=1(0) n S is exactly S’ (the proofs are straight-
forward, and we leave them to the reader). Q.E.D.

If a module T contains a submodule 7 such that 7 and the cor-
responding factor module T/7T" are both free, then T is also free. It
follows therefore from Lemma 5 that, if M’ is a submodule of M, then

(5) &(M) = max (8(M"), S(M|M")).

Similarly, if (M) and 8(M/M') are <g, the g-th module of syzygies S,
of M is free and admits a submodule S’  (i.e., the g-th module of syzygies
of M’) such that S,/S’, is free. From the fact that S /S’, is free fol-
lows that S’/ is a direct summand of S,, and, by Lemma 3, S, is free.

Therefore:
(6) (M"Y < max (8(M), S(M|M")).

Finally, if (M) and 8(M') are <g, then we may assume that the
(g+1)-th module of syzygies S’,,, of M’ is reduced to 0. Then, since
S,,11s free, a (¢ 1)-th module of syzygies S,,,/S",,, of M/M' is free.
Therefore

%) S(M/M’y < 1+max (§(M), 8(M")).

Levmma 6. Let L be a free module #0, M a submodule of L such that
McwmL, and let a be a non-invertible element +#0 of the ring A such that
M:Aa=M. Then 8(M+aL)=1+8(M).

pPrROOF. The hypothesis M=M:Aa is equivalent with the relation
MnaL=aM. Therefore the module (M+aL)/aL is isomorphic to
M|(MnaL)=M|aM. Since 4 is an integral domain, aM is isomorphic
to M, whence 8(M/aM)<1+8(M) by (7). Since aL is free and #0,
we have 8(aL)=0, whence, by (5), 8(M+aL)<max (0, 1+8(M))<
1+8(M). We now prove, by induction on 8(#), that we have the
equality

(a) S(M+aL) = 1+ 8M).

This is true for 8(M)= —1, since, then, M=0 and (M +aL)=0.
We first show that, if M0, then M +aL is not free. 1f M+ aL is free,
it admits a linearly independent basis (y,);<; <, Where y;=m,+ ax; with
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m;e M and x, € L. For any m € M, we can write m= z b;v(b; € A),
ie.,m= Z b,m, -!-a( Z b,x,), whence z b;x; € M since M:Aa=M; set-

ting M'= Z Am;, we thus see that M<M'+all, whence M|/M'<

m(M/M"), and M|M'=0 as at the end of proof of Theorem 43; in
other words, the m; generate the module M. Similarly, for any x in L,

we can write ax= ) b,y;= Z bm; -l-a( > b,~x,~) (b; € 4), whence x —
i=1 =1

Z bx; € M=mL; as above, we deduce that L is generated by the ele-

ments x;. Since their number 7 is equal to the maximum number of
linearly independent elements in M + aL, they are linearly independent
(remember that L may be imbedded in a vector space over the quotient

field of A). Now, for every 7, we can write ax;= > b, (m;~ax;)
=1

(b;; € A), whence x;— Z b;x; € McmL; since (x,) is a linearly inde-
pendent basis of L, th!S 1mphes b;;=39,; (mod m), whence the matrix

(b;;) is invertible. Hence, from ax;= Z b, (m;+ax;), we deduce that
=1

m;+ax; € al, whence m;eal, and ]therefore Mcal since M is
generated by the elements m; 'Taking into account the relation
Mn aL =aM, it follows that M =aM<mM, and, as above, that M =0.

This being so, relation (a) is true for 8(M)=0, since we know that
3(M~+aL)<1 and that M+aL is not free. We thus assume that
3(M)=1. We represent M as a factor module /S of a free module F;
as at the end of the proof of Theorem 43, we may assume that ScmF;
since M is not free, we have 3(.S)=8(M)—1 (by (4)). Any relation of
the form axe .S (x€ F) implies that ax=0 (Z=image of x in M),
whence #=0 and x € .S, since M is a submodule of a free module and
since a#0; in other words, we have S:4a=.S. Our induction hypo-
thesis shows that §(S+aF)=1+8(S)=08(M). Since M/aM is iso-
morphic to F/(S+aF), it admits S+al" as first module of syzygies.
Now, we have seen that (M -+ aL)/aL and M/aDl are isomorphic; since
aL is free and thus admits 0 as first module of syzygies, Lemma 5 shows
that M+ aL admits a first module of syzygies isomorphic to S+ aF.
As M + alL is not free, (4) shows that we have 8(M + aL)=1+3(S+aF)
=14+8(M). QE.D.
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In particular, if we take k non-invertible elements y,, - - -, y, of 4
such that, for every 4, y; is outside of all the associated prime ideals of
(y15 -+ » Yi_)=0,_; (where we set a_qg=(0)), then a;_;:4y;=qa; ;,and
successive applications of Lemma 6 show that

) 8(ap) = k—1.

Our hypothesis is satisfied, for instance, by the ideals m; introduced
earlier in this section. In the polynomial case (case (2)’) the theorem of
Macaulay shows that every ideal a which is of dimension n—# and is
generated by % elements, satisfies our hypothesis. In general, any
ideal (y,,---,y,) satisfying the conditions (y,---,y;,_1):4y;=
(¥ -+ > Yoy (G=1,2,- - -, k) is said to belong to the principal class.

LeMMA 7. Let E be an A-module #(0), and ay, ---, a, non-
invertible elements of A such that, for every 1< q, we have (a, F+ - - - +
a; 1E):Aa;=a,E+ - - - +a, ;E.  Then we have 3(E[(a,E+ - - - +a,E))

PROOF. If we set E;=FE/(a,F+ --- +a; ,F) it suffices to prove
that 8(E;, ;)= 1+ 8(E;). We have E; ,=F;/aE; and, by hypothesis,
the submodule (0) of E; satisfies the condition (0):A4a;=(0) (in other
words: “a; is not a zero divisor in the module E,”). We represent E; as
a factor module L/S of a free module L. We may assume that ScmlL.
Then E;/a,E; is isomorphic with L/(.S-+a,L), and the relation (0): Aa; =
(0) (in E;) implies S:4a,=S (in L). Thus Lemma 6 shows that
8(S+a,Ly=1+8(S), whence 8(F; ,)=1+8(F;), since §(E,)=1+3(S)
and 8(E,,,)=1+8(S+a,L).

CoroLLARY. With the hypotheses and notations of Theorem 43, we
have 8(A/m)=n.

THEOREM 44.  Under hypothesis (a)’ or (b)', let M be an A-module,
(0Y= N N; a reduced primary representation of the submodule (0) in M,

and v, the associated prime ideal of the primary submodule N; (Vol. 1,
Ch. IV, Appendix). Then the cohomological dimension (M) of M fis
greater than or equal to max (h(v,)), where h(p;) denotes the height of the
prime ideal p; (Vol. I, Ch. 1V, § 14, p. 240).

PROOF. Let us denote by ~(M) the integer max (k(p;)); we have to
prove the inequality 2(M) < 8(M) for every A-module M. We first
prove it in the case A(M)=n. In that case one of the ideals p,, say p,,
is the ideal m. We take an element y#0 in the intersection [} N,.

iz2
There exists then an exponent r such that m’y=(0). Taking for r the
smallest exponent such that m”y=(0), and denoting by x any non-zero

element of m'~ly, we have mx=(0). As the submodule M'=4x is
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annthilated by m, it is, in a natural way, a vector space over A/m.
Since M’ is the direct sum of a certain number of copies of A/m, we
have 8(M")=n (corollary to Lemma 7). Wehave toshow that §(M)=n.
Suppose this is not the case, i.e., that (M) <n (Theorem 43). We set
M"=M[M', and we consider some (n—1)-st modules of syzygies
S, S’, S"of M, M', M"; by repeated applications of Lemma 5, we may
assume that S’ is a submodule of S, and that $”1s S/S’. The assump-
tion that 8(M) <z means that S is free. Hence S’ is a first module of
syzygies of S”, whence an n-th module of syzygies of M", and is there-
fore free (Theorem 43). This implies §(M')<n—1, in contradiction
with §(M")=n.

We now prove the inequality A(M) < 8(M) by induction on n—~(M).
If (M) < n, none of the ideals p, is equal to m, whence, since these ideals
are prime, there exists an element a of m such that a ¢ p; for every 7;
this element may be assumed to be homogeneous in case (a)’. Then
the submodule (0) of M satisfies the relation (0): 4a=(0) (Vol. I, Ch. IV,
Appendix), and we therefore have §(M/aM)=1+ (M) (Lemma 7).
If we show that A(M/aM) = k(M) 1, our proof will be complete, since,
by the induction hypothesis, we have the inequality A(M/aM)=<
3(M/aM).

We thus show that A(M/aM)2h(M)+1. Let p be an associated
prime ideal of (0) in M such that k(p)=h(M), i.e., let » be one of the
prime ideals p; having the greatest possible height. Since a ¢ p, it is
sufficient to show the existence of an assoctated prime ideal p’ of (0) in
Mj/aM such that p'>p -+ A4a. Suppose this is not so. Then the union
U »’; of the associated prime ideals of (0) in M/aM does not contain
p+ Aa, and there exists an element b in b+ Aa such that b ¢ p’; for all
7 (Vol. I, Ch. 1V, § 6, Remark, p. 215). Then the submodule (0) of
M |aM satisfies the relation (0): 4b=(0), whence we have aM: 4b=aM.
If we write b=c+da (c € p, d € A), the relation cx € aM (where x € M)
implies (¢ +da)x € aM, whence we have x € a}M ; in other words we have
aM:Ac=aM. We shall show that we have (0): 4c=(0) (in M), and
this will contradict the fact that ¢ € p and terminate the proof. In fact,
the relation cx=0 with x € M implies ¢x € aM, whence x € aM and
x = ax, with x, € M; then cx=0 gives acx, =0, whence ¢x;=0; by re-
peated applications we get x, =ax, with x, € M and cx,=0, and so on,
whence x=a"x, with x,€ M for every n. This is impossible unless
x=0 in the polynomial case (a)’, since a is thena homogeneous element of
positive degree. In the local ring case (b)’, this also implies x=0: we

have xe ﬁ a*M and ﬁ a*M=(0), by the generalization of Krull’s
n=1 n=1
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theorem (Vol. I, Ch. IV, Appendix), since the element 1 +q is invertible
in 4. Q.E.D.

We terminate this section by showing how Hilbert’s theorem on char-
acteristic polynomials may be deduced from Hilbert’s theorem on syzygies.
We restrict ourselves to the case of a graded module M over a poly-
nomial ring A=K[X,,---, X,] over a field K. We consider a chain
of syzygies of M:

(S) O—>F,—-F, ,—»---—F, —->M-0,
where the sequence is exact, and where j<n+1. Denote by d;;, - - -,

d;,;, the degrees of the generators of the free 4-module F;. For
g Zmax, <;<;(d;) the vector space F;(@ of elements of degree ¢ in F;

s(1)
has dimension ¢,(g) = Z: ("*47%""), and this is a polynomial of degree
Jj=
n—11in ¢. Since the exact sequence (S) induces an exact sequence
00— Fj(q) > F]._l(q) — = F@© 5 M@ 0

in the homogeneous components of degree g, then, for ¢ 2 max (4;;), we

1)
have:

dimg (M@) = —\(Q)+@5lg)+ - - - +(—Dop;{g)
by the result about alternating sums of dimensions in an exact sequence
(§12, Lemma 1). Thus, for g2 max; ; (d;;), dimg (M@) is a poly-
nomial of degree at most n—1 in ¢.
Notice that we have only used the fact that a chain of syzygies of M
stops somewhere, and not the more precise inequality j<n+ 1.



VIII. LOCAL ALGEBRA

§ 1. The method of associated graded rings. Let 4 be a ring
with element 1, m an ideal in 4 (m# 4) and E an 4-module. The
ideals m” (where we set m%=4) form a descending sequence of ideals
in 4, and the modules m*E form a descending sequence of submodules
of E.  We consider the direct sums

G(4) = > mrjmn+l, G(E) = > mnE[/mm+1E.
n= n=0
These are graded abelian groups, the elements of m?/m»+! or m"E/mn+1E
being considered as homogeneous elements of degree n.

We are going to define a multiplication between elements of G(4) and
G(E). Itis sufficient to define the product @x of homogeneous elements,
where, say, a belongs to m?/m»+! and % belongs to meE/m¢+1E. We
fix representatives @ and x of 4 and X respectively, where @ € m” and
xe m¢E. We have ax € m*HE, and the class of ax mod mn+¢+1E is
easily seen to depend only on @ and &. We denote by ax this element
of mm+eE[mnr+e+1E. We have 9(ax)= d(a)+ o(&), where ¢ denotes the
degree of a homogeneous element.

Taking E=4 we get, in particular, a multiplication in G(4). One
verifies, in a straightforward manner, that this multiplication is associa-
tive, commutative, and distributive with respect to the addition. Thus
G(4) is a graded ring, called the associated graded ring of A with respect
to the ideal m, and sometimes denoted by Gn(4).

On the other hand, a straightforward verification shows that with
respect to the multiplication % (d € G(4), %€ G(E)) defined above,
the group G(E) is a graded G(4)-module. This module is called the
associated graded module of E, with respect to the ideal m; it is sometimes
denoted by Gw(E).

Suppose that the ideal m admits a finite basis {m,, - - - ,m,}. As the
monomials of degree 7 in the m’s constitute a basis of m~, the ring G(4)
is generated, over the ring 4/m, by the classes 7%, of the m;’s mod. m?

(this follows from the above definition of multiplication in G(4),
248
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as applied to the elements 7). We can therefore write G(4)=
(A/m) [y, ---,m,]. If we introduce ¢ indeterminates x, - - -, x,, We
see that the graded ring G(A) is isomorphic to a residue class ring
(Ajm) [xy, - - -, %)/ of the polynomial ring (A[m) [x,, - - -, x,] modulo a
homogeneous ideal . In particular, G(4) is a noetherian graded ring, if
A/m is noetherian and if m is finitely generated. Similarly, if £ admits
a finite basis {e,, - - -, ¢,}, m"E is generated by the products b,¢; where the

b,’s are the monomials of degree n in m,, - - -, m,. Therefore G(E),
considered as a G(4)-module, is generated by the residue classes é,, - - -, €
of ey, - - -, e, mod mE, and is therefore a finite G(4)-module.

Given any element x of E, we denote by v(x) the largest integer n such
thatx € m"E. Forxe ﬁ m"E, we set o(x)= + co. Then we have, if
2(x) is finite: "

(1) xem'@E, x¢mrAHE
The function v is called the order function on the module E. This

definition applies also to the particular case E=A4. For x, y in E and
a, b in A we obviously have:

(2)  v(x+y) 2 min (v(x), »(y)), v(a+b) = min (v(a), v(b));
3) v(ax) 2 v(a)+v(x), v(ab) = v(a)+v(d).
Note that v is not, in general, a valuation of 4.
Given an element x of E which does not belong to n m*E, we call

=0
the initial form of x and denote by G(x) the resxdue class of x in

mU@E/mv@+1E, For x in ﬂ m*E we set G(x)=0. This definition
=0

applies also to the particular case E=4.

The definition of the multiplication in G(4) shows that the relations
ab € mv@+e®)+1 - g(ah) > v(a)+v(b) and G(a)G(b)=0 are equivalent.
Therefore we can state:

TueoreM 1. Let A4 be a ring and m an ideal in A. If the associated

graded ring G(A) is a domain, then A' = A | ﬁ m" is also a domain, and the
n=0

order function in A' is a valuation of A'.

Let F be a submodule of E. We have m*(E/F)=(mE+F)/F.
Therefore m»(E/F)[m*+Y(E/F) is canonically isomorphic to (m"E+ F)/
(m»+1E 1 F), hence also to m"E[{(m"E) n (m"+1E+ F)}.  Since (m"E) n
(m"+1E+ F) contains m*+1E, the factor module m*(E/F)/m*+Y{E[F)
may be considered as a factor module of m*E/m»1E (the corresponding
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submodule being {(m"E) n (mm+1E L F)}/mm+1E). It follows that
G(E|F) 1s canonically isomorphic to a factor module of G(E), the cor-

responding submodule of G(E) being > {(m"E) n (m*1E + F)}/mn+1[,
n=0

i.e., the homogeneous submodule of G(E) which is generated by the
initial forms of the elements of F. This submodule is called the leading
submodule of F. In the particular case where E= 4 and where F is an
ideal a in A4, the leading submodule of a is 2 homogeneous ideal in
G(A), and is called the leading ideal of a. As was pointed out above,
the group m*(A4/a)/m"+(A[a) is canonically isomorphic to (m"+a)/
(m7+1+q); here A/a is viewed as an A-module. Now, if we call 1 the
ideal (m+a)/a which corresponds to m in the residue class ring A/a,
then (m”+a)/(m7+1+q) is canonically isomorphic to m7/m7+l. If we
now apply Theorem 1 to the ring A/a and to the ideal /i, we find the
following result:

THEOREM 2. Let A be a ring and let m and a be two ideals in A. If
i denotes the ideal (m+ a)/a in the ring Ala, then the associated graded
module of the A-module Afa, with respect to m, is canonically isomorphic
to the associated graded ring of Ala with respect to Ww. Furthermore, if
the leading ideal of o, in the associated graded ring of A with respect to m,

is prime, then the ideal () (a-+m") is also prime.
n=0

We now give a sufficient condition for a ring A4 to be an integrally
closed domain. A domain R is said to be completely integrally closed if
it satisfies the following condition:

(c) Every element x of the quotient field K of R, for which there exists
an element d#0 in R such that dx" € R for every n=0, is an element
of R.

Since every element x of K which is integral over R satisfies the hypo-
thesis of condition (c), a completely integrally closed domain is integrally
closed. The converse is true if R is noetherian since, then, every
element x of K which satisfies the hypothesis in (c) is integral over R
(as R[x] is then contained in the finite R-module -!R).

THEOREM 3. Let A be a ring, and m an ideal in A such that

@

N (Ac+m"y=Ac for every cin A. If the associated graded ring Gu(A)

n=0
is a completely integrally closed domain, then A itself is a completely
integrally closed domain.

PROOF. Our hypothesis implies, in particular, that [} m"=(0).
n=0

Thus, by Theorem 1, 4 is a domain, and the order function v is a
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valuation of 4. Let x be an element of the quotient field K of 4 for

which there exists an element d#0 in A such that dx" € A for every

nz0. Let us write x=a/b (a, b€ A). We have to prove that a € Ab.

Since Ab= ﬁ (Ab -+ m) by hypothesis, we are reduced to proving that
n=0

a e Ab+mn for every n20. This we prove by induction on 7, the case

n=0 being trivial (m® being the unit ideal).

Suppose that we have a € Ab+ m". We have to prove that a € 46+
mrt+l, We write a=ub+w (ue A, we m"). Since dx? € A for every
g, we have d(x—u)?e A for every ¢, or—since x=alb=u+w/b—
dw?e Abt. We can thus write duw?=wb? with w, € A, for every gq.
Since the order function in 4 is a valuation, the passage to initial forms
preserves products, whence G(d)G(w)? = G(w,)G(b)? for every g. Since
Gw(A) is completely integrally closed, this implies that G(w)/G(b)e G(4).
Setting G(w) = G(b)G(') with #' in A, the definition of the multiplica-
tion in G(A) shows that w=bu' (m**1) (since w € m?). Thusa is con-
gruent to b(u+u') mod m**+1 and therefore a belongs to Ab-+ mn+l.

Q.E.D.

§ 2. Some topological notions. Completions. We assume that
the reader is familiar with the elementary notions concerning topological
spaces, metric spaces and completion of metric spaces.

A ring A in which a topology is given, is said to be a topological ring
(with respect to the given topology) if the ring operations in A are con-
tinuous, i.e., if the mappings (a, ) — a — b and (a, b) — ab of the topo-
logical space 4 x A4 into the topological space 4 are continuous.

Let A4 be a topological ring. An A-module E, in which a topology
is given, is said to be a topological A-module, if the mapping (x, y) - x—y
of E x E into E and the mapping (a, x) —ax (a€ A, x € E) of A x E into
E are both continuous. Thus, a topological 4-module is first of all a
topological (additive) group, and, furthermore, the multiplication of
elements of A by elements of E is continuous. In particular, a topo-
logical ring A4 is also a topological A-module.

Let E be a topological A-module and Z(E) a system of open sets in
E which contain the zero 0 of E and satisfy the following condition:
(1) Any open set in E containing 0 contains a set of the system Z(E) (in
other words: Z(E) is a local open basis at 0). Then we have: (2) The
system of sets of the form x+ U, where x € E and U € Z(E), is an open
basis of E.  Such a set Z(E) is called a basis of neighborhoods of 0 for the
topological module E.

Let A4 be a topological ring and let Z(A4) be a basis of neighborhoods
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of the zero of 4, in the sense of the above definition. Itis easily verified
that the system Z(4) enjoys the following properties:

(a) The intersection of any two sets of the system X(4) contains a
third set of that system.

(b) If Uisany set in the system Z(A4) then there exists a set W in Z(4)
such that W— W< U and W2< U (here W— W and V2 denote respec-
tively the sets of all elements a—b and ab, where a and b are in W¥).

(c) If U is any set in the system X(4), a any element of U and b any
element of A, then there exists a set W in Z(A4) such that W+a< U and
Wb U.

It can be shown that if 4 is a ring and Z(4) is a system of subsets of
A satisfying conditions (a), (b) and (c), then there exists one and only one
topology in 4 such that 4 is a topological ring with respect to that topo-
logy and Z(A4) is a basis of neighborhoods of 0 of the topological ring 4.

Let 4 be a topological ring and E a topological 4-module. Let Z(4)
be a basis of neighborhoods of the zero of 4 and let Z(E) be a basis of
neighborhoods of the zero of E. It is easily verified that the system
Z(E) enjoys the following properties (similar to the above properties
(a), (b) and (c)):

(a") The intersection of any two sets in the system Z(E) contains a
third set of that system.

(b") If U’ is any set in Z(E) then there exists a set /¥’ in Z(F) and a
set W in Z(4) such that W' —W'c U’ and WW'<U".

(c") If U’ is any set in Z(E), x any element of U’, y any element of E,
and b any element of A4, then there exists a set I/’ in Z(E) and a set W
in Z(4) such that W' +x< U’, bW'< U’ and Wy< U".

It can be shown that if X(4) is a basis of neighborhoods of the zero of
a topological ring 4 and if Z(E) is a system of subsets of an 4-module E
such that conditions (a’), (b") and (c") are satisfied, then there exists one
and only one topology in I such that with respect to that topology F is a
topological A-module and Z(E') is a basis of neighborhoods of the zero
of the topological module E.

The proofs of the preceding assertions are similar to the proofs of the
similar assertions concerning topological groups, and for these proofs
the reader is referred to Pontrjagin’s “Topological Groups.”

According to the above definitions, a topological ring or a topological
module need not be a Hausdorff space. It is well known that if the zero
of a topological module E is a closed set then E is a Hausdorff space.
(Proof: If x, y are distinct elements of E, let I/ be a neighborhood of
y—x which does not contain the zero of E, and let U=x—y+ V. Then
U is a neighborhood of zero such that x—y ¢ U. Let IV be another
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neighborhood of zero such that W— W< U; then x+ W and y+ W are
disjoint neighborhoods of x and y.) The above proof gives also the
following result: if Z(E) is a basis of neighborhoods of the zero of a topo-
logical A-module, then E is a Hausdorff space if and only if the intersection
of the sets of the system Z(EY) consists only of the zero of E.

We shall be concerned primarily with topologies in 4 which can be
defined by using powers of ideals in A, in the following fashion:

If m is an ideal in 4, the powers m” (r=0,1,2, - - - ) form a system
Z(A) satisfying the conditions (a), (b) and (c). We have in fact:
(a) m*nm*' =m* if n2n'; (b) m*—m*=m" and (m")2?c m” since the
powers m” are ideals; (¢c) m"+a4< m” and m"b<m?, if ae m” and b € 4.
We define the m-topology of A as being the one in which the ideals m»
constitute a basis of neighborhoods of the zero of 4. In a similar
fashion, if E is an 4A-module we define the m-topology of E as being the
one in which the submodules m”E constitute a basis of neighborhoods of
the zero of E (these submodules are easily seen to satisfy the conditions
('), (b') and (c'), the system Z(A4) being the system of ideals m#). With
respect to this m-topology, the module E is a Hausdorff space if and

only if (] m7E=(0).
n=1

LemMma 1. The closure S of a subset S of E is equal to ﬁ (S+mrE).
n=0

PrOOF. If x € §, there exists, for every n, a point s, of S such that
s,€ex+mr*E. Hence x €s,+ m"Ec.S+m*E for every n. Conversely,

o
if xe ) (S+mE), there exists, for every n, a point s, of S such that
n=0

x €s,+mnE, whence s, € x+m"E and x € S.
In particular, the closure of a submodule F is the submodule

ﬁ (F+mrE). A closed submodule F is a submodule such that F=
n=0

f:o]o (F+mE).

If a submodule F of E is open, it contains some basic neighborhood
m:E. Conversely, if a submodule F contains some m*E, we have
x+m:Ec F for every x in F, whence F contains a neighborhood of each
of its points, and is therefore open. Since the relation msE< F implies
mrE+ F=F for every n>s, it follows from Lemma 1 that every open
submodule of E is closed.

Denoting by v the order function in E (see § 1), the m-topology of E
can be defined by the distance

(1) d(x, y)=e v, e—real, e > 1.



254 LOCAL ALGEBRA Ch. VIII

By formula (2) (§1) this distance satisfies the “strong triangle in-
equality”:

(2) d(x, ) < max {d(x, y), d(y, 2)}.

Naturally, this distance function does not define a metric in E, in the
usual sense, unless E is a Hausdorff space; we have namely d(x, y)=0 if
and only if x—ye ﬁ mrE.  Nevertheless we can speak of Cauchy

n=0
sequences {x,} in E: they are the sequences such that x,— x,.; e mN®WE
for all 120, where N(n) — + o0 as n— +00. In view of the strong
triangle inequality (2) it is seen at once that {x,} is a Cauchy sequence if
and only if d(x,, x,.,) > 0. A null sequence {x,} is one for which
d(x,,0) — 0. A Limit of a sequence {x,} is any element y of E such that
{x,— y}is a null sequence. If {x,} has a limit y, then y’ is also a limit of

{x,} if and only if y'—y € ﬁ mrE. The module E is complete if every
n=0

Cauchy sequence in E converges in E (i.e., has a limit in E). In view
of the strong triangle inequality, if E is complete then the convergent

0
series » %, are those whose general term z, tends to zero.
n=0

Let F now be a submodule of E. The factor A-module E/F admits a
unique topology such that the canonical mapping f:E — E/F is both
open and continuous: it is the topology defined by taking as basis of
neighborhoods of the zero of E/F the f-images of the basic neighbor-
hoods m"E of the zero of E. The basic neighborhoods of the zero in
E[F are therefore the submodules m*(E/F)=(mrE+F)/F; in other
words: the natural topology of the factor module E[F (regarded as an A4-
module) is again the m-topology of E[F. We note that since both f and
f~1 are open, it follows that the topological space E/F is obtained from
E by topological identification.

A submodule F of E admits two topologies: the induced topology
defined by the neighborhoods m"E n F, and its own m-topology defined
by the neighborhoods m"F. As m»E n F>mnF, the latter is stronger
than the former (i.e., it has more open sets; or, equivalently, the
natural mapping of F in E is continuous for the m-topologies). These
two topologies coincide in one important case:

THEOREM 4. If A is a noetherian ring and E a finite A-module, then,
for every submodule F of E, the m-topology of F is induced by the m-
topology of E.

PROOF. In the appendix to Chapter IV (Vol. I) we have proved that,
given any ideal b in 4, there exists an integer s and a submodule F’
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of E containing b*E such that bF=FnF’; thus bF>FnbE. In
particular, any basic neighborhood m"F for the m-topology contains
some basic neighborhood F n m™E of the induced topology. Q.E.D.

Another proof of Theorem 4 may be deduced from the following
result, due to E. Artin and D. Rees:

TuHEOREM 4'. Let A be a noetherian ring, E a finite A-module, F a
submodule of A, and m an idealin A. There exists an integer k, depending
only on A, E, F and m, such that m"E n F=mr-*¥m*tE 0 F) for every
nk.

PROOF. 'The fact that Theorem 4’ implies Theorem 4 is clear. For
proving Theorem 4’ we introduce an indeterminate X, and consider the
set A’ of polynomials > m,Xi with m; € mi; this set is clearly a subring

1
of A[X], and even a noetherian ring, for, if {a,, - - -, a} is a finite basis
of the ideal m, we have 4'=4[a,X, ---,a,X]. We consider also the
set E’ of formal sums z,+2,X+ - -- +2,X/ where 2; € m‘E; it is an

additive group for coefficientwise addition, and even an A4’-module if
we set (m . X')(2;X7/)=m2;X'+/ and extend this multiplication by
linearity (it may be observed that E’ is isomorphic with the tensor
product 4’ @ E (Vol. I, Ch. III, §14), but we shall not use this).
If we make the convention that an element u.X7 of 4’, or E’, is homo-
geneous of degree j, then E’ becomes a graded module over the
graded ring A’. Finally E’ is a finite A'-module, for, if {y,,---,%,}
is a basis of the 4-module E, then it is clearly also a basis of the A4'-
module E’.

This being so, we notice that the set F’ of formal sums
Zg+2, X+ --- +2,X7 such that 3;€e mEnF is a homogeneous sub-
module of the graded 4'-module E’. Thus F’ is generated, as an A4'-
module, by a finite number of homogeneous elements, say #, XD, . . .|
u X0 (u;e mmOENF). Let k be the greatest of the integers n(7).
We consider an element z of m*E n F, where n>k. The element X"
of F' may thus be written in the form zXn=3 (a,Xn®)(u,XnD),
where a; e mm—().  Since n—n(i) 2 n—k, we have aqu; € mrrmk-nldy,,
whence a;u; € mm*(m*E n F), for mk—n(y; is contained in

mA-n(mDE n F)c m*E n F.

Therefore we have zem*m*EnF) and we have proved the
inclusion m"E n F<mn*mtE 0 F). Since the opposite inclusion
m *(mkE n F)c m"E n F is obvious, Theorem 4’ is proved. Q.E.D.
An important case in which Theorem 4 may be applied is the one in
which we are given a noetherian ring 4, an ideal m in 4, and an overring
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B of A which is a finite 4-module. Then, since m"B is the ideal (mB)~
of B, the m-topology of B (B being considered as an 4-module) coin-
cides with the (mB)-topology of the ring B. Thus A4, with its m-
topology, is a topological subspace of B, when B is considered with its
(mB)-topology.

It may be noticed that, if m and m’ are two ideals of a ring 4 for
which there exist exponents a and & such that m>m’s and m'> m?
(i.e., two ideals with the same radical, in the noetherian case), then the
m-topology and the m’-topology coincide on every A-module.

Let A4 be a ring, m an ideal in 4, and E an 4-module. We suppose
that 4 and E are Hausdorff spaces for their m-topologies, i.e., that

n m”=(0) and that n m?E=(0). As metric spaces, 4 and E may be
=0

completed ; call 4 and E their completions. The uniformly continuous
mappings (a, b) > a-+b, (x,y) > x+y, (a,b)— ab, (a, x) > ax from
Ax A, ExE, Ax A, AxE into A, E, A, E, respectively, may be ex-
tended in a unique way, by continuity, to uniformly continuous
mappings from Ax A, ExE, Ax A and AxE into 4, E, 4, E. We
write these extended mappings additively and multiplicatively, as the old
ones. Since algebraic identities are preserved by passage to the limit,
these mappings define in 4 and E the structure of a topological ring and a
topological A-module, respectively. We shall often say that 4 (or E)
is the m-adic completion of A (or E).

We emphasize that we have defined the completions 4 (or E) only if
A and E are Hausdorff spaces (in their m-topologies).

THEOREM 5. Let A be a ring, m an ideal in A and E a finite A-module.
If A and E are Hausdorff spaces for their m-topologies, then the completion
E of E is, as an A-module, generated by E, i.e., we have E= AE.

PROOF. Let {x,- -, x,} be an A-basis of E. Any element y of £
is the limit of a Cauchy sequence {y,} of elements of E. We have that
Yny1—Yn belongs to ms™E, where s(n) — 0o as n — co. We can there-

q
fore write: y, ., —y,= Za,,]x], with a,; € ms®. We set y,=3 b,;x,

J
with b, € 4, and define inductlvely b,,”,j as being b, + Then we

a,,j.

have, by induction, y,= 2 b,;x;, and, furthermore, the ¢ sequences

{,, by, - - - } are Cauchy sequences in 4. Let b; denote the limit of
the sequence {b,;} in 4. In the equality

<
|
Me
&Q"
3
Il
"<
lI M-':
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the right-hand side tends to 0 as 7 tends to infinity. Hence y= Z bx

f) J’
and our assertion is proved.

COROLLARY 1. If, in addition to the assumptions made in Theorem 5, we
also assume that the ideal W admits a finite basis, then the closures of m"E
in E and of m» in A are Am"E= (Am)"E and Amr=(Am)" respectively.
We have m"E=(AmYEnE and mn=(Am)ynn A. The topologies of £
and A considered as completions of E and A are their (Am)-topologies.

In fact, since msm”E=m?+E o m"E for every s, the m-topology of
m7E is induced by the m-topology of E. Thus the closure of m”E in
E may be identified, as a topological 4-module, with the m-adic com-
pletion of m”E. Since our hypotheses imply that m”E is a finite 4-
module, Theorem 5 shows that this completion is AmnE = (AmYyE.
In particular, the closure of m”in 4 is (4m)". Taking into account the
fact that the module m”E is closed in E (as it is an open submodule), the
second part of the corollary follows from the well-known topological
fact that, given a metric space .S and a subset T of .S, the intersection of
S and of the closure of T in S is the closure of Tin S. The last part
of the corollary follows from the well-known topological fact that, given
a metric space S and a point x of .S, a basis of neighborhoods of x in S is
formed by the closures in S of the neighborhoods of x in S. Q.E.D.

COROLLARY 2. Let F be a submodule of E. If, in addition to the assump-
tions made in Theorem 5, we also assume that A is noetherian, then the
closure of F in E is AF, and the closure of Fin Eis AF N E. If Fisclosed
in E, then F=AF 0 E.

For, 4 being noetherian, F is a finite 4-module, and hence, by
Theorem 4, the closure of F in E coincides with the m-adic completion
of F. 'The first assertion of the corollary follows then from Theorem 5.
The remaining assertions are topologically trivial.

THEOREM 6. Let A be a noetherian ring, m an ideal in A, E a finite
A-module, and F a submodule of E which is closed with respect to the m-
topology of E. If A and E are Hausdorff spaces in their m-topologies,
then E|AF and the completion of E|F are canonically isomorphic as topo-
logical A-modules.

PROOF. By Corollary 2 to Theorem 5 we have F=AF n E, whence
the group E/F may be algebraically identified with a subgroup of E/AF.
The identification topology of E/AF admits the subgroups
(AF+ Am"E)|AF as basic neighborhoods and hence induces on E/F
the m-topology, since (AF+Am"E)nE=A(F+m"E)n E=F+m"E,
by Corollary 2 to Theorem 5 (this corollary is applicable since FF+m"E
is open and therefore closed). Hence the topological space E|F is a
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subspace of E/AF. Since E/AF is a factor group of a complete metric
group, topology shows that it is complete. For completing the proof
it remains to be observed that E/F is dense in £/AF, and this is obvious
since E is dense in £. Q.E.D.

CoROLLARY 1. Let A be a noetherian ring, m an ideal in A and E a
finite A-module. If A and E are Hausdorff spaces with respect to their
m-topologies, then the associated graded rings of A with respect to m and
of A with respect to Am are canonically isomorphic. More generally, the
associated graded modules of E with respect to m and of E with respect to
Am are canonically isomorphic.

In fact, m"E is closed, since it is open, and m”+1E isan open and closed
submodule of m"E. Thus m"E/m"+1E is discrete for its m-topology.
Therefore it is identical to its completion, which is isomorphic to
AmnE[Amn+1E by Theorem 6. This proves our assertion.

CoOROLLARY 2. Let A be a noetherian ring, m and a two ideals of A
such that a is closed in the m-topology. Then the completion of Ala (for
its (m + a)/a-topology) is canonically isomorphic to A[Aa.

In fact the (m+a)/a-topology of A/a coincides with the m-topology
of Afa considered as an 4-module, and we thus have a special case of
Theorem 6, with E=4 and F=a.

We terminate this section by introducing a useful notation. Let 4
be a ring which is a complete Hausdorff space for its m-topology, let
{x,, - - -, x,} be a finite system of elements of m, and let F(X,, - - -, X)
be a formal power series with coefficients in a subring B of 4. We write

F as an infinite sum of forms F= > F,, F, being a form of degree n.

n=0
Then, since F(x,, - - -, x,) € m", the series > Fxy,---, x,) converges
n=0
in A as A is complete. The sum of that series, which is uniquely deter-
mined since 4 is a Hausdorff space, is denoted by F(x,, - - -, x,). The
mapping F— F(x,,---,x,) is obviously a homomorphism ¢ of
B[[X,,---, X,}} into A4 (cf. Chapter VII, § 1), and is continuous if one

takes B[[X, - - -, X 1] with its natural topology (i.e., with its (X ;,- - -, X ))-
topology). 'The image of this homomorphism ¢ is a subring of 4, which
is denoted by Bl[x,, - - -, x,]l. If pisonetoone, wesaythatx,,-- -, x,
are analytically independent over B, and in that case Bflx,, - - -, x,1] is
isomorphic to the power series ring in ¢ variables over B.

§ 3. Elementary properties of complete modules. In this sec-
tion we study some finiteness properties of complete rings and of
modules over complete rings.
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THEOREM 7. Let A be a ring, m an ideal in A, E an A-module and F a
submodule of E. Suppose that A is a complete Hausdorff space for its
m-topology, and that E is a Hausdorff space for its m-topology. Let
(xy,+ ++, Xy be a finite system of elements of F such that their initial
forms G(x ) generate (over Gy(A)) the leading submodule of F in Gm(E).
Then the elements {x,, - - - , x,} generate F.

PROOF. Let y be any element of F. We are going to show induc-
tively the existence, for every n=0, of elements a,; of 4 such that

g
(1) y = Z a”ixi mod m"E.
=1
This is obvious for n=0. Suppose (1) holds for a given integer n and

q
for suitable elements a,; in 4. If the element y— Z a,;x; 1s in m"+1E,

If not, then the initial form G( Z a, x) is an

element of degree n in the leading submodule F’ of F As F' is
generated by the homogeneous elements G(x;) we can write

G ( y- Z a,;x ) Z G(c,;)G(x,), where the ¢,; are elements of 4 such
that 3(G(cm)) n— 6(G(x )). By the definition of initial forms, we have

wetakea,, q,;=a,;.

y- Z a,x;= Z ¢i%; (mod m"+E). We take, in this case, a,,,,;=

a, +c

The choxce of the elements c,; shows that {a,;} is a Cauchy sequence
for every 7. Since 4 is complete this sequence admits a limit a; € 4.
In the equality

q q
y- Zaixi=y_ de X;+ Z(am a)xn
i=1 i=1
the right-hand side tends to 0 as n — oo. ance E is a HausdorfT space,
this implies y = Z a;x;. Q.E.D.

CoroLLARY 1. A mand E bemg as in Theorem 7, suppose that Gn(E)
is a finite Gm(A)-module. Then E is a finite A-module.

We apply Theorem 7 to the case F'=E.

CoroOLLARY 2. A, m and E being as in Theorem 7, suppose that E/mE
is a finite (A/m)-module. Then E is a finite A-module. If the classes of
%y, * -+, x, mod mE generate E[mE, the elements x; generate E.

In fact, the G(4)-module G(E) is generated by E/mE since every
element of m"E may be written as a sum of elements of the form
my---mx (m;em,xe€E), and since, if such an element is not in
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m#+1E, its initial form is G(m,) - - - G(m,)G(x), with G(m,) € m/m? and
G(x) € E/mE. It follows that G(E) is a finite G(A)-module. Thus
Corollary 2 follows from Corollary 1 and Theorem 7.

CoroLLARY 3. A, m and E being as in Theorem 7, suppose that G(E)
is a noetherian G(A)-module. Then E is a noetherian A-module.

In fact, for every submodule F of E, the leading submodule of F is
finitely generated. By Theorem 7, F itself is then finitely generated.

COROLLARY 4. Let A be a ring, and m an ideal in A such that A is a’
complete Hausdorff space for its m-topology. If m is finitely generated
and if A|m is noetherian, then A is noetherian.

In fact, we have seen in § 1 that, under these conditions, G(A4) is a
noetherian ring. Thus Corollary 4 follows from Corollary 3.

COROLLARY 5. Let A be a noetherian ring, and m an ideal in A. If
A is a Hausdorff space in its m-topology, then A is a noetherian ring.

In fact, we have seen in §1 that G(A) is a noetherian ring. Since
G(4) and G(A) are isomorphic (§ 2, Corollary 1 to Theorem 6), G(A)
is noetherian. Thus Corollary 5 follows from Corollary 3.

EXAMPLES :

(1) We give a second proof of the fact that, if R is a noetherian ring,
then the power series ring A=R[[X,,---,X,]] is noetherian. If we
denote by I the ideal (X, - - -, X,), it is easily seen (see Chapter VII,
§1) that R[[X,, .-, X,])] is a complete Hausdorff space for its M-
topology. Since M is finitely generated, and since A/M=R is
noetherian, Corollary 4 shows that A4 is noetherian.

It may be observed that R[[X,,---, X,]] is the completion of the
polynomial ring RIX,, - - -, X,] for the (X,, - - -, X,)-topology of this
latter ring. Thus our assertion follows also from Corollary 5.

Notice also that the associated graded ring of R[[X,, - - -, X,]] is the
polynomial ring R[X,, -, X,]. Thus, by Theorem 3, §1, if Ris a
noetherian integrally closed ring, then RI[X,, - - -, X,]]is also integrally
closed.t

t Here we use the fact that, if R is integrally closed then so is R( X}, - - -, X ].
This may be proved as follows. By induction on n, we are reduced to proving
that R[X] is integrally closed. Let K be the quotient field of R. If z € K(X)
is integrally dependent on R[X] then z € K[X], as K[X] is integrally closed.

q . . .
We write 2= > 4, X' with q, € K. We consider an equation of integral de-

1=0

pendence for z over R[X] and substitute for X, in that relation, ¢+ 1 distinct
elements u; of an algebraic closure of the prime subfield of K which are integral
over R. This shows that the g, are integral over R, whence z € R[X]. An-
other proof is implicitly contained in the proof of Theorem 11 of VII, § 2, where
we replace R by R[X] (whence K, by K): it follows from that proof that each
term q; X! is integrally dependent on R[X] and this easily leads to the desired
conclusion. [See also VI, § 13, Theorem 29, for a proof using valuations.)
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(2) We now give a second proof of the “existence” part in the
Weterst rass preparation theorem (Chapter VII, § 1, Theorem 5). We are
given a power series F in R=K([[X}, - - -, X,]] which is regular in X,;
more precisely the coefficient ¢, of X ¢ in F is an invertible element of
R =K[[X,,---, X,_4], and ¢; is not invertible for j<s. We have to
prove that every element G of R may be written in the form G=UF +

s—1

> S;X,J, where Ue Rand S; € R'. The hypothesis about F implies

=0

that the ring R/(Xy, - - -, X,y F)=K[X,JJ/(F(O, - - -, 0, X)) is iso-
morphic to K[[X,]1/(X,), whence this ring admits {1, x,, - - - , x,5~1} as
a linear basis over K (x, denoting the residue class of X,). Therefore,
by Theorem 7, Corollary 2 (applied with 4, m and E being replaced
by K[[XD e, Xy F]]7 (Xl’ e X, F) and K[[Xli T Xn]])
{1, X,,---,X, 1} is a basis of R, R being considered as a module
over K[[X,,---, X,_1, F1]- In other words, we can write

s—=1
G= 2 ¢fXp -, Xpy F)X,J.
j=

By putting in evidence the term S(X,, - - -, X,,_;) of ¢; which does not
contain F, and by factoring out F in the other terms, we see that we

s—1
can write G=UF+ > Si(Xy, - -+, X, X,7, as asserted.

7=0

§ 4. Zariski rings.t We are going to study the pairs (4, m), formed
by a noetherian ring 4 and an ideal m in 4, such that every submodule
F of every finite A-module E is closed for the m-topology of E.

THEOREM 8. Let A be a noetherian ring, m an ideal in A, E a finite
A-module, and F a submodule of E. For F to be closed in the m-topology
of E, it is necessary and sufficient that p;+m# A for every associated prime
tdeal p; of F.

PROOF. The assertion that F is closed is equivalent to the relation

N (F+m7E)=F (Lemma 1,§ 2). By Krull’s theorem (Vol. I, Ch. IV,

n=0

Appendix) applied to E/F this relation is equivalent to the following
property of F: for every a=1 (mod m) and for every x € E, x ¢ F, we
have ax ¢ F. This means that every element a=1 (mod m) is outside
all the associated prime ideals p; of F (Vol. I, Ch. IV, Appendix), i.e.,

+ These rings, which have been first studied by the senior author in his paper
“Generalized semi-local rings” (Summa Brasiliensis Mathematicae), have been
so designated by the junior author in his monograph ““Algébre locale’” (Mémorial
des Sciences Mathématiques, fasc. CXXIII, 1953).



262 LOCAL ALGEBRA Ch. VIII

that for every 7, no element of p; is congruent to 1 mod m. This is
obviously equivalent to the necessary and sufficient condition given in
the theorem.

CoROLLARY. Let A be a noetherian ring, m an ideal in A, E a finite
A-module and F a submodule of E.  Let F=() F; be a primary representa-

tion of F, and p; the radical of the primary module F;,. Then the closure
of F in E for the m-topology is the intersection () F; of those primary com-
i

ponents F; of F for which p;+m# A.
In fact, each F; is closed by Theorem 8, and hence also ﬂ F; is closed.

7
It remains to be proved that F is dense in ) F,;. Let x be any element
i
of () F;. For every index v such that p,+ m=4 we choose an exponent

J
s(v) such that p S®WE<F,. Since v, and m are comaximal, b ® and m~
are comaximal for every 7, and there exist elements p, of p,** and m,

of m" such that p, +m, =1. The element y= (H an)x is in every

F,since p sMx<F,, whence y is in Fsince x e()F;. On the other hand,
j

we have y =x(mod m"E) since [} (1—m, )=1(m~). Thus every neigh-

borhood of x has points in common with F, and this proves our assertion.
THEOREM 9. Let A be a noetherian ring, and m an ideal in A. The
following conditions are equivalent :
(a) For every finite A-module E and every submodule F of E, F is closed

for the m-topology of E (i.e., F = ﬁ (F+ m”E)).
n=0

(a") A is a Hausdorff space in its m-topology, and for every finite A-
module E and every submodule F of E we have F=AF n E.

(b) Every finite A-module E (in particular, A itself) is a Hausdorff
space in its m-topology.

(c) Ewvery ideal in A is closed in the m-topology of A.

(d) The ideal m is contained in the intersection of all the maximal
ideals of A.

(e) Every element of 1+ m is invertible in A.

(f) For every finite A-module E the relation E=mE implies E=(0).

PrOOF. We shall give a cyclic proof (a) = (b) = (¢) = (d) = (e) =
(f) = (a), and in the course of the proof we shall also establish the

equivalence of (a) and (a’). For F=(0), (a) implies ﬂ m"E=(0), i.e.,
(a) implies (b). Therefore, (a) also implies (a’), for 1f both A and E are
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Hausdorff spaces in their m-topologies, then, by Corollary 2 to Theorem
5(§2), AF 0 E is the closure of F in E.
Assume (b), and let a be any ideal in 4. The 4A-module 4/a is finite

(it has the a-residue of 1 as a basis), and hence ﬁ ma(Afa)=(0). This

signifies that ﬂ (m*+a)=a and thus (b) implies (c). If (c) holds

and if v 1s mammal idea! in 4, we cannot have p+ m*= 4 for every n
(otherwise p would not be closed). Since p+ m=4 implies p+m*=4
for every n, we conclude that p+ m# 4. Hence p> m since p is maxi-
mal, and therefore (d) holds.

If (d) holds and if 1 +m (me m) is an element of 1+ m, we have
1+m¢p for every maximal ideal p since me mcyp. Thus the
principal ideal (1+m) must be the unit ideal, and 1+m is invertible
in 4.

If (e) holds and if {x,, - - -, x,} is a finite basis of a'module E such that
E=mE, we have relatlons x;=2 mix;, with m;em. If we set
d=det (8;;—m,;) (where the §;; are the Kronecker symbols), this im-
plies dxi=0 for every 1. Since d belongs to 1+m, it is invertible,
whence x;=0 and E=(0).

Suppose that (f) holds. If ais an ideal such that a+ m=4, and if we
set E=A[a, we have mE=(a+mA)/a=(a+m)/a=AJa=E, whence
E=(0) and a=4. In particular, we have p+ms A4 for every prime
ideal p of 4 distinct from 4. Thus Theorem 8 proves that (a) holds.
Q.E.D.

Finally, if (a") holds, then, in the special case E= 4, it follows from
Corollary 2 to Theorem 5 (§ 2) that every ideal in 4 is a closed set in the
m-topology of 4, and hence (a’) implies (c).

CoROLLARY. Let A be a noetherian ring and m an ideal in A such that
every element of 1+ m is invertible in A. Then, if E is a finite A-module
and F a submodule of E whose leading submodule (§ 1, p. 250) is equal to
Gw(E), then E=F.

In fact the associated graded module of E/F is G(E)/G(F)=(0)
(§1, p. 250). Therefore we have m(E/F)=E|F, whence E/F=(0) since
(e) implies (f).

DEFINITION. A noetherian ring A is said to be a Zariski ring with
respect to an ideal m in A if A and m satisfy the equivalent conditions listed
in Theorem 9.

We shall often simply say ““4 is a Zariski ring”” when the nature of the
ideal m is clear from the context. Notice that m may be replaced by
any ideal having the same radical as m.
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Examples of Zariski rings:

(1) A noethenan local ring, with respect to its maximal ideal (by (d)).

(2) A noetherian ring 4 admitting only a finite number of maximal
ideals m;, with respect to their intersection m=(] m; (by (d)). Sucha

ring is said to be semi-local.

(3) A noetherian ring 4 which is a_complete Hausdorff space in its
m-topology. In fact, every element 1 —m (m € m) of 1 ~ m is invertible,
since it admits 1 +m-+m2+ ... +m"+ ... as an inverse. In parti-
cular, if 4 is a noetherian ring and m an ideal in 4 such that 4 is a
Hausdorff space in its m-topology, then A4 is a Zariski ring, since 4 is
noetherian (Corollary 5 to Theorem 7, § 3).

(4) A factor ring Ala of a Zariski ring, with respect to the ideal
(m+a)/a.

THeOREM 10. Let A be a Zariski ring with respect to the ideal m. In
order that A be a semi-local (local) ring, it is necessary and sufficient that
A|m be a ring satisfying the descending chain condition (a ring satisfying
the d.c.c., with only one prime ideal).

PROOF. Suppose that 4 is semi-local. Then the radical of m is the
intersection of the maximal ideals of 4. Hence 4/m is a noetherian
ring in which every prime ideal different from (1) is maximal, i.e., 4/m
is a ring satisfying the d.c.c. (Vol. I, Ch. IV, § 2, Theorem 2). Similarly
if Aislocal. Conversely, if 4/m satisfies the d.c.c., there is only a finite
number of prime ideals p;/m in 4/m, and they are maximal (Vol. I,
Ch. IV, § 2, Theorem 2). Since all the maximal ideals in 4 contain m
(Theorem 9, (d)), 4 has only a finite number of maximal ideals, whence
A is semi-local. Similarly, if 4/m has only one prime ideal different
from (1), 4 has only one maximal ideal, and is a local ring. Q.E.D.

CoRrOLLARY. The completion A of a semi-local (local) ring A is a semi-
local (local) ring.

In fact, we have seen that 4 is a Zariski ring with respect to Am.
Since A/Am is isomorphic to 4/m (§ 2, Theorem 6, Corollary 1), our
assertion follows from Theorem 10.

Let A4 be a Zariski ring with respect to the ideal m. If fis a lnear
mapping of an A- module E into an 4-module F, fis uniformly continuous
for the m-topologies, since f(m"E)< m7F. Thus f can be extended by
continuity, and in a unique way, to a mapping f of £ into F. By passage
to the limit it is easily seen that f is A-linear.

Tueorem 11.  Let A be a Zariski ring, and E L F 25 G be an exact
sequence of finite A-modules and of A-linear mappings. Then the sequence

E—f; F 5 G is exact.
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PROOF. Our hypothesis signifies that f(E)= g—l(O) and implies that
9(f(x))=0 for every x in E. Hence, by continuity, we have g(f(£))=0
for every £ in E. Thus the kernel g‘l(O) of 7 contains the image f(E )
of f. We have to prove that these two submodules of F are equal Le.,
that every element 7 of F such that (n)=0 is in f(£).

The submodule G’'=g(F) of G has the m- topology as induced topo-
logy (§2, Theorem 4). Thus its completion G’ is identical with its
closure in G. By contmmty g maps Finto G’, and, since 3(F) is a closed
submodule of G’ (as A is a Zariski ring) whlch contains g(F)=G’, we
have g(F y=G".

Consider now an element 7 of F such that 3()=0. We approximate
1 by an element y, of F such that n—7v,€ Am"F=mnF. Then,
since g(n)=0, we have g(3,) € Wg(F) ng(F)=mC’ 0 G'=mrG (by
Theorem 9, (a'))=m"g(F)=g(m"F). In other words, there exists an
element »', of m"F such that g(v,)=g(v",). Since g(v,—»',)=0, the
fact that f(E)=g-%0) implies that y,—4', € f(E). ‘Hence y, € f(E)+
m*F, and n € f(E)+ m?F.  Since this holds for every n, it follows that 7
is in the closure of f(E)in F. Since the submodule f(£) of £ is closed
and contains f(E), we conclude that n e f(£). Q.E.D.

REMARK. We have seen, in the course of the proof, that g(F') is the
closure of g(F). For the same reason f(£) is the closure of f(E).

CoroLLARY 1. Let A be a Zariski ring, E a finite A-module, and
{%y, - - -, x,} a finite family of elements of E. Then every linear relation
> ax;=0, with coefficients «; in A, satisfied by the x; in E, is a linear

combination (with coefficients in A) of relations Z a;;x;=0 with coefficients
in A.
Consider the free module F= z AX; with g generators over 4, and

the homomorphlsm g of F into E deﬁned by g(X,)=x;. Let R be the
kernel of g, i.e., let R be the module of relations satisfied by the x; over
A. The sequence

0>R5FLE

is exact ( denoting the natural mapping of R into F'). By Theorem 11,
we get an exact sequence

0>R5FLE,
which shows that R is isomorphic to the kernel of 7. Since F is ob-
viously the free module Z AX,, this means that R is isomorphic to the
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module of relations satisfied by the x; over 4. As R=AR (§2,
Theorem 5), our assertion is proved.

We point out that Corollary 1 together with Theorem 5, § 2, imply
that the completion E is isomorphic to the tensor product A @ , E.
The preservation of exactness proved in Theorem 11 is not a general
property of tensor products; the fact that exactness is preserved in the
present case means that the torsion functor Tor,4 (4, E) is O for
every finite 4-module E.

COROLLARY 2. Let A be a Zariski ring, and let F and G be two sub-
modules of a finite A-module E. Then A(F n G)=AF n 4G.

We consider the mapping g of the direct sum F® G into E defined
by g(x,y)=x—y (x € F, y € G). Thekernel K of g is the set of elements
(%, x) with x € F and x € G, and is therefore isomorphic to F n G. From
the exact sequence

0>KS>FOGLE

we deduce, by Theorem 11, the exact sequence
0>R5>FOCSE,

where g is defined by g(§, n)=¢—n(ée F,neG). Thus K may be
identified with £ n G, i.e., with AFn AG. Since K=AK=A(FnG),
the corollary follows.

In particular, if a and b are ideals in 4, we have A(a 0 5)=Aa n Ab.

COROLLARY 3. Let A be a Zariski ring, E and F two finite A-modules,
f a linear mapping of E into F, and F' a submodule of F. Then Af~{(F')=
FHAF).

We denote by g the linear mapping of E into F/F" defined by g(x)=
residue class of f(x) mod F’. We have the exact sequence

0—fYF) > ES FIF,
from which we deduce
0— Af-YF'y > -4 FIAF".

If ¢ is any element of £, then g(£) is the residue class of f(£) mod AF’
(# being the composition of f and the canonical mapping of F onto
F|AF", since g is the composition of f and the canonical mapping of F
onto F/F’). 'Thus the kernel Af-YF') of g is f~Y(AF").

COROLLARY 4. Let A be a Zariski ring, a an element of A, E a finite
A-module, and G a submodule of E. Then A(G:Aa)=AG:Aa.
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In fact, G:Aa is the submodule of all elements x in E such that
ax€ G. To obtain the corollary, it suffices to apply Corollary 3
to the case F=E, F'=G and to take for f the mapping x — ax of E
into E.

COROLLARY 5. Let A be a Zariski ring, E a finite A-module, E' a
submodule of E and = an element of E. Then A(E': Az)=AE': Az.

We recall that E’: 4z is the ideal of all elements a in 4 such that
az e E’. We apply Corollary 3 to the case E=4, F=F, F'=E’, and
take for f the mapping a — az.

In particular, if b is an ideal in 4 and a an element of 4, we have
A(v: Aa) = Ab:Aa.

COROLLARY 6. Let A be a Zariski ring. If an element ¢ of A is not
a sero divisor in A, it is not a zero divisor in the completion A.

In fact (0) : Ac=A4((0) : Ac)=(0) by Corollary 4 (or 5).

COROLLARY 7. Let A be a Zariski ring, E a finite A-module, F a sub-
module of E and a an ideal in A. Then A(F:a)= AF:Aa.

Let {ay, - - -, a,} be a finite basis of a. We have F:a= rq] (F:Aa;).
j=1

Thus Corollary 7 follows from Corollaries 2 and 4.

COROLLARY 8. Let A be a Zariski ring, E a finite A-module, F and G
two submodules of E. Then A(F:G)=AF:4G.

We take a finite basis {z;, - - -, 3,} of G, we observe that F:G=

ﬁ (F:Az;), and apply Corollaries 2 and 5.

i=1

In particular, if a and b are two ideals in 4, we have A(a:5)=4a: 5.

Let us now study more closely the relations between a noetherian
ring 4 (not necessarily a Zariski ring) and its completion 4 with respect
to the m-topology. It will be convenient to include in this study (at
least at the initial stage) also those rings 4 which are not Hausdorff
spaces. However, we have not yet defined the completion 4 of a ring
A, with respect to its m-topology, if 4 is not a Hausdorff space. We

shall do so now. It is clear that if we set 4'=4]/ ﬁ m® and m'=
n=1

m/ ﬁ m*, then A4’ is a Hausdorff space in its m’-topology. We define
n=1

A to be the completion A’ of A', with respect to the m'-topology of A'. If

ﬁ mn#(0), then 4 is not any more a subring of 4, but we have the

n=1
canonical homomorphism 4 — A4’ — A'=A4 of A into A, and this
homomorphism is a continuous mapping.

As A4 is a Zariski ring, every element of 1+ 4m, and in particular
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the image of every element of 1+ m, is invertiblein 4. Since S=1+m
is a multiplicatively closed set in 4, we are led to study the quotient
ring Ag.

The kernel n of the canonical homomorphism ¢:4 — A is (Vol. I,
Ch. 1V, §9) the set of all elements b in 4 for which there exists an ele-
ment s =1—m in S(m € m) such that bs=0. This last relation implies

[
b=bm=>bm?= - .. =bm", hence n is contained in {} m” Conversely,
n=0

o)
if b is an element of {7} m~, then there exists an integer ¢ such that the
n=1

ideal mb contains m? n 4b (Vol. I, Ch. IV, § 7, Lemma 1) and therefore
is equal to Ab (since b € m9, all ¢); we thus have b € md, i.e., b=mb for
some m in m, whence (1 —m)=0 and b belongs to n. Since the ideal

ﬁ m", which is the closure of 0 in 4, is also the kernel of the homomor-

n=1
phism of A into its completion A, it follows that the quotient ring Ag
may be identified with a subring of the completion A.

From now on we simplify matters by replacing 4 by 4, i.e., by
assuming that 4 is a HausdorfI space in its m-topology. In that case

el
we have (] m”=(0) and hence no element of S is a zero-divisor in 4.
n=0

Therefore 4 is a subring of 45. We consider the m-topology on Ag
(considered as an A-module), i.e., the topology defined by the powers
of the ideal mA4g. Itis clear (since m"< m"4 g 0 4) that the m-topology
of A4 is stronger than the topology induced in 4 by the m-topology of
Ag. On the other hand, if an element a of 4 belongs to m”4, we have
a(l+m)em* for some m in m, whence a € m"+~am; this implies
a € m*+ (mn+am)m=m"+am? whence, by successive applications,
aemr+agm*=m". We have therefore shown that mr=mrdsn 4,
and hence the wm-topology of A is induced by the (mAg)-topology
of As.

It follows that A is also the completion of Ag. We now remark that
Agis 2 Zariski ring, i.e., that every element y=1+ T :_nm, (m, m" € m) of
1+m+m’

1+m’
1+m+m' (¢ 1+ m)has an inverse x in Ag, the element x(1 +-m') is the
inverse of y.

Since the passage from a Zariski ring to its completion has been ex-
tensively described by Theorem 11 and its corollaries, and since the
passage from 4 to A has been described in detail in Vol. I, Ch. IV, § 11,

1+mAg is invertible. In fact, we have y= , and, since
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we have now a certain amount of information about the passage from 4
to A. As an illustration we prove

THEOREM 12. Let m be an ideal in a noetherian ring A, such that A is
a Hausdorff space in its m-topology (i.e., such that ﬁ mr=(0)). Leta
n=0

be a closed ideal in A, let Aa=q,* N a,* 0 --- 0 q,* be an irredundant
primary representation of Aa, and let .* be the prime ideal which is the
radical of a*. Then a= () (a;* N A) is a primary representation of a

and p;* 0 A is the associated prime ideal of o,* N A and is contained in an
assoctated prime ideal of a.

prOOF. Consider the quotient ring Ay where S=1+m. Asais
closed, we have dan A=a (Corollary 2 to Theorem 5, § 2), whence
aAgnA=a. By using properties of quotient rings, we see that it
would be sufficient to prove Theorem 12 for mAg, A and adg, instead
of for m, 4 and a respectively. In other words, we may assume that
A is a Zariski ring.

Any element x of p;* is a zero divisor mod Aa. Since any regular
element in A/a is also regular in A/Aa (Corollary 6 to Theorem 11),
every element of p,* n A4 is a zero divisor mod a and therefore belongs
to some associated prime ideal of a. On the other hand, g *n 4 is
obviously a primary ideal admitting »,* n 4 as radical. Therefore,
from Aa= [ ¢,* and from 4a n A =q, we deduce that a= {7} (q,* n A4).

This is a (not necessarily irredundant) primary representation of a.
Q.E.D.

CoroLLARY 1. If, furthermore, a is a prime ideal, we have a= q;* n A
=p.*n A4 for every i.

In fact p,* n 4 is contained in an associated prime ideal of g, i.e.,
p,* N 4 is contained in a.

CoOROLLARY 2. With the same assumptions on A and m as in Theorem
12, assume furthermore that the closed ideal a admits an irredundant
primary representation a=, N Dy 0 - - - Ny such that none of the prime
ideals % ;=/Q; is embedded. Then Aa= A0, n AQ, 0 - - - n A,

As in Theorem 12, let da= a,*N 9,1 - - - 0 q,* be an irredundant
primary prepresentation of Ja and let q,=0q,*n 4, p,=p*n 4=+ q,.
It is clear that 8, B,, - - -, B, are among the prime ideals vy, p,, - - - ,p,
and that each p; contains one of the prime ideals 8;, B,, - - -, B,. On
the other hand, by Theorem 12, each p; is contained in one of the prime
ideals ®,, B,, - - -, %,. Since no P, is embedded, it follows that the
set {p,, Py, - - - ,0,} coincides with the set {B,, B,, - - -, B,} (the n prime
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ideals p; are, however, not necessarily distinct). Hence each of the

ideals ©; is the intersection of those a; for which »,=%. If, say,

Q.= qlq asN -+ - N q, then /IQIC Aaln Aqyn - Aq,, and similarly

for the ideals AQ,. Hence n Ag,c n Ag;c n a*=Aa, and since
1=1

the opposite inclusions Aac n AR, is obvious, the corollary is
1=1
proved.

§ 5. Comparison of topologies in a noetherian ring. Let 4 be
a noetherian ring. One is led to consider on 4, not only the m-topo-
logies (where m is an ideal in 4), but also topologies of a more general
type. For example, if p is a prime ideal in A4, one may construct the
local ring A,, consider its natural topology (defined by the powers of
the maximal ideal $4;) and the induced topology on 4. In this topo-
logy, the symbolic powers ¢ (=(p=)ec; Vol. I, Ch. IV, § 12) constitute
a basis of neighborhoods of 0; notice that we have p®.p@cpina)
(Vol. I, Ch. 1V, § 12, Theorem 23).

More generally, given a noetherian ring 4 and a descending sequence
(a,) of ideals of A such that

1 a0, S Qg

we define the (a,)-topology of 4 as being the topology in which the
ideals a, constitute a basis of neighborhoods of 0, the basic neighbor-
hoods of any other element @ of A being the cosets a+a, With
respect to this topology, A4 is a topologica! ring, and as in § 2, this topo-
logy is induced in 4 by a metric, satisfying the strong triangular in-

equality. This space is Hausdorff if and only if ﬁ a,=(0).
n=0

In the case of a complete semi-local ring A, the next theorem gives an
“extremal’’ property of the natural topology of 4.

THEOREM 13 (CHEVALLEY). Let A be a complete semi-local ring, m
the intersection of its maximal ideals, and (a,) a descending sequence of

ideals of A such that ﬁ a,=(0). Then there exists an integral valued
n=0

function s(n) which tends to infinity with n, such that a,< ms®™,

PROOF. We shall use an indirect argument. Suppose that there
exists an integer s such that a, ¢ m for every #n. Since the ring 4/ms
satisfies the d.c.c. (§4, Theorem 10), and since in this ring the ideals
(a,+me)/ms form a descending sequence of ideals #(0), their inter-
section is #(0), and there exists an element x, ¢ m* such that x, € a,+ m*
for every n.
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We now define, by induction on ¢ > s, a Cauchy sequence of elements x,
of A such that

(2) x, = x,(mod m*)
(3) x, € a,+m* for every n.

We suppose that x, is already constructed, and proceed to construct
x,.1- The relation x,€aq,+m* implies that the ideal a, has a non-
empty intersection with coset x,--m¢!. We pass to the ring 4/m?+! and
we denote by £, the coset x,+m+l. By (3), the set &,+(m*/m*+1)
has a non-empty intersection with each one of the ideals (a, + m**1)/m#+1.

o
As A[mt+1 satisfies the d.c.c., the intersection [ (a,+ m#+1)/m#+1
n=0

coincides with one of the ideals (a,+ m#+1)/m#+1 and hence there exists
an element %,,, of the set &,+(mf/m#+1) which lies in all the ideals
(a,+m#+1)/me+l, We take for x,, ; a representative of %, , in 4. We
have then x,.; € a,+m*+! for every n, and x, ;=x, (mod m#). The
latter consequence, together with (2), implies that x,, ;=x, (mod m*).
Thus x,,, satisfies conditions (2) and (3). On the other hand, the
relation x,,, =x,(mod m¢) implies that (x,) is a Cauchy sequence.
Since A4 is complete, the Cauchy sequence (x,) has a limit xe 4.
From (2) we deduce, since m* is closed, that x =x, (mod m*), whence
x ¢ m* (since x, ¢ m?). The relations x,,,=x, (mod m*) imply that
x=x, (mod m*), whence, by using (3), it follows that x belongs to

o
a,+m* for every n and every t. From x€ () (a,+ m?), and from the
t=s
fact that ideals in A4 are closed sets, we deduce that x € a, for every n.
[
Since () a,=(0) by hypothesis, we deduce that x=0, in contradiction
n=0

with x¢ ms. Q.E.D.

In topological terms, Theorem 13 signifies that the natural topology
of the complete semi-local ring 4 is weaker than any other (a,)-topology
of 4 for which 4 is a Hausdorff space. This resembles a classical
property of compact spaces whereby a compact space possesses no
Hausdorff topologies which are strictly weaker than the given topology
of the compact space. As a matter of fact, the complete semi-local
ring A, without being in general compact in its m-topology (we have
compactness if and only if 4/m is a ring with a finite number of ele-
ments), is however linearly compact in the sense that, given a family a,

+ See S. Lefshetz, “Algebraic Topology”, p. 78 (Amer. Math. Soc. Coll.

Publ., vol. 27, 1942) for the theory of linearly compact vector spaces. The
theory of linearly compact modules is analogous, without any significant changes.
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of ideals in 4 and a family of cosets ¢, = x, + a, with the finite intersection
property (i.e., such that ()¢, #9 for every finite family «,, - - -, &, of
i

indices), then [ ¢, is non-empty. For verifying this property one first
proves, by using the d.c.c. in 4/m", that () (c,+ m") is #@; this being

established, one constructs a Cauchy sequence {x,} such that
x, €[ (¢c,+m") for every n, and it is easily seen that x=1lim, x, is an
a

element of () ¢,. In more sophisticated terms this amounts to proving
a

that each A/m~ is linearly compact, and that A4 is the inverse limit of the
factor rings A/mn.

COROLLARY 1. Let A be a noetherian ring and m an ideal in A such
that A is a Hausdorff space in its m-topology. If c € A is not a zero
divisor, then c is not a zero divisor in the completion A, and we have
mn: Acc ms™ where s(n) — o0 with n.

PROOF. We first consider the case in which 4 is a semi-local ring
and m the intersection of the maximal ideals of 4. Since ¢ is not a
zero divisor in A (§4, Corollary 6 to Theorem 11), we have

ﬂ (Amn: Ac)= (n /Tm") :Ac=(0):Ac=(0). Hence, by Theorem 13,

we have Amn:4cc Ams™, where s(n) — co with n, and from this we
deduce that m#: Ac< m*® (§ 4, Corollary 4 to Theorem 11).

Let now p be a prime ideal in 4. By applying what has just been
proved to the local ring A4;, and denoting by ¢ the image of ¢ in 4y, we
see that p"Ady: Ayf< ps™ A, provided Z is not a zero divisor in 4p.  If
we denote by n the kernel of the homomorphism 4 — 4, (i.e., the set
of all elements x of 4 for which there exists an element s ¢ p such that
sx=0), then ¢ is not a zero divisor if and only if ¢x ¢ n for any x ¢ n.
Now, if x ¢ n, we have xs # 0 for all s¢p, and since ¢ is not a zero
divisor, it follows that cxs#0 for all s ¢ p, whence cx ¢ n. We have
therefore shown that ¢ is indeed a regular element. Coming back from
Ay to A, we deduce from p7Ay: Apc< ps™ A, that p™: dec pt),

We consider now an arbitrary power m/ of m and a primary repre-
sentation m/= N q;. If p; denotes the radical of g;, there is an exponent
(7) such that p®<q; and consequently also p,(tGNc q; since g, is
primary for p;. By what has been proved above, there exists an expo-
nent 7(z) such that p,0:4ccp ). We will have then
p, 0@ :4cc q;. Denoting by 7 the greatest of the exponents 7(z), we
deduce that p,®:4dccm/, and therefore that p7: Accm/. Now, since
m/ is contained in p;, we have m7<p’, whence m/7:dccmi. This
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proves that m”: Ac is contained in m/ for nlarge enough. In other words
(since j may be taken to be arbitrarily large), we have mn: dccms,
where s(n) — co with n.

Finally, suppose that « is an element of 4 such that ca=0. We
approximate o by a, in A:a—a,e Am®. Then ca, belongs to
Amrn A=m"(§ 2, Corollary 1to Theorem 5). We thus have a, € msm
with s(n) — co. This proves that the limit « of the sequence {a,} is
necessarily 0. Q.E.D.

REMARKS

(a) Notice that the hypothesis n m”=(0) has only been used in the

last part of the proof. The relatlon mn: Ac< ms» holds without this
hypothesis.

(b) A part of Corollary 1 may be strengthened by using the Theorem
of Artin and Rees (Theorem 4/, §2). Let 4 be a noetherian ring, m
any ideal in 4, and ¢ an element of 4. Then there exists an integer &
such that, for n> k&, we have

4) mr: Aec mn—* 4+ ((0): Ac).

In fact Theorem 4’ (§ 2) proves the existence of an integer % such that
mn N Ac=mn-*m*k 0 Ac) for every n>k. Thus, if x € m": Ac, we have
xc € mn () Ac, whence xc € m"*(m* n Ac)c m"~kc. Hence we can write
xc=x'c with " € m"%_ Therefore x belongs to m”—*+((0): Ac) since
x=x"+(x—x"). This proves formula (4). If ¢ is not a zero divisor in
A4, we have (0): Ac=(0), whence

(5) mn: Ac< mn—* for every n>k.
COROLLARY 2. Let A be a complete semi-local ring, B an overring of
A and M an ideal in B such that ﬂ Mn=(0). If the ideal M 0 A admits

the intersection m of the maxzmal tdeals of A as radical, then the m-
topology of A is induced by the M-topology of B.
In fact, the induced topology of A4 is defined by the ideals a,=

MrnA. Since ﬁ a,=(0), we have a,< m*™ (Theorem 13). On the
n=0

other hand, since there exists an exponent ¢ such that mec It n 4, we
have mmcMnn A=a,. Thus the ideals a, and m” define the same
topology on 4.

REMARK. The conclusion of Corollary 2 does not necessarily hold if 4
is a non-complete semi-local ring. However, in that case, it is still true
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that me"c IR, i.e., that the identity mapping ¢ of 4 into B is uniformly
continuous for the m-topology of 4 and the M-topology of B. Thus ¢
may be extended, by continuity, to a homomorphism & of 4 into B.
If @ is one to one then A is a topological subspace of B: in fact, Corollary 2
shows then that 4 is a topological subspace of B. (The converse is also
true: If 4 is a topological subspace of B, then the identity mapping ¢
of 4 into B admits as extension the identity mapping of 4 into B.)
In some important cases, the dimension theory of local rings permits to
prove that @ is a one to one mapping.t

COROLLARY 3.  Let A be a noetherian ring, m a maximal ideal in A, and
q a prime ideal in A which is contained in wm. Then, if the m-adic com-
pletion of A is an integral domain, the (q™)-topology of A is stronger than
its m-topology.

It is clear that the (g”)-topology of 4 (with ordinary powers instead
of symbolic ones) is stronger than its m-fopology, since 9" < m». Let
A be the m-adic completion of 4. Since 4 /m is a field, 4 is a local ring

(Theorem 10, §4). We first prove that n Aam=(0). Let g* be

any isolated prime ideal of 4a. Since q is closed (§ 4, Theorem 8),
Corollary 1 to Theorem 12 (§ 4) may be applied, and we have a* n 4=q.
By definition of symbolic powers there exists, for every 7, an element ¢,
of 4, ¢, ¢ q, such that c,a®W< gn.  Therefore ¢,Aq™ < (4 g)*< q*n, and,
since ¢, ¢ q and a* n 4 = g, it follows that g™ < q*®, Now, since 4
is a domain, the intersection of the symbolic powers of any prime ideal

in 4 is (0) (VoL I, Ch. IV, §12). Thus () g*®=(0), whence, a
n=0

fortiori, n Aqm=(0).

This belng s0, Theorem 13 shows that the (4 q®)- topology of 4 is
stronger than its natural local ring topology. Since q(™ is closed in 4
(§ 4, Theorem 8), we have 4q™ n 4= q® (§ 2, Corollary 2 to Theorem
5), whence the (g™)-topology of 4 is induced by the (4q™)-topology
of 4. Thus the (q™)-topology of 4 is stronger than its m-topology.

COROLLARY 4. Let R be a noetherian domain, p and q two prime ideals
in A such that v>q. If the (9™)-completion of A has no zero divisors,
then the (q™)-topology of A is stronger than its (9™)-topology. Further-
more, if for each prime ideal m containing v it is true that the (m™)-com-
pletion of A has no zero divisors, then the (q™)-topology of A is stronger
than its p-topology.

+ See O. Zariski, ‘A simple analytical proof of a fundamental property of
birational transformations,”” Proc. Nat. Acad. Sci. USA, v. 35 (1949), pp. 62-66.
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We set A'=A,, p'=pAp, q' =qdp. Since the p’-topology of A4’
induces the (b™)-topology of A4, the hypotheses of Corollary 3 are
satisfied by 4’, ', o’. Therefore the (a’™)-topology of A4’ is stronger
than its p’-topology. Since the former induces the (q®™)-topology on
A (as '™ n A=q™ by Vol. I, Ch. IV, § 11, Theorem 19), and the latter
induces the (p)-topology, our first assertion is proved. As to the
second assertion, we decompose p" into primary components:
pr=p™na; N --- na, where a; is primary for a prime ideal m; > p.
Then there exists an exponent u; such that m;#)<a;, whence, by the

first part of the corollary there exists an exponent #(j, n) such that
piUmMem#dca; Setting i(n) =max (n, i(1, n), - - -, (s, n)), we there-
fore have pt@cpn.  Hence, again by the first part of the corollary,
there exists an exponent #(n) such that ¢ c ptENcps This proves
our second assertion.

In the course of the proof of Corollary 4, we have proved:

COROLLARY 5.  Let A be a noetherian integral domain, p a prime ideal
in A such that for every prime ideal m > p, the (m™)-completion of A is a
domain. Then the (p™)-topology of A coincides with its (p™)-topology.

In fact, we have seen that under these assumptions high symbolic
powers of p are contained in high ordinary powers of p. The converse
being obvious, our assertion is proved.

CoROLLARY 6. Let A be a complete semi-local ring, m the intersection
of its maximal ideals, B a commutative ring, (b,) a descending sequence of

ideals in B such that 5,5,<5, ., qDO b,=(0), and @ a continuous homo-

morphism of A (considered with its m-topology) into B (considered with its
(5,)-topology). Then ¢(A) is a closed subring of B.

In fact, we have two topologies on ¢(A4): the topology T induced by
that of B, and the topology 7" obtained by identifying ¢(4) to the factor
ring A/p=1(0) of 4. The fact that ¢ is continuous signifies that 7 is
stronger than 7. By Theorem 6, § 2, p(4) is complete for the topology
T’, and is obviously a semi-local ring.  Since ¢(A4) is a Hausdorff space
for T, it follows from Theorem 13 that 7'=7T. Therefore p(A4), con-
sidered as a subspace of B, is complete, hence closed.

This, again, is a property which may be compared to a well-known
property of compact spaces: a continuous image of a compact space 4
in a Hausdorff space B is a closed subset of B.

TureoreM 14.  Let A be a noetherian ring, a and b two ideals in A such
that b<a and such that A is complete and Hausdorff in its a-topology.
Then A is complete in its b-topology.

PROOF. Let (b,) be a Cauchy-sequence for the b-topology of A4.
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Since b<a, (b,) is also a Cauchy-sequence for the a-topology, whence it
admits a limit b€ 4. We have then b,=5 (mod as™) (s(n) — oo with
n). We now use more explicitly the fact that (4,) is a Cauchy-sequence
in the b-topology. For every index j>n, we have b;—b, € 5'™ where
H{n) — oo with n. From this and from b;—b € a”) we deduce that
b,—b e bt ) for every j>n. Since A is Hausdorff and is com-
plete in its a-topology, it is a Zariski ring, whence 5™ is closed in the

a-topology. This means that 5™ = n (6t +a5(), and hence

b,—be b, This proves that b is also the limit of the sequence (b,)
for the b-topology. Q.E.D.

CoOROLLARY. Let A be a noetherian ring, a and b two ideals of A such
that b=a. Denote by A’ (A") the ring A considered with its b-topology
(with its a-topology). ~ Then the identity mapping p: A" — A" is uniformly
continuous, and if A" is a Zariski ring then the extension $:A' — A" of ¢
to A’ is one to one.

The fact that ¢ is uniformly continuous follows immediately from the
relation b<a. Theorem 14 shows that 4” is complete for its (6.4")-
topology. If A" is a Zariski ring, then we have 574" n 4 =b", whence
the (64")-topology of A" induces on A4 its b-topology. Thus the com-
pletion 4’ of A (for its b-topology) is canonically isomorphic to the
closure of 4 in A” considered with its (64")-topology. In other words,
A’ is canonically isomorphic to a subring of 4”. This proves our
assertion.

REMARK. It follows from the corollary that, if a Cauchy sequence of
elements of A’ tends to zero in A”, then it also tends to zero in A4’.

§ 6. Finite extensions. THEOREM 15. Let A be a noetherian ring,
m an ideal in A, and B a ring containing A which is a finite A-module.
Then the m-topology of the A-module B is identical with the (mB)-topology
of the ring B and induces on A the m-topology. Furthermore

(a) For B to be a Hausdorff space, it is necessary and sufficient that no
element of 1+m be a zero divisor in B.

(b) If A is a Zariski ring, so is B.

(c) If A is complete, so is B.

(d) If A is semi-local, and if V/m is the intersection of the maximal
ideals of A, then B is semi-local and \/ mB is the intersection of the maximal
ideals of B.

PROOF. The two parts of the first assertion follow respectively from
the relation (mB)*=m"B and from Theorem 4 (§ 2). Assertion (a) is a
restatement of Krull’s theorem for modules (Vol. I, Ch. IV, Appendix).



§6 FINITE EXTENSIONS 277

Concerning (b) we notice that every finite B-module E is a finite 4-
module and hence is a Hausdorff space for its m-topology, since 4 is a
Zariski ring (see § 4, Theorem 9, property (b)). Since the m-topology of
E coincides with its (mB)-topology (in view of m"E=m"BE), it follows
that every finite B-module E is a Hausdorff space for its (mB)-topology.
Hence B is a Zariski ring, by Theorem 9, property (b).

If 4 is complete, then Theorem 5, § 2 shows that B=4.B=B. This
proves (c). If A is semi-local, then it is a Zariski ring, whence B is also
a Zariski ring, by (b). We have that B/mB is a finite module over
Aj(mBnA). Onthe other hand, since mBn 4> m, the ring 4/(mBn 4)
is a homomorphic image of A/m and therefore satisfies the d.c.c.
(Theorem 10, §4). Consequently B/mB also satisfies the d.c.c., and
Theorem 10, § 4 shows that B is semi-local. Q.E.D.

REMARK. Assertion (b) proves that, if every element of 1+m is in-
vertible in 4, then every element of 1 +mB is invertible in B.

THEOREM 16. Let A be a noetherian ring, m an ideal in A, and B a
ring containing A. Suppose that B is a finite A-module and that 4 is a
Zariski ring. Then:

(a) The closure of A in B is the completion A of A, B is a finite A-
module, isomorphic to A @ 4 B (here B is defined by considering the
m-topology of B).

(b) If no element 0 in A is a zero divisor in B, then every element o of
A which is a zero divisor in B is already a zero divisor in A.

PROOF. Assertion (a) has already been proved; the stronger state-
ment about 4 ® 4 B may be found in the remark following Corollary 1
to Theorem 11, §4.

Assume now that no element of A4, different from zero, is a zero-
divisor in B. ‘There exists an element d#0 in 4 and a finite family
{b;} of elements of B which are linearly independent over 4 such that
dBCZ Ab,. By completion we have dB<3 Ab,, and the elements b;

are st;ll linearly mdependent over 4 (Corollary 1 to Theorem 11, § 4).
If o is an element of A such that ¢B=0 for some B#0 in B, we write
dB=Y ab;(a;e A). The relation «f=0 yields daf=>) aab,=0,

7 J

whence aa;=0 for every j. It is impossible that all the «,’s be equal
to 0, since this would imply d8=0 in contradiction with the fact that
the element d of 4 is not a zero divisor in B, whence also in B
(Corollary 6 to Theorem 11, §4). Therefore « is a zero divisor in 4.

It follows from the proof that the conclusion of (b) continues to hold
if, instead of assuming that all the elements #0 of A4 are regular elements
in B, we only assume that there exists an element d+ 0 in 4, which is not
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a zero divisor in B, and a finite family, {b,} of linearly independent ele-
ments of B over A, suchthatdB< Ab,. In particular, the conclusion
of (b) is true if B 1s a free A-module, since we can take d=1 in this case.

§ 7. Hensel’s lemma and applications. Let 4 be a ring which
is complete for its m-topology, where m is an ideal in 4. We intend to
show how certain relations occurring in the ring 4/m (1.e., congruences
mod m) may be “lifted” to analogous relations (not congruences)
occurring in the ring 4 itself. The completeness of A4 is essentia! for
this purpose. Historically, the completion of the ring J of integers
with respect to its (Jp)-topology (p, a prime number), which is called
the ring of p-adic integers, was the first striking example of the theories
developed in this section. The p-adic integers have been introduced
by Hensel with the explicit purpose of deducing from congruences
modulo p actual equalities holding in some ring containing J.

For technical reasons it will be convenient to prove first a lemma
which is in a sense a generalization to modules of the classical Hensel’s
lemma:

Lemma (“BILINEAR LEMMA™).  Let A be a ring, m an ideal in A, E,
E’, F three finite A-modules. We suppose that F is a Hausdorff space
for its m-topology and that A is complete. Let f be a bilinear mapping
of ExE' into F; denote by f the bilinear mapping of (E/mE)x (E'|/mE")
into F/mF canonically deduced from f. Suppose we are given elements
yeF, ae E/mE, o' € E'/mE’ such that

(1) The class 5 of y mod mF is equal to f(c, o').

(2) FimF=f(a, E'/mE")+f(E/mE, o').

Then there exist elements a and a’ in E and E' respectively, such that o is
the residue classes of a mod mE, « is the residue class of a’ mod mE’, and
such that y=f(a, a’).

PROOF. We prove, by induction on 7, the existence of elements a,
and @', in E and E' respectively, having a and o’ as residue classes, and
such that y=f(a,, a’,) (mod m"F). This is true in the case n=1, by
assumption (1). Wenow gofromnton+1. Sincey-—f(a,, a',)€ m"F,
we may write ¥ —f(a,, @’,)=2 m;z; withm € m*, z;€ F. By assump-

7]
tion (2) there exists an element w; in E and an element #'; in E’ such
that 7, =f(a,, »';)+f(w;, a’,) (mod mF). Thus the element

y_f(an'i'z m;w;, a,n+z m_rw’]) = y_f(an’ a’n)_z m;%;
3 J j
+,~Z miz;—f(a, w';)—f(w; a’,)}— Z m;m; f(w;, w’;)
i]
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belongs to m**!F+LmF=m"1F (since n>1). We can thus take
Ay} = An z m;w;s ,,¢1=a’,,4; mw';.

This choxce shows that a,, ,=aq, (m"E); thus (a,), and similarly
(a’,), is a Cauchy sequence. Since E and E’ are finite modules over a
complete ring 4, they are complete for their m-topologies (the proof of
this assertion is similar to that of Theorem 5, §2). Thus the
sequences (a,), (a',) admit limits a € E, @’ € E’. 'Their residue classes
mod mE and mE’ are obviously « and «’. Since y—f(a,, a’,) tends
to 0, we have y=f(a, a’) since f is continuous and since F is a
Hausdorff space. Q.E.D.

THeoREM 17 (Hensel’s lemma). Let A be a complete local ring, m its
maximal ideal, f(X) € A[X] a monic polynomial of degree n over A. For
every polynomial h(X) e A[X, we denote by h(X) the polynomial over
A|m obtained from h(X) on replacing its coefficients by their m-residues.
If (X)) and o/(X) are relatively prime monic polynomials over Ajm of
degrees r and n—r such that f(X)=o(X)'(X), then there exist two monic
polynomials g(X), g'(X) over A, of degrees r and n—r, such that
gX)=o(X), §(X)=0'(X) and f(X)=g(X)g'(X).

PROOF. We apply the “bilinear lemma,” taking for E, E’, F the
modules of polynomials over 4, of degrees respectively <7, <n—r and
<n, and for the bilinear mapping f the multiplication of polynomials.
We take a(X) for e, '(X) for o, and f(X) for y. Assumption (1) in
the “bilinear lemma” is verified. As to assumption (2), we note that,
since a(X) and «'(X') are relatively prime, every polynomial B(X) over
A/m may be written as a linear combination

B(X) = M X)e(X) =N (X)e (XYNX ), A(X) € (A/m)[X]);
furthermore, if 9(8)<n, we may choose A and X’ in such a way that
¢A)<n—r, and O(X')<r (this follows easily from the euclidean
algorithm in (4/m)[X1). Thus the bilinear lemma proves that there
exist polynomials 2(X), #'(X) of degrees r and n—r, such that A(X)=
o X), B(X) =e/(X), KX W'(X)=f(X).

For completing the proof, it suffices to show that A(X') and 4'(X) may
be replaced by monic polynomials. The highest degree terms of these
polynomials are of the form (1 +m)X",(1+m)-21X"—" with m € m (since
h(X) and K(X)#'(X) are monic). It is thus sufficient to divide A(X) by
1 4+m, and to multiply A(X) by 1+m. Q.E.D.

CoroLLARY 1. Let A be a complete local ring, m its maximal ideal,
and f(X) a monic polynomial over A. Suppose that f(X) admits a
simple root « € Alm. Then there exists an element a of A, having « as
m-residue, and such that f(a)=0; furthermore the root a of f(X) is simple.
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In fact we can write f(X)=(X—a)p(X), where ¢(X) is prime to
X —a. Theorem 17 shows the existence of a monic polynomial X —gq
which divides f(X) and such that d=«. If a were a multiple root of
f(X), « would be a multiple root of f(X), in contradiction with our
assumption.

EXAMPLES

(1) The polynomial X241 has two simple roots in the prime field
GF(5), namely the classes of 2 and 3. Thus it admits two roots in the
ring of 5-adic integers. Similarly for X2—2 in the ring of 7-adic
integers.

(2) Let A be a complete local domain whose residue field 4/m is the
finite field GF(q). Since the equation X9~1=1 admits ¢—1 simple
roots in GF(g), the ring A contains all the (g—1)-th roots of unity.
These roots form a multiplicative subgroup V of 4. If 4 has char-
acteristic p#0 (where g=p%), I is even the multiplicative group of a
subfield of A, since the (p?—1)-th roots of unity, in a field of
characteristic p, constitute the set of non-zero elements of a subfield.
This subfield is canonically isomorphic to A/m=GF(q).

(3) Theorem of implicit functions. Let A be the power series ring
KMx,, - - -, x,,]] in m variables over a field K, and let

P(z) = s+t a, ()3 + - - - Fay(x)z+a(x)
be a monic polynomial over A. Suppose that the polynomial
2+a, 4(0)3" 7+ - - - +ay(0)z+ay0)

admits a simple root « € K. Then there exists a power series g(x) such
that g(0) =« and such that P(g(x))=0. In particular, if d is an integer
which is prime to the characteristic of K, and if f(x) is a power series
whose constant term is %0 and is a d-th power in K, f(x) itself is a d-th
power in K[[x,, - - -, x,,11 (use the polynomial P(z)=2%— f(x)).

COROLLARY 2. Let A be a complete local ring having the same char-
acteristic p as its residue field A|m. Then there exists a subfield L of A
such that A|m is purely inseparable over the image of L in Afm.

Let us denote by ¢ the canonical mapping of 4 into A/m. We first
prove that A contains at least one field. In the first place, the ring 4
contains the ‘“‘prime ring” R, formed by the integral multiples n.1 of
1(n=0, +1, £2,---). Ifp#0, R,is a field. Ifp=0, R,isthering
of integers, and, since A/m has characteristic 0, every integer #0 is
outside of m, and is therefore a unit in A4, thus proving that 4 contains
the field of rational numbers. This being so, the family @ of all sub-
fields of A, ordered by inclusion, admits, by Zorn’s lemma, a maximal
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element L. If A4/m were transcendental over ¢(L), we could find an
element x of A4 such that p(x) is transcendental over ¢(L); then all the
non-zero elements of the polynomial ring Llx1 would be outside of m,
therefore units, and 4 would then contain the quotient field of L], in
contradiction with the maximality of L. Thus 4/m is algebraic over
¢(L). Suppose that A/m contains an element 5 which is separable
algebraic over @(L). Let Y»1B Y11 ...18V+B, be the
minimal polynomial of 7 over ¢(L), and let b; be the representative of B;
lying in L. The polynomial f(Y)=Y»+b  Yr-1x ... b YV+b,
over A is such that 7 is a simple root of f(Y); thus, by Corollary 1, f(Y)
admits a simple root y € A such that ¢(y)=7. Since ¢ induces an
isomorphism of L onto ¢(L) which carries f(Y) to f(Y), the polynomial
f(Y) is irreducible over L, and the ring L[] is isomorphic to ¢(L)1],
which is a field. In view of the maximality of L, this implies that
ye L, whence ne@(L). Therefore 4/m is purely inseparable over
o(L).

REMARK. If A/m is a field of characteristic 0, then A4 itself has char-
acteristic 0, and Corollary 2 shows the existence of a subfield L of 4
which is a field of representatives for the residue classes mod m. It can
be proved that such a field of representatives exists whenever 4 is com-
plete and has the same characteristic as A/m (see § 12, Theorem 27).
However, already from the proof of Corollary 2 it follows that such a
field of representatives exists under the additional assumption that 4/m
admits a separating transcendence basis over its prime field (in parti-
cular if 4/m is a finitely generated extension of its prime field).

The bilinear lemma may also be used for showing that a complete
semi-local ring is isomorphic to a direct product of complete local rings.
We prove a slightly more general result.

Treorem 18. (Decomposition theorem). Let A be a ring, and m
an ideal in A such that A is a complete Hausdorff space for its m-topology.
If A|m is the direct sum of two ideals b/m and v'|m, then A is the direct

sum of the ideals n= ﬂ o" and n'= ﬂ v’ The m-topology of n

(considered as an A- module) its (mn)- topology, and the topology induced
on 1 by the m-topology of A are all identical, and n is a complete Hausdorff
space for this topology. Similarly for w'. The rings njmn, A[v’ and v/m
(or v'/mn’, A/v and v'|m) are isomorphic.

PROOF. Let ¢ and &' (¢ € v/m, ¢’ € v’/m) be the orthogona! idempo-
tents corresponding to the decomposition 4/m=(v/m) @ (v’/m) (Vol. I,
Ch. I11, § 13): we have e+ &' =1, ee'=0. We apply the bilinear lemma
to the case in which E=E'=F= A4, f is the multiplication in 4, and
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a=g¢, o'=¢, y=0. Conditions (1) and (2) are satisfied. There thus
exist elements a, @’ of 4, admitting ¢ and &’ respectively as m-residues,
and such that aa’=0. We have ¢+ a’'=1 (mod m), whence a+a’ is an
invertible element of 4 since A4 is complete (use formal expansion of
1/(1=T)). Then the elements e=a/(a+a’), ¢'=a’/(a+a’) satisfy the
relations ee’=0, e+e'=1, and are therefore two orthogonal idempo-
tents. We therefore have a direct sum decomposition 4=Ae ® Ae’
(Vol. I, Ch. II1, §13).

We now proceed to prove the assertions about the ideals v and v,
Since e admits ¢ as m-residue, it belongs to v, whence to every power b~

[
since e is an idempotent. We therefore have decn= () v, and
n=0

similarly Ae'cn’= ﬁ v, Since v and b’ are comaximal, v” and v’
n=0
are comaximal, and we have v'Nov7=p""=(poy'=(b N b y=m"
(Vol. I, Ch. III, § 13, Theorem 31). Since ﬁ m~=(0), this implies
n=0

that nnn'=(0). From Aecn, Ae'=n’ and AeL Ae’'=A4, we deduce
that n+n'=4, whence 4 is the direct sum of the ideals n, n’. The
relation n=n(de+ Ae’)< Ae+(0) (since ne’'cnn’=(0)) proves that
n=Ae; similarly n'=A4e’. Both the m-topology and the (mn)-topology
of n admit the ideals m™n as basic neighborhoods of 0, since, on the one
hand, we have m™=m" (as n is an idempotent ideal), and on the
other hand, we have m"=m"e @ m"e’, and hence m"Nn=m"n Ae=
Aemn=mm. This shows that the (mn)-topology of nis induced by the
m-topology of 4. If {x;} is a Cauchy sequence of elements of n and if
x is the limit of that sequence in A4, then we observe that xe is the limit
of the sequence {x.e}, i.e., of {x,}. Since A is a Hausdorff space it
follows that x=uxe € n, showing that also n is a complete (Hausdorff)
space. Finally, since we have proved above that mn=m 0 n, it follows
that the ring n/mnis isomorphic to n/(m N n)=(m+n)/m=_(m+ 4e)/m=
e-(A[m)y=v/m~A/v’. This completes the proof of Theorem 18.
CoROLLARY 1. Let A be a ring, m an ideal in A such that A is a com-
plete Hausdorff space for its m-topology. If A|m is a direct sum of q

o]
ideals v;[m, then A is the direct sum of the ideals n;= [} v;*. We have
n=0

mn=m" 0 n;, and the (mn;)-topology of the ring n; coincides with the
topology induced on n; by the m-topology of A. The rings w;/mn , v /m
and A| Y w; are isomorphic.
i
We proceed by induction on the number g of the ideals n;, the case
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g=2 being covered by Theorem 18. We notice that 4/m is the direct
sum of v,/m and of Z v;/m, and we apply Theorem 18 and the induc-

tion hypothesis. Furthe" details are left to the reader.

COROLLARY 2. A complete semi-local ring A is a direct sum of com-
plete local rings.  In particular, if A is a domain, it is a local ring.

Let m be the intersection of the maximal ideals v, of 4. Then A/m

is the direct sum of the ideals v ;/m, where v;= H p;=() p;. Since
i%g
p; is maximal, v;/mx~Afp. is a field. Thus the direct summand

n;= ﬂ .7 of A which is such that n;/mn;=v /mis a field and which is
n=0

a complete Zariski ring for its (mn,)-topology (§ 4, Example 3), is a loca!
ring (Theorem 10, §4). The second assertion follows from the fact
that a direct sum of 4 ideals, £ > 1, is always a ring with zero-divisors.

REMARK. Let 4 be a (not necessarily complete) semi-local ring, and
m the intersection of its maximal ideals ;. We consider A ; the idea!

Ap; is maximal, and 4 is the direct sum of the ideals n, = n ( N A \!
n=0 \1#j5
Denote by ¢; the “projection” of 4 onto n ;5 there exists an 1dcmpotent e

such that ¢ (x)=ex for any x in 4 and suchthat 1 —e e ﬁ Apr. Con-

sider the restriction of p;to 4. For every element y € A y ¢ p,p,(v)is
invertible, since it does not belong to the maximal ideal Am 0 n; of n;.

On the other hand, the kernel of ¢; is ﬂ Ay », whence the kernel of its
n=0
restriction to Ais A n ﬁ Zip;’: ﬁ An Ayp M= ﬁ p;” (Theorem 9,
n=0 n=0 n=0

§4). We notice that [} v is also the kernel of the canonical homo-
n=0

morphism of 4 into the quotient ring Api (Vol. I, Ch. IV, Theorems 19
and 20). Therefore the subring ®;(A)e (p,) of n, is isomorphic to 4 .

This subring is a local ring, its local ring topology is obviously induced
by the topology of n;, and the ring is dense in n, since 4 is dense in 4,
and since therefore ¢ (A4) is also dense in n;. Therefore the direct sum-

mand w; is isomorphic with the completion of the quotient ring Ap,.

§ 8. Characteristic functions. Let 4 be a semi-local ring, m the
intersection of its maximal ideals. We recall (see § 2) that an ideal v of
A is open if and only if it contains some power of m. For any integer
n21, the m-topology of A4 is identical with the m"-topology of A.
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Since 4 is a semi-local, it follows from Theorem 10, §4 (where we
replace m by m~) that the ring 4/m~ satisfies the d.c.c. If v contains a
power m” of m, then a fortior: also the ring A/v satisfies the d.c.c., since
this ring is a homomorphic image of 4/m”. Conversely, if 4A/v satisfies
the d.c.c., we must have m”"+p=m"1+yp for all large n, and therefore
v>mn if 7 is large, since v is a closed set and since therefore v is the
intersection of the ideals m”~vp. Thus, the condition that v is open is
equivalent to the condition that the ring A/v satisfies the d.c.c.

Let {»,} be the set of maximal ideals of 4. Then the primary repre-
sentation of v is

(1) b=, =10,

where g; is either primary for p; or is equalto 4. 'The ideal v” is equal
to I1 a"= () q;” since the ideals q;» are pairwise comaximal. The

lengjth of the]ideal v is therefore finite (Vol. I, Ch. IV, § 13, Theorem
24). We call characteristic function of the ideal v and denote by Py(n)
the length A(b").  Since the ideals q;” are pairwise comaximal, and since
b"= () q,7, the ring A/vb" is isomorphic to the direct sum of the rings

Al qj"J. Hence
2 Py(n) = 2 Na,").
7

Since the ideal ¢ is primary for »;, the length A(q;") is equal to the
length of the ideal 0,74, in the local ring 4y ; in other words, (2) may
be written as

) Py(n) = ?Pqi/lp’ () = ;PDAP] (n).

We now prove that the characteristic function Py(n) is a polynomial
for n large enough. More generally:

THEOREM 19.  Let A be a semi-local ring, v an open ideal in A, and E
a finite A-module. Then the length of the A-module E[v"E is finite, and
is a polynomial n for n large enough. In particular, the characteristic
function Py(n) is a polynomial in n for n large enough.

PROOF. We consider the associated graded module G(E)=

v"E[p"+1E. It is a finite module over the associated ring G(4)=

n

ngs

2, o7fom1 (§ 1), and G(A4) is a factor ring (A/v)[ Xy, - - -, X1/ of the

n=0

polynomial ring R=(4/v) [X,, - -+, X1 modulo a homogeneous ideal
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©. Hence G(F) is a finite graded module over R. Since 4/v is a ring
which satisfies the d.c.c., we may apply Hilbert’s theorem (VII, § 12,
Theorem 41), which tells us that the length of v”E/v"*'E is a polynomial
in n, for n large enough. From this it follows also that the length

n—1
H(E[o"E)= > {(vE[o/*'E) is a polynomial for » large enough.
i=0

QE.D.

The polynomial to which Py(#) is equal for large values of # is called
the characteristic polynomial of the ideal v. We shall denote it by
Py(n), and sometimes by Py(n) when we are dealing with large values
of n. As in Chapter VII, § 12 (see p. 233), we find also here that, if
Py(n) is a polynomial of degree d, its coefficients are integral multiples of
1/d!.

We first prove some simple results about characteristic functions.

LemMa 1. Let v be an open ideal in a semi-local ring A. Then

Py(n) = Pyfn).
prOOF. In fact, A/v" and A/Av" are isomorphic (§ 2, Theorem 6).
LemMa 2. If v and v' are open ideals in a semi-local ring A and if
v<v’, then Py(n)> Py.(n) for all n.
PROOF. Obvious.

LeMMA 3. Let v be an open ideal in a semi-local ring A and let x be an
element of . Then

P, 4{(n) = Po(n)—A(o": Ax).

PROOF. In fact, (A/Ax)/(v/Ax)" is isomorphic to A[(v"+ Ax),
whence

Py(n)— Py 4 (n) = £(A[o")—L(A[(o"+ Ax)) = {((0"+ Ax)[v")
= {(Ax/(v" n Ax)) = {(Ax[(Ax-(v": Ax))) = {(A[(v": Ax)) = ANo": Ax).

(Notice that the kernel of y — yx is contained in v7: Ax.)

Lemma 3 is useful in the following way. Let s be the greatest ex-
ponent such that x € v* (whence x ¢ vs+1). It is clear that v*: Ax > v,
If we can prove that v": Ax is “not too different” from v"—5, we can deduce
from Lerama 3 that P, (7) is not very different from Py(n) — Po(n—s),
a circumstance which is useful for devising proofs by induction (see
below). We thus introduce the foilowing notion: an element x of A
is said to be superficial of order s for v if x € v° and if there exists an
integer ¢ such that

3) (o7: Ax) noe = pm—s

for every large enouvgh n. It follows from Lemma 3 that:
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LEMMA 4. Let v be an open ideal in a semi-local ring A, and x be an
element of A which is superficial of order s for v. Then there exists an
integer ¢ such that

Py(n)—Po(n—s) < Py 4,(n) < Po(n)—Po(n—s)-+Po(c),
for n large enough.
PROOF. In fact, (3) implies that we have

£((o7: Ax)[om=s) = £((v7: Ax)[((v7: Ax) N v°))
= {{(ve+ (0m: Ax))[v) < £(A[v) = Pofc),

whence 0< Py(n—s)—A(v7: Ax) < Py(c). Using now Lemma 3, we
easily get the double inequality in Lemma 4.

It follows from Lemma 4 that the characteristic polynomial P, 4 (n)
differs from the polynomial Py(n) — Po(n —s) only by its constant term.

We are now led to the question whether, given an open ideal b in a
semi-local ring 4, there exist superficial elements for v. The following
result gives a partial answer:

LeMMA 5. Let v be an open ideal in a semi-local ring 4.  There exist
an integer s and an element x of A such that x is superficial of order s for v.

PROOF. Let s be an integer and x an element of b* such that x ¢ ps+1,
The relation v": Ax= " is valid if the initial form & of x in the asso-

0

ciated graded ring G(4)= > wn/on+! is not a zero divisor in G(4)

n=0
(§1, p. 249). The relation (v":Ax) nve=b""* is true if every homo-
geneous element « € G(4) such that a%=0 has a degree <c. This
being so, we consider in G(A4) the associated prime ideals %; of (0).

We assume that, for 1<j<h, B, does not contain the ideal X=
-

> onjortl of elements of positive degree in G(4), and that ;2% for

n=1

h+1=j<k. Itis easily seen that there exists a homogeneous element X of
positive degree, say s, such that % ¢ B, for 1<j<h* To prove this, we
may replace the set {8}, 1 <7 <4, by the set {8} of maximal elements in
that set. Since X& P, there exists a homogeneous element 8, of X
such that 8, ¢ $,. On the other hand, for u'# u there exists a homo-
geneous element x,,. in % ., which does not belong to ®,. We set

x,=(B.I1 x,. ), the exponents n(u) being chosen in such a way
wEL
that the elements x, have the same degree. We then have x, ¢ B, and
X, €%B, for u'#u. Hence the element &= y, satisfies the condi-
"
tions X ¢ B, for 1 <u=<h.

4+ This result generalizes to homogeneous ideals and homogeneous elements,
a result proved in Vol. I, Ch. IV, § 6 (Remark, p. 215).



§8 CHARACTERISTIC FUNCTIONS 287

Let £, be a primary component of (0) corresponding to %;. For
h+1<j<k, D. contains some power of X. Let ¢ be an exponent such

that ¥<c n £;. Suppose now that « is a homogeneous element of
=h+1

G(4) such that X¢=0. From x¢ R for 1<j<h, we deduce that
aef;for 1= j< h. If, furthermore, the degree of « is = ¢, we deduce

from Xc< n £, that « belongs to all the primary components of (0),
=h+1
whence that a=0. Therefore, if « is different from 0, its degree is <c,

and & has the required property.

REMARKS ABOUT LEMMA 5.

(1) The proof of Lemma 5 shows that, given a finite family (%) of
homogeneous ideals of G(A4) such that no g,, contains any power of %,
the homogeneous element & may be chosen as to satisfy the condition
x ¢ 3, for every m: in fact, for every m, we add to the family B; (1 <j < k)
of homogeneous prime ideals, an associated prime ideal ®’,, of &, which
does not contain X. It follows that, given a finite family {b,} of ideals of
A, none of which is open, there exists an integer s and an element x which is
superficial of order s for b and which does not belong to any %,,. In fact, we
take for g, the leading ideal of b,, (§ 1), and notice that &,, does not con-
tain any power of ¥, for if, say, 9,2 ¥¢, then v?<b_ + v!*+! and therefore

vt + it for every n; since b, is closed, i.e., since n (6,,+v")=b,,

this would tmply vt<b,, in contradiction with the fact that b,, is not
open.

(2) Superficial elements of a given order do not necessarily exist (for
example, the maximal ideal of K[[X, YII/(X Y(X+ 7)), where K is a
field with two elements, has no superficial elements of order 1). How-
ever, such a circumstance is due to the finiteness of the residue field.
In fact, we now prove that, given a local ring A whose residue field A/m
is infinite and given an open ideal v of A (i.e., an ideal which is primary for
the maximal ideal w), then for any finite family b, of non-open ideals of
A and any integer s >0, there exists an element x of A which is superficial
of order s for v and which does not belong to any b,,. In order to prove
this assertion we denote by &,, the leading ideal of b, and by B, the
prime ideals of (0) in G(4) which do not contain ¥ ; then, as in Remark 1,
none of the ideals g, ®; contains any power of X. Since X* is gener-
ated by v*/v**1, none of the ideals J,, B, contains v*/v>*1. Thus, in the
(A/v)-module E=1v:/ps*1 we have a finite number of submodules F;
distinct from E (namely, the intersections of E with the ideals ,, and
B,), and we have to find an element of E which does not belong to any
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F;. We first notice that, if we denote by m’ the maximal ideal m/v of
Alp, wehave F;+~ m'E#E, for if E=F;+-m'E then E=F; + m'(F; + m'E)
=F;+m"2E= ... =F;+m'"E for every n, and hence (since m’ is a nil-
potent ideal) E=F}, a contradiction. Therefore, in E/m’E, which is a
vector space over the infinite field 4/m, the subspaces (F;+ m'E)/m’E
are distinct from the entire space, whence there exists an element & of
E/m'E such that £¢ (F;+ m'E)/m'E, for every i. If we take for % a
representative of £ in E, we have & ¢ F,, for every 7, and we may take
for x any element of v* having X as initial form.

§ 9. Dimension theory. Systems of parameters. Let 4 be a
semi-local ring, m the intersection of its maximal ideals, v and v’ two
ideals in 4 admitting m as radical. Then v and v’ are open sets, and
the charactenistic functions Py(n) and Py.(n) are defined (§8). Further-
more, there exist integers a and b such that

b>pe and v D v
Thus it follows from Lemma 2, § 8, that
Pyn) < Py(an) Py (n) < Po(bn).

These inequalities imply that the polynomials Py(n) and B,.(n) have the
same degree d. 'This degree is called the dimension of the semi-local ring
A, and denoted by dim (4). If we denote by p; the maximal ideals of
A, formula (2') in § 8 (p. 284) shows that

(1 dim (4) = max; (dim (4, ).

Since Ay is a local ring, expression (1) of dim 4 allows, in many
dimension-theoretic questions, a reduction to the case of local rings.
It follows from Lemma 1, § 8, that the completion A of A has the same
dimension as 4. If ais an ideal in a semi-local ring 4, the dimension
of the semi-local ring A/a is called the dimension of the ideal a.

THeOREM 20. Let A be a local ring, m its maximal ideal. The
following integers are equal :

(a) The dimension d of A.

(b) The height h of the prime ideal m (Vol. I, Ch. IV, § 14).

(c) The smallest integer r for which there exist r elements of A which
generate an ideal which is primary for m.

PROOF. The equality of the integers defined by (b) and (c) has been
proved in Vol. I, Ch. IV, § 14, Theorems 30 and 31. We prove that
d=r. More generally we prove that, given a semi-local ring A, its dimen-
sion d is equal to the smallest integer r for which there exist r elements of A
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which generate an ideal having as radical the intersection m of the maximal
ideals of A.

We first prove that, if an ideal v has m as radical then it cannot be
generated by less than d (=dim 4) elements. In fact, suppose that v
may be generated by s elements. Then the associated graded ring

e}
> vn/on+l is isomorphic to a factor ring of the polynomial ring

n=0
(A[o)[X,, -, X,] by a homgeneous ideal ¥. Since the module of
polynomials of degree <# in (4/v)[X,, X 1 has a length equal to

£(A[v)("+%), it follows that the length of Z oifvi*l ie., £(A[o"), is

<f(A[o)("%). As (") is a polynomial of degree s in n, it follows that
the degree d of Py(n) is <s.

It remains to be proved that there exists an ideal v generated by d
elements and admitting m as radical. For the proof we proceed by
induction on d. If d=0, Pn(n) remains constant for n>n, whence
m7o=(0) since {] m”"=0; we may then take v =(0), since we agree that
(0) is generated by the empty set of elements of 4. Suppose now that
A has dimension d > 0, and that our assertion has been proved for every
semi-local ring of dimension d—1. By Lemma 5, § 8, there exists an
integer g and an element x, of m which is superficial of order ¢ for m.
Then (Lemma 4, §8) the characteristic polynomial P, ax,(n) differs

from P, (n)—P,(n—gq) only by its constant term. It follows that

P, 4x,n) is a polynomial of degree d—1 (note that we have assumed

that d>0), 1.e., that 4/Ax,; has dimension d—1. By our induction

hypothesis there exist elements %, - - -, &, ; of A=A/Ax, such that
d-1

the radical of > A%, is the intersection m/Ax, of the maximal ideals of
=1
A=A|Ax, Taking representatives xy, - - -, x;_; of X, ---, &; 4 in
d
A, we see immediately that m is the radical of > Ax;. This com-
i=1
pletes the proof.
In the above proof of Theorem 20 we have used from Vol. I, Ch. IV,
§ 14, Theorem 31 which is quite elementary, but we have also used
Theorem 30 which is rather difficult and uses the “Principal ideal
theorem” (Theorem 29, Vol. I, Ch. IV, §14). We shall give here a
second proof of Theorem 20 which is independent of the cited Theorem
30 but uses the lemma of Artin-Rees (§ 2, Theorem 4'; more specifically
formula (5) of § 5) and the properties of characteristic polynomials. In
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this second proof we shall establish the inequalities r </ and £ <d (the
inequality d <7 has already been established in the first part of the pre-
ceding proof).

The ‘nequality r <% follows from Vol. I, Ch. IV, § 14, Theorem 31.
In fact, if k is the height of m, there exists an ideal q generated by 4
elements and admitting m as an isolated prime ideal. As m is the maxi-
mal ideal of a local ring A, this implies that q is primary for m. We
therefore have r<h.

We finally prove the inequality 2<d. We proceed by induction on
d. 'The case d= 0 is easy, since Py(n) is then constant for n > n,, whence
mn=(0), and 4 is a primary ring with m as unique prime ideal. Now
we suppose that 4 has dimension 4, and we consider a maxima! chain
Po<Py< --- <p,=m of prime ideals in 4. Since the length of
A[(po--m") is not greater than the length of A/m", we have P (1)<
P(n), whence the dimension d' of 4’'=A4/[p,is <d. We choose an ele-
ment x'#0 in the ideal v,/v, of 4’, and denote by m’ the maxima! ideal
m/p, of the local ring 4’. By formula (5) of § 5 there exists an integer
such that m'7: 4'x’<m'n~* for every n>k. Since m'7: 4'x’ obviously
contains m'#~1, we have the double inequality Pm.(n— k) <A(m': A'x") <
Py (n—1). Thus, by Lemma 3 (§8), we have Py.(n)—Py.(n—1)<
P 404 (1) < Pyo(n) — Pr.(n— k), from which it follows that the degree
of Py, 4 .(n), i.e., the dimension of 4'/4'x’, is equal to d'—1. Since
d'—1<d-1, the induction hypothesis shows that the length of any
chain of prime ideals in 4'/4'x" is <d—1. In particular the chain

Pyf(po+ Ax)< - -+ <p,/(py+ Ax) (x: element of p, admitting x' as p,-
residue) has at most d terms. Therefore 2<d, and our assertion is
proved. Q.E.D.

REMARKS:

(1) We can even easily deduce Theorem 30 of Vol. I, Ch. IV, § 14
from the present Theorem 20. In fact, if R is a noetherian ring, a an
ideal in R admitting a basis of r elements and p an isolated prime ideal
of a, then the dimension of the local ring R, is <r by Theorem 20 (c),
whence the height of the maximal idea!l ¥R, (i.e., the height of p; see
Vol. I, Ch. IV, § 11, Theorem 19) is at most r anc this proves the cited
Theorem 30. Furthermore, the principal ideal theorem (Vol. I, Ch. IV,
§ 14, Theorem 29), which is a particular case of Theorem 30 (Vol. I,
Ch. IV, § 14), is also an easy consequence of Theorem 20. We have
therefore sketched an alternative treatment of the theory of prime ideals
in noetherian rings, which is smoother than the one given in Vol. I,
Ch. 1V, § 14, but which is less elementary since it essentially uses the
theory of characteristic polynomials.
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(2) Concerning the existence of an ideal v generated by d elements
and admitting m as radical, we give now another proof which makes
use of properties of polynomial ideals established in the preceding
chapter.

Let > mn/mm1=k[X, X, ---, X,l/a, where k=A[/m and a is a

n=0
homogeneous ideal. The length of m”/m#! is given by Pm(n-+1)—
Py(n), for large n, and is therefore equal to a polynomial of degree d—1.
On the other hand, that length is also equal to ¥(a; n), where ¥ is the
characteristic function of the ideal a. Hence the projective dimen-
sion of a is equal to d—1 (VII, § 12, Theorem 42). Let {p;(X)} be a
set of d forms in k[X] such that the ideal generated by a and the forms
(X)) isirrelevant. For each i fix an element 2, in 4 whose initial form
is the a-residue of ¢;, and denote by 3 the ideal generated in 4 by the
d elements 2;. Then the leading ideal of 8 contains a power of the
leading ideal of m, say the g-th power. From this follows in the usual
way that m¢ is contained in the intersection of the ideals 8+ m‘, i.e., m?
is contained in 8, and hence the 2; generate an ideal having m as radical.

CoroLLARY 1. Let A be a semi-local ring and x an element which is

superficial for some ideal v admitting m as radical. Then

dim (4/Ax) = dim (4)—1.

This has already been established in the course of the proof of Theorem
20.

CoRrOLLARY 2. Let A be a local ring and x an element of A which is
not a zero divisor in A. Then

dim (4/Ax) = dim (4)—1.

In fact, it follows from relation (1) and from Theorem 20 that dim (4)
is the height 2(m) of the maximal ideal m of 4 and that dim (4/4x)=
h(m/Ax). Since a maximal chain of prime ideals in A/Ax corresponds
to a chain p;<p,< --- <p,;=m in 4 in which p, is an isolated
prime ideal of Ax and therefore (Vol. I, Ch. IV, § 14, Corollary 2 to
Theorem 29) a prime ideal of height 1, we have ¢=dim (4/4x)<
dim A—1. On the other hand, let {%,, %,,---, 2} be a system of
parameters in A/Ax and let 2; be a representative of £, in 4. Then the
elements 2, 3, : - -, %, ¥ generate in 4 an ideal which is primary for m.
Hence ¢+ 12dim 4.

CoroLLARY 3. Let A be a semi-local ring, and B an overring of A
which is a finite A-module. Then dim (4)=dim (B).
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If {®,} is a chain of distinct prime ideals of B, then the ideals 4 n B;
are distinct, since B is integral over 4 (Vol. I, Ch. V, § 2, Complement 1

to Theorem 3), and therefore dim B<dim 4. Ifp,<v, < --- <p,isa
chain of prime ideals of 4, then the corollary to Theorem 3 of § 2, Vol. I,
Ch. V, shows successively the existence of prime ideals B4, ---, B, in

Bsuchthat B, n A=y, PN A=vp,and By>B,, -- -, B, 1 A=p, and
B,>B, .. Since the ideals R; are obviously distinct, we have
dim 4A<dim B. Q.E.D.

Given a local ring A of dimension d, a system {x,, - - -, x,} of d ele-
ments of 4 which generates a primary ideal for the ideal m of non-units
of A is called a system of parameters of A. Theorem 20 shows the
existence of systems of parameters in any local ring. It is clear that
{xy,---,x,} is also a system of parameters of the completion 4 of 4.
Notice that if {x,, - - -, x,} is a system of parameters of 4, then the
dimension of A[(Axy+ --- +Ax;) is d—j. In fact, more generally,
given any j elements y,, - - -, y; of a local ring A, we have

d' = dim (4)(Ay,+ - - - +Ay;)) = dim (4)—j,

since, given a system of parameters {%,, - - -, &;} in 4/(3 Ay,), the
elements {y;,---,y;, 2, -+, %} (2;: a representative of Z; in A)
generate an open ideal in 4, whence d'+7>dim (4). Furthermore, if
{xy, - - -, x;} is a subset of a system of parameters {x,, - - -, x.}, the ideal
generated by the residue classes of x;, 4, - - -, x; mod (4x;+ - - - + Ax;)
is open, whence dim (4/(A4x;+ - - - + Ax;)) <d—j, and this proves our
assertion.

We intend to study the “‘relations” between the elements of a system
of parameters:

THEOREM 21. Let A be a local ring, {x,, - - -, x;} a system of para-
meters of A, m the maximal ideal of A, and F(X,, - - -, X,;) a homogeneous

d
polynomial of degree s over A. Let q be the primary ideal > Ax;. If
i1
F(xy, - - -, x;) € ma®, then all the coeﬁ‘icients of F are in m.
PROOF. Consider the direct sum Z afmar=k[X,, -, X,)/a,

where k= A/m and a is a homogeneous 1dea1 inkTX]. We have to show
that ais the zeroideal. Suppose the contraryistrue. Then the dimen-
sion theory of polynomial rings tells us that we can choose d—1 forms
@;(X), of positive degrees, such that the ideal generated by a and the
forms ¢; is irrelevant. The a-residues of the p; will therefore be a
homogeneous system of integrity in the ring X[X1/a (see the Lemma in
VII, § 7). We may assume that the ¢; are of like degree £>0. We
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choose elements 24, 25, * - -, 24_, of qf whose mq?-residues are precisely
the a-residues of the forms ¢;, and we denote by b the ideal generated
by the z;. Expressing the fact that the mg-residue of each x; satisfies
an equation of integral dependence over the ring generated over k& by
the a-residues of the ¢;, one finds at once that there exists an integer A
suchthatx*e b+-mak j=1,2,...,d. From this it follows easily that
q"< b+ mgq” for all large n, whence q"<b, for large n; a contradiction,
since b is generated by only d—1 elements.

CorOLLARY 1. Let A be a local ring, K a subfield of A, and
{xy, - - -, x5} a system of parameters of A. Then the elements x,, - - - , x,
are algebraically independent over K.

Let G(X,, -+, X, be a non-zero polynomial over K such that
G(xy, - - -, x;)=0. Denote by F(X,, - - -, X,) the lowest degree form
of G, and by s the degree of F. From G(x,, - - -, x2,)=0, we deduce
that F(xy, - - -, x,) € 0°+1, where q=3 Ax;, whence F(x,, - - -, x,) € mg®.
Then Theorem 21 shows that all the coefficients of F are in m. Since
they are all in the subfield K of A4, this implies that they are all 0, in
contradiction with the fact that F'is the lowest degree form of a non-zero
polynomial.

COROLLARY 2. Let A be a complete local ring, K a subfield of A, and

{x, - - -, xz} a system of parameters of A. Then the elements x4, - - -, x,
are analytically independent over K (cf. § 2, p. 258).
Asin Corollary 1, we consider a non-zero power series G(X b Xy

over K such that G(x,, - - -, x,)=0, and we write G= Z F; where F;
is a form of degree j and where F,;#0. The relation F (xl, cee, Xy =

[

— 2 Fjay,---,x;)€ gt (where = Z Ax,) implies, as in Corollary
=1

j=s+1
1, that all the coefficients of F, are equal to 0, in contradiction with
F#0.

REMARK. Let 4 be a complete local ring containing a field K such
that 4/m (m: maximal ideal of A4) is a finite algebraic extension of the

canonical image of K in A/m. Then, if {x,, - - -, x,} is a system of para-
meters of A, A is a finite module over B=K[Tx,, - - -, x,]1. Infact, 4is
a module over B, and, if we denote by X the ideal (x4, -- -, x;) of

B, the natural topology of A4 is its X-topology (since A% is primary
for m). Furthermore 4/AX is a finite dimensional vector space over
K, since A% contains a power of m and since 4/m, m/m?2, m2/ms3,
etc., are finite-dimensional vector spaces over K. Since K= B(%,
and since B is complete, our assertion follows from Corollary 2 to

Theorem 7 (§ 3).
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§ 10. Theory of multiplicities. Let 4 be a semi-local ring of
dimension d, and ¢ an open ideal of 4, admitting the intersection m of
the maximal ideals p; of A as radical. Then the characteristic poly-
nomial Py(n) is of degree d, by the definition of the dimension of 4
(§9). Itsleading term has the form

e(a)nd/d!,

where e(q) is an integer (cf. VII, §12). The integer e(q) is called the
multiplicity of the ideal q. The integer e(m) is called the multiplicity
of the semi-local ring A. '

If all the quotient rings Ay, have dimension d, then it is clear that

1) e(a) = JZe(qu,)-

Denoting by a; the primary component of q relative to »;, we deduce
from (1) that we have also

2 e(a) = ;e(qf)-

In an important case it is possible to reduce the study of multiplicities
to the case of ideals generated by systems of parameters.

THEOREM 22. Let A be a local ring, m its maximal ideal, q an ideal
which is primary for m. If A|m is an infinite field, there exists an ideal
q'< q, generated by a system of parameters and such that e(q")=e(q).

PROOF. We proceed by induction on the dimension d of 4. For
d=0, every proper ideal a of 4 is nilpotent, whence all the characteristic
polynomials Pq(n) are equal to the constant #(4) (=length of the 4-
module 4); we may thus take q'=(0), since we agree that (0) is generated
by the empty set, which is thus the only system of parameters of 4.

We now pass to the case d=1. Note that, if d=1, then m is the only
prime ideal in 4 which is not an isolated prime ideal of (0). We take
an element x of q which is superficial of order 1 for q and which lies
outside all isolated prime ideals of (0) (Remark 2 to Lemma 5, §8).
Everything is quite simple if x is not a zero divisor in 4 (or, equivalently,
if m is not a prime ideal, necessarily imbedded, of (0)). In fact the
relations (g7: Ax) 0 q°= ¢! (§ 8, relation (3), p. 285) and q7: Ax< g5
with s(n) — oo (§ 5, Corollary 1 to Theorem 13; here is where we use the
assumption that x is not a zero divisor) show that q": Ax= q"~1 for n
large enough, whence P, 4 (n)=Py(n)— Pyn—1) (Lemma 3, §8).
Since Pq(n) is of degree 1, the right-hand side is ¢( q) On the other
hand, since x is not contained in any of the isolated prime ideals of (0),
Ax is primary for m, m/Ax is the only prime ideal of 4/4x, whence the
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local ring A/Ax has dimension 0. Consequently, for n large, Py 4.(n)
is the length of 4/Ax. This is also the length of Ax*/Ax"since A[Ax
and Ax"~1/ Ax" are isomorphic under the mapping 2+ Ax — zx+~1+ Ax»
(x not being a zero divisor). We therefore have e( ) =e(Ax) in this case.

Still in case d=1, we now assume that m is an imbedded prime ideal
of (0) (i.e., that all the elements of m are zero-divisors in 4). Then the
annihilator a of x is an ideal which, if considered as an 4-module, has a
finite length s (since it is annihilated by Ax and since, by
Corollary 1 of Theorem 20, § 9, A/Ax has dimension zero). We con-
sider the factor ring A*=A/Ja. For every open ideal b of 4, we have

o7 0 a=(0) for n large since ﬁ (v" na)=(0) and since a is an A-module

n=0

of finite length. Thus, if we set v*=(v+a)/a, we have Py*(n)=
£(A*[o*7) = £(A[(a+v7)) =£(A[om) = #((a + v")[0") = (A [o") — #(a[(a 0 ©%))
={(A[v")—s for n large enough, since v* N a=(0) for large n. In other
words, we have P,*(n) = Py(n) —s, whence e(v) =e(v*), since P, is a poly-
nomial of degree 1. In particular, we have e(q)=e(q*) and e(4x)=
e(A*x*) (a*=(q+a)/a, x*=a-residue of x; note that the ideal Ax is
primary, with m as associated prime ideal). Since x* is superficial of
order 1 for q* and is not a zero-divisor in 4*, the first part of the proof
shows that e q*)=e(A*x*). Therefore e(q)=e(Ax).

Now, in the passage from d—1 to d for > 2 no complications will be
caused any more by zero-divisors. Let d be the dimension of 4. We
take again an element x which is superficial of order 1 for ¢ (Remark 2
to Lemma 5, § 8), and set A*=A4[Ax, ¢*=q/Ax. Then the polynomials
P (n) and Py(n)— Po(n— 1) differ only by their constant term (Lemma 4,
§8). Since they are of degree d—1>1, they have the same leading
term, whence e(q*¥)nd-1/(d—1)!=e(q)n?1/(d—1)! (since n?—(n—1)4
has dn?-! as leading term) and therefore e(q*)=e(q). By the induction

hypothesis there exists a system of parameters {x*j,---,x*, ;}
d-1

(x*; € q*) of A* such that e( q*)=e( ]Zl A*x*j). Then if x; denotes a

representative of x*; in q, {x,, - - -, ¥,_;, %} is obviously a system of para-

meters in A; let q' be the ideal generated by this system in 4. By
Lemma 3, § 8, we have P,/ 4.(n) = Py.(n) —X(a'": Ax) > Pg.(n) — Po.(n—1)
-t

since q'7: Ax> q'»~1. Therefore e(q’/Ax):e( > A*x*j) >e(a’). From

i1
d-1
this inequality and from the relation e( q*)=e( > A*x*j) we deduce
=1

J
that e{q)=e(q*) > e(qa’). Since q'< q, we have also e(q)<e(q’). There-
fore e(q')=¢€(q), and our theorem is proved.
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REMARK. If the ideal q is generated by a system of parameters

{¥1, - - -, 34, it is also generated by a system of parameters {x,, - - -, x,}
such that
3) e(q) = e(a/Axy) = - - = e(a/(Axy+ - - - +Ax,y)).

In fact, there exists, by a reasoning similar to the one given in Remark 2
to Lemma 5 (§ 8), an element x, of q which is superficial of order 1 for
q and which may be written in the form x,=uy,~a,y,+ - -+ +a,y,
with w¢ m. (Observe that [my,+(y, - -+, y,)+ a2l/a% is a proper
submodule of q/q2.) Then, by the last part of the proof of Theorem 22,
we have e(q)=e(a/Ax,), and q is also generated by {x, y,, - -, ¥}
We operate in the same way in A/Ax,, A/(Ax,+ Ax,), etc., up to x, ;.
We take x, to be v, Now we consider the one-dimensional local ring
B=A4/(Ax,~ --- +Ax,_,) and the residue class x* of x, in B. We
have e(q) =e(Bx*) by relation (3), and x* is a parameter in B. If x* is
not a zero-divisor in B (i.e., if the maximal ideal of B is not entirely com-
posed of zero divisors) then the modules B/Bx* and Bx*"/Bx*"*1 are
isomorphic (under the mapping =z+ Bx* — zx*7+ Bx***'). Then
e(Bx*) which is equal to the length of Bx*7/Bx*»*1 (since B has dimen-
sion 1), is equal to e(B/Bx*), i.e., to £(A/q). Therefore, if x* is not a zero
divisor in B, the multiplicity of q is equal to its length. 'The condition
that x* is not a zero-divisor in B is fulfilled if m is not an imbedded
prime idea! of Ax,+ - - - + Ax, ,, and, in particular, if this ideal is un-
mixed; this is the case if 4 is a regular local ring (see Cohen’s extension
of Macaulay’s theorem in § 12, Theorem 29).

In general, we have the following relation between lengths and
multiplicities:

THEOREM 23.  Let A be a local ring, {x,, - - -, x;} a system of para-

d

meters of A, q the ideal > Ax;. Then e(q)<{(A]qa). If e(a)=£(A/q),
i=1

then the associated graded ring Go(A)= > an/q™+ is isomorphic to the
n=0

polynomial ring B=(A/a) 'X,, - - -, X,); and conversely.
PROOF. In fact G4(A4) is isomorphic to B/Y, where & is a homo-
d

geneous ideal (§1). Denoting by X the ideal Z BX;, we have

i=1
{(A]a")={(B/(X"+)) < {(B/%")={(A/aq)("*4~"). Since f(A4/¢") is a
polynomial of degree d in n for n large, this implies the inequality
e(q)<f(A/q).
If the ideal & is #(0) then it contains a form F(X) #0, say of degree ¢,
whence also all the products of F(X) by the monomials of degree
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<n—gq. These products generate an (A4/a)-module whose length is at
least ("~9397%). Then the formula f(A4/0")=/(B/(%X"+ J)) implies that
Py(n)<f(A[q)(""d-1)—(""2497 1), whence e(q)<f(A/o). This proves
our second assertion. The converse is obvious.

Notice that, if e(a)=/(A4/a), the function Py(n) is a polynomial in n
for all values of n (and not only for the large ones). Furthermore,
since the initial form X of x; is not a zero divisor in Go(4)= B, we have
qn:x;=q" ' for every n and every 7. As noticed in the remark
following Theorem 22, this always happens if A is a regular local
ring.

We conclude this section with the proof of a theorem which not only
can be used in certain cases for the computation of multiplicities, but
also gives information on the behavior of multiplicities under finite
integral extensions. This theorem is the algebraic counterpart of the
projection formula for intersection cycles in Algebraic Geometry:

THEOREM 24. Let A be a local ring, m its maximal ideal, o an ideal in
A which is primary for m, and B an overring of A which is a finite A-
module. Then B is a semi-local ring, and B is an open ideal in B. Let
{n;} be the set of maximal ideals of B and let a; be the primary component
of Bq relative to v;. If no element #0 in A is a zero divisor in B, then
the polynomials [B: A\Py(n) and > [B[v;: A /m]l-’q‘(n) have the same degree

and the same leading term.t

PROOF. The assertions that Bq is an open ideal and that B is semi-
local follow from Theorem 15, part (d), § 6. For n large enough the
integer Pq‘(n) is the length of B/q;” considered as a B-module. We first
prove that [B/p;: 4 /m}l-’qt(n) is the length of B/q;* considered as an A4-
module. In fact, since g; is primary for p;, there exists a chain of ideals

B > By, =19y > 0> >0, >0, = g,

such that d; =Pqi(n) and such that v,/v,,, is a one-dimensional vector

space over B/p; (Vol. I, Ch. IV, § 13, Theorem 28, Corollary 2). There-
fore v,/v;, ; is, in a natural way, a [B/p;: 4/m]-dimensional vector space
over A/m and is therefore an A-module of length [B/v;:4/m]. By
addition we see that [B/p, :A/m]f-’qi(n) is the length of B/a;” considered
as an A-module.

Furthermore, since Bq"= () ¢, and since the ideals q;” are pairwise

+ We denote by [B:4] the maximum number of elements of B which are
linearly independent over 4. It is equal to the dimension of the tota! quotient
ring of B considered as a vector space over the quotient field of 4.
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comaximal, B/ " is isomorphic to the direct sum of the rings B/q;”. Thus
Z [B/p,.:A/m]Pai(n) is, for n large, the length of the A-module B/Ban.

From now on we use the notation #(E) for denoting the length of an
A-module E.  'We have to compare [B: AY(A4/a") and £(B/Bq"). Since
B is a finite 4-module, we can find in B a maximal system {b, - - -, b,}
(r="B:A4)) of elements which are linearly independent over 4. Then
there exists an element a0 in A4 such that

@) 4B<E =3 AbcB.
=1

The kernel of the canonical mapping of E onto (E-+ ¢q"B)/q"B ob-
viously contains ¢"E. We thus have a canonical mapping of E/q"E onto
(E + oq"B)/a"B, whence the length of the latter module is at most equal
to the length of the former. Since E is a free 4-module with r gener-
ators it follows that

(5) rt(A]|q") = {(E/q"E) = {((E+ q"B)/q"B) = {({(aB + q"B)/q"B),
ie.,
(5" rf(A[q") > ¢{(B/q"B)—{(B/(aB + q"B)).

On the other hand, the kernel of the canonical mapping of aB onto
(aB + q"E)/q"E obviously contains q"aB. We therefore have a canonical
mapping of aB/q"aB onto (aB - q"E)[q"E. Since, by assumption, a is

not a zero divisor in B, the modules aB/a"aB and B/o"B are isomorphic.
Thus we deduce, as above, the inequality

{(B/a"B) = t((aB+ q"E)/q"E) = {(E[q"E)—{(E/(aB + q"E)),
and since E is a free A-module with r generators, this yields the in-
equalities
(6) rt(Alq")y<t(B/q"B)+{(E[(aB+ oq"E)) < {(B/q"B)+{(E[(aE+ q"E)).

Again, since E is a free A-module with r generators, it follows from (6)
that we have

(6") rt(A]q") < ¢(B[a"B)+rb(A)(ad + anA)).

We set B'=B/Ba. Then B’ is an A-module and we have B'q=
(Ba+ Ba)/Ba. With this notation, inequalities (5') and (6) yield (for
n large)

0 ¢(B/Bq")—£(B’|B’ ") <rPqy(n) < {(B|Bq")+rPy(n),
where o' is the ideal (q-+Aa)/Aa in the ring A'=A[Aa: in fact the
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length of A’/q'"=A[(aA+ q7) is the same whether we regard this ring
as an A-module or as an A'-module. Since a is a regular element in 4,
the polynomial P,.(n) is of degree d— 1 (Corollary 2 to Theorem 20, § 9).
On the other hand P(n) and #(B/Bq")= 2 [B[v;: A[m]P, (n) (for n

large) are polynomials of degree d, since 4 is a local ring of dimension d
and since B is a finite 4-module. (Corollary 3 to Theorem 20, §9.)
It remains to study the term #(B’/B’q") in (7). Since B’ is a finite 4-
module which is annihilated by Aa, it is also a finite 4’-module
(A'=A|Aa). The length of B'/B’q" is the same whether we regard
this ring as an 4-module or as an 4'-module. Thus, since 4’ is a local
ring of dimension d—1, /(B’[B’q") is, as above, a polynomial of degree
d—1 for n large.

This being so, inequalities (7) prove that the degree of /(B/Bq") is
exactly d, and that the polynomials {(B/Bq") and 1P (n) have the same
leading term. In view of what was shown in the earlier part of the
proof, the length /(B/Bqg") of the A-module B/Bq" is equal to the poly-
nomial > [B/pi:A/m]Pq‘(n) for n large. This proves our assertion.

CoroLLARY 1. The hypothesis and notations being as in Theorem 24,
suppose furthermore that all the local rings B, have the same dimension as
A. Then

) (B:Ale(a) = 2, [B/v;: Afmle(a).

In fact, all the polynomials B, (n)=P, B,,‘(”) have then the same
degree d=dim (4).

The hypothesis that all the local rings B, have the same dimension
as A is verified in the following cases:

(1) Bis a local ring.

(2) In most semi-local rings which occur in algebraic geometry.

(3) A is an integrally closed local ring. In fact, since no element #0
of A4 is a zero divisor in B, we may apply the “going down” theorem
proved in Vol. I, Ch. V, § 3, Theorem 6. Letb,=m>b,> - -+ >0,
be a maximal chain of prime ideals in 4. Given any maximal ideal B
of B, we have P 1 A=m, and the “going down” theorem provides us
with a prime ideal B, of B such that 8,< ¥ and B, N A=b,. By re-
peated applications, we get a chain § > B,> - - - > B,,, of prime ideals
of B beginning with 8. We thus have a chain of -1 prime ideals in
B,, whence dim (B;)>d, and therefore dim (B,)=d since a chain of
d+2 prime ideals in B, would induce a chain of d+ 2 prime ideals in 4
(cf. Corollary 3 to Theorem 20, §9).
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(4) A is a local domain of dimension 1 and also B is a domain. In that
case it is clear that all the rings B, are 1-dimensional. Let us further-
more assume that B is integrally closed. In this case each ring B, isa
discrete valuation ring of the quotient field of B, since each of these
rings is noetherian, integrally closed and has only one proper prime
ideal (see VI, § 10, Theorem 16, Corollary 1). If 2, is the valvation
defined by B, , then v; is non-negative on A and has center m (VI, §5),
and the o, give all the valuations of the quotient field of B which are non-
negative on 4 and have center m, for any such valuation must be non-
negative on B, and its center must be one of the p;. The integer [B: 4] is
in this case the relative degree of the quotient field of B over the quotient
field of 4, and B/»; is the residue field of v;. Since in By every ideal is
a power of the maximal ideal v,By , it follows at once that e(q,)=v,(q,) =
v{q), where we denote by v,(q) the minimum of the integers v,{(w) as w
ranges over q. In the special case a=m, if we set e(q;)=v,(m)=¢,
[B/v;: A[ml=n,;, [B: Al=n, formula (8) takes the form

(8" ne(m) = > em,,

and in this form it is an analogue of a formula derived for the extension
of a valuation (VI, § 11, formula (13)). In fact, the two formulas over-
lap when A4 is a discrete valuation ring. We note finally the special
case in which B is the integral closure of 4 in its quotient field. In this
case we have

(8) om) = 2 em;, (e = vy(m)),

always provided B is a finite module over A.

CoRrROLLARY 2. Let A be a complete local ring, m its maximal ideal, K
a subfield of A over which A|m is finite, {x,, - - - , x,} a system of parameters
of A, a the ideal generated by x., - - - , x;. Then A is a finite module over
Kllxy, - -+, 2,01, If no element of K[{x, - - -, x,]] is a zero-divisor in A,
then we have

9 [A:KTTxy, -, 217 = e(0)-I(A/m):K).

That A4 is a finite module over K[[x,, - - -, x,11 has been seen in §9
(Remark, p. 293). On the other hand, K[lx,, - - -, x,!1 is a power series
ring in d variables (Corollary 2 to Theorem 21, § 9), whence the ideal X
generated by x,, x,, - -+, x, in this ring has multiplicity one, since
Px(n)=("*4-?). Thus, since q= A%, our formula follows immediately
from Corollary 1.
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REMARK. Corollary 2 to Theorem 7 (§3) shows that if 4/a, considered
as a vector space over K, is generated by the residue classes mod q of

certain elements y,, v,,---, ¥, of A, then A, regarded as a
K[[x4, x4, - - -, xz11-module, is generated by these elements YiYar Vg
We may takc g=T(A4/a):K], whence [A:K[lxy, - -+, x,N<[(A4]0): K]

and formula (9) shows that e(a)[A/m:K]=< [(A/q):K] This shows
again that the multiplicity of the ideal q is at most equal to its length.

§ 11. Regular local rings. Let 4 be a local ring of dimension d, m
its maximal ideal. We say that A4 is a regular local ring if m may be
generated by d elements. Then any system of d elements of 4 which
generates m is obviously a system of parameters and is called a regular
system of parameters of A.

EXAMPLE. A power series ring K[[X,, - - -, X,]] in n variables over
a field K is a regular local ring of dimension n.

If A is a regular local ring, then its completion 4 is regular, since the
maximal idea! of 4 is generated by m and since 4 has the same dimen-

sion as 4. Conversely if 4 is regular, and if {€,, -+ -, & is a regular
system of parameters of 4, we can find d elements x,, - - -, x, of m such
that ;= ¢; (mod Am?2). Then x, - - -, x, generate mA by Theorem 7,

§3. Therefore, by Theorem 9, (a'), § 4, we have Z Ax;= An (Z Ax)

=A n Am=m, whence 4 is regular.
THEOREM 25 Let A be a local ring of dimension d; m its maximal
tdeal. Then the following statements are equivalent :

(a) A is a regular local ring.
(b) The associated graded ring Gn(A)= Z m*/m*1 is a polynomial

ring in d variables over the field A[m.
(c) m/m?2is a vector space of dimension d over A[m.

PROOF. We give a cyclic proof: (a) = (b) = (¢) = (a). That (a) im-
plies (b) follows directly from Theorem 21, §9, if we take for
{xy, x5, - - -, x,} a regular system of parameters. Another proof can be
obtained by using multiplicities. Namely, the ideal m is generated by a
system of parameters. Since the length of m is equal to 1, its multi-
plicity must also be 1 (§ 10, Theorem 23), whence G.(A4) is a poly-
nomial ring in d variables over 4/m (§ 10, Theorem 23). Therefore (a)
implies (b).

The fact that (b) implies (c) is evident. Finally, if m/m2 has dimen-
sion d over 4/m, let x,, - - -, x, be elements of m whose residue classes
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mod m? form a basis of m/m2 over 4/m. Then, if q denotes the ideal
D Ax;, wehavem= g+ m?= g+ m(a+m2)= g+ m3, whence m= a+m»
i

for every n, by induction. Since o is closed, this implies
m= ﬂ (q+m")=q, and m is generated by the 4 elements x,, - - -, x,.

Therefore (c) implies (a).

CoroLLARY 1. A regular local ring A is an integrally closed integral
domain. The passage from elements of A to their initial forms preserves
products.  The order function v relative to m (see § 1; v(x) is defined by
x € m¥®, x ¢ mvDY) is g valuation of the quotient field of A. The com-
pletion A of A is an integrally closed domain.

All these assertions, except the last, follow from (b) and from
Theorems 1 and 3 (§ 1). 'The last assertion follows from the fact that 4
is also a regular local ring.

CoROLLARY 2. Let A be a regular local ring of dimension d, m its
maximal ideal. In order that a system {x,, - - -, x;} of elements of m be
a regular system of parameters of A, it is necessary and sufficient that the
residue classes of the x; mod m2 generate m[/m? over A[m, or equivalently,
that these residue classes be linearly independent over A[wm.

Since the dimension of m/m? over A/m is d, the two conditions about

the m2-residues of x,,- - -, x, are equivalent. The necessity of our
condition is obvious. For the sufficiency we notice that if the condition
d d

is satisfied, then we have m= Z Ax;+m?, whence m= > Ax; as at
i=1

the end of the proof of Theorern 25

REMARK. We noticed, in the proof of Theorem 25, that, if 4 is a
regular local ring, then the multiplicity of its maximal ideal m is equal
to 1. For any other open ideal q of A, we have e(q)>1. In fact,
{q+m?)/m2 is then a proper subspace of m/m? (otherwise m= q-+m2
whence m= g as above). Taking a suitable basis of the vector space
m/m2 we see that there exists a regular system of parameters
{xy, xgy - -+, x5} such that o+m2cdx,+ ... +Ax,+m2% As this
latter ideal is q'=Ax,2+ Ax,+ - - - +Ax, and since q<q' implies
e(q)>e(q’), we have to prove that e(q’) >1. But this follows from the
fact that G4.(4) is a polynomial ring in d variables over 4/q’, whence
e(q")=£(A[a")=2, by Theorem 23, § 10.

It may be proved (by using the structure theorems for complete local
rings) that if a local ring 4 of the type encountered in Algebraic Geo-
metry admits an ideal q of multiplicity 1 (i.e., if e(q)=1), then A is a
regular local ring (and, necessarily, a=m).
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We shall give later a partial proof of the fact that every quotient ring
Ay (v: prime ideal) of a regutar local ring 4 is a regular local ring. We
now describe those factor rings A[b of a regular local ring which are
regular.

THEOREM 26. Let A be a regular local ring and b an ideal in A. For
A'b to be regular, it is necessary and sufficient that b be generated by a sub-
set of a regular system of parameters of A (i.e., by a system of elements of m
which are hinearly independent mod m2).

PROOF. The equivalence of the notions ‘‘subset of a regular system
of parameters,” ‘‘system of elements of m which are linearly inde-
pendent mod m?” follows immediately from Corollary 2 to Theorem
25. Suppose now that {x,, - - -, x,} is a regular system of parameters in
A, and that b is generated by x,, - - -, x;. By a formula proved in § 9
(p- 292) we have dim (A4/6)=d—j. On the other hand the maximal
ideal m/b of 4[5 is generated by d—j elements, namely the b-residues of
Xj.1, "% Hence Afb is a regular local ring.

Conversely, assume that A/ is a regular local ring, say of dimension 8.
We consider the canonical mapping ¢ of m/m?2 onto i/M%=m/(m2+b),
where Wi=m/b. Both are vector spaces over A/m (=(A4[b)/m), of
dimension dand & respectively, and it is obvious that ¢ is (4/ m)-linear.
Therefore the kernel of ¢ has dimension d—8, whence b contains
d— 3 elements, say xy, xp, - -, X, 5 Whose m2-residues are linearly
independent over A/m. By Theorem 25, Corollary 2, these d—3
elements form a subset of a regular system of parameters. By the

d=s
preceding half of the proof, the ideal '= > Ax;, has the property

that A/b’ is a regular local ring of dimension 8. Now the ring A/b is a
homomorphic image of A4/b’, since b’ < b, and has the same dimension 3
as A/p’. Since A/b’ is an integral domain (Theorem 25, Corollary 1),
it follows from Theorem 20, Corollary 2 (§9) that the canonical
homomorphism of 4/6" onto A/b is an isomorphism. Hence =5, and
this completes the proof of the theorem.

REMARKS

(1) In the last part of the proof it is not necessary to fall back on
Corollary 2 of Theorem 20 (§9). It is sufficient to observe that
G(A[v") is a polynomial ring in 8 independent variables over A/m and
that, were 9’ a proper subset of b, the ring G(A4/6) (=G((4/6")/(5/5)))
would be a proper homomorphic image of the polynomial ring G(4/%"),
and this contradicts the fact that G(A4/9) is itself a polynomial ring in §
independent variables over A/t

(2) The proof that 5" =b is based essentially on two facts: (1) 6'<b;
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(2) b and b’ have the same leading ideal in G(4). In this connection,
it is proper to call attention to a general lemma on Zariski rings which
covers the case under cons‘deration.

LemMMA.  Let A be a Zariski ring, m an ideal defining the topology of

A, a and o' two ideals in A such that «’<a. If a and o' have the same
0

leading ideal in G(A)= > mnjmn+l, then a=qd'.
0

In fact the associated graded module G(E) of the 4-module E=a/a’
is reduced to (0) since G(E) is isomorphic to G(a)/G(a’). 'This implies
that E/mE=(0), whence E=mE. Thus Theorem 9, (f) (§4) shows
that £=(0), whence a=a'.

§ 12. Structure of complete local rings and applications. In
this section we restrict ourselves to equicharacteristic local rings, 1.e., to
local rings 4 which have the same characteristic (zero or a prime
number p) as their residue field 4/m. Most of the theorems we are
going to prove admit analogues in the unequal characteristic case, i.e.,
the case in which 4 is a ring of characteristic 0 or p” (p: prime number,
n> 1) and A/m a field of characteristic p.+ It is easily seen (cf. proof of
Corollary 2 to Theorem 17, § 7) that a local ring is equicharacteristic if
and only if it contains a field.

We recall (cf. p. 281, § 7) the notion of a field of representatives (or
representative field) for a local ring 4 with maxima! ideal m: it is a
subfield L of 4 which is mapped onto 4/m by the canonical mapping ¢
of 4 onto A/m. Then, since L is a field, the restriction of ¢ to L is an
isomorphism of L onto A4/m.

THeOREM 27 (I. S. COHEN). An equicharacteristic complete local ring
A admits a field of representatives.

PROOF.] In the case in which 4 and 4/m have characteristic 0 the
theorem has already been proved as a consequence of Hensel's lemma
(Corollary 2 to Theorem 17, § 7). We may therefore restrict ourselves
to the case in which 4 and 4/m have characteristic p#0.

We first prove our assertion under the assumption m2=(0). The
proof in this case will make no use of the noetherian character of 4 nor
of the completeness of 4, and will in fact be valid for any ring A in which
m is the only maximal ideal, provided A4 and A/m have the same char-

4+ For these extensions we refer the reader to the paper of I. S. Cohen “On
the structure and ideal theory of comp'ete local rings," Trans. Amer. Math.
Soc., 59, 54-106, (1946), or to P. Samuel “Algebre Locale,” Mem. Sci. Math.
No. 123, Paris, 1953.

T The method of proof given in the text is due to A. Geddes.
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acteristic p#0 and provided that m?=(0). Let A? be the set of all
elements x?, where x ranges over 4. The set A? is obviously a subring
of A. Furthermore, if x?#0, then x ¢ m, x admits an inverse y € 4,
and x? admits y? as an inverse in A?. Therefore A? is a subfield of
A. Among the subfields of 4 which contain A#, Zorn’s lemma pro-
vides us with a maximal subfield L. Let ¢ be the canonical homomor-
phism of 4 onto 4/m; we prove that o(L)=A/m. Infact, assuming the
contrary, take an element o€ 4/m, a¢ o(L). Since a? € p(AP)=¢(L),
the minimal polynomial of « over (L) is X?—a?. We take a repre-
sentative a of « in 4 (p(a)=c). Then the polynomial X?—a? is
irreducible over L, since otherwise we would have (a—a')?=0 for
some a' in L, and « would belong to ¢(L). Thus Lla] is a subfield of 4,
in contradiction with the maximal character of L.

We now come back to the general case. Since p>2, the maximal
ideal 1 =m/m? of the local ring 4/m? satisfies the condition m?=(0)
and hence 4/m? admits a representative field K,. We now construct,
by induction on n, a representative field K, of A/m" such that, if we
denote by i, the canonical homomorphism of 4/m"! onto 4/m", i,
induces an tsomorphism of K, , onto K,. Suppose that K, has already
been constructed. The inverse image ,”Y(X,) is a subring R of
A/m1 which contains the kernel p=m?/m"*! of s,. Any element
£ of R which is not in p has as ¢,-image an element ¢’ #0 of K. Since
K, is a field, ¢ is a unit in 4/m?, and therefore ¢ ¢ m/m". Hence
& ¢ m/mrtl (since the maximal ideal m/m*+! in 4/m*+! is the full in-
verse image of the maximal ideal m/m” of 4/m7), and ¢ is a unit in
Almrtt. Let én=1,ne€ A/m"+!. Then o' =4¢,(n) € K,, and therefore
n € R, since R is the full inverse image of K. Thus § is invertible in R,
and we have therefore proved that p is the only maximal ideal of R.
Since we obviously have p2=(0) (as p=m"/m"*! and m* < m*1), the
first part of the proof shows the existence of a representative field K.,
of R. Since the canonical homomorphism 4/m"*! — A4/m is the pro-
duct of ¢, by the canonical homomorphism 4/m” — 4/m and since K,
is a representative field of 4/m~, it follows that (K, .{)=K, and that
K, .. is a representative field of 4/mn+1,

We now conclude the proof by using the fact that, since A4 is complete,
it is the projective limit of the residue class rings 4/m". In fact, given
any sequence {n,} of elements 7, € 4/m” such that n, =4 (y,. ) for all n,
there exists one and only one element y of 4 admitting 7, as m*-residue
foralln. To see this, we take, for every n, an element y, of 4 admitting
n, as mr-residue. Since 71,=¢,(n,,,), we have y, =y, , (mod mn),
whence the sequence {y,} is a Cauchy sequence. If y is the limit of
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this sequence then v —v, € m” and hence v admits 7, as m*-resicue for
every n. The uniqueness of y follows easily from the fact that

00 m"=(0). Now, for every element 5 of K,(= A/m) we consider the

elements n,=i,"H(n,) € Ky, - - -, Dy =, (n,) €K,y, - -+, and we
denote by u(n) the above constructed element v of 4. It is readily
verified that u(p-7n')=u(n)+u(y’), and that u(ym')=u(n)u(y’) (con-
servation of sums and products by passage to the limit), whence u(K,)
is a subring of 4. Furthermore, for every n#0 in K, there exists an
element 5’ in K, such that yn’'=1, whence u(n’) is the inverse of u(z)
(note that from the uniqueness of the element y, established above,
follows that u(1) is the element 1 of 4). Therefore u(K,) is a subfield
of A. Since its image p(u(K,)) in A/m=K, is obviously 4/m itself,
we have found a representative field of 4.

A somewhat shorter proof of Cohen’s Theorem, due to M. Narita,
may be given; it uses properties of p-bases in fields of characteristic p,
(see Vol. I, Ch. II, § 17, pp. 129-131). We again restrict ourselves to
the case in which 4 and 4/m have characteristic p#0. Let {x,} be a
family of elements of 4 such that their m-residues %, form a p-basis of
A[m. For every integer k, we consider the subring R,= 4?*Ix] of R.

We first notice that R, n mcm#*  In fact, since x?* € A?*, every
element of R, may be written in the form > a,m(x) where a, € A?* and

where the m(x) are monomials in the x, with exponents < p"— 1. If
Z am(x) € m, we have, by taking m- re51dues, Z am(%)=0. Since

the monomials m(%) are linearly 1ndependent over (A[m)#* (this is a
property of p-bases), this imples @,=0, i.e., a, € m. Since a, € 4%, we
may write a, = b*, whence b, € m since m is a prime ideal. Therefore
a, € m#, and the inclusion R, N m< m#* is proved.

Now let y be any element of 4. We are going to construct a Cauchy
sequence {y,} such that y, € R, for every k and that y=wv, (mod m).
We take y,=2y, and we suppose that y, is already constructed. We
write y,= > a*m/x), where a, € 4 and where the m,(x) are monomials

in the x_ with exponents <pf—1. Since A/m=(4/ m)Prx‘l, we can write
a, = b,tm' (x) (mod m), where b,, € 4 and where the m’ (x) are mono-
t

mials with exponents <p—1. Setting y,.,= Z by 2 (m' (x))Pm(x),
we have yj,; € Reyr and yp0—3=2 (a,— Z bstpm {x)¥*m(x) € m#*,

whence {y,} is the Cauchy sequence we were lookmg for. Since 4 is
complete, the Cauchy sequence {y,} admits a limit »' € 4, and we ob-



§12 STRUCTURE OF COMPLETE LOCAL RINGS, ETC. 307

viously have y=y" (mod m). Furthermore, since the subrings R,
form a decreasing sequence, we have y; € R, for every j> k, whence y’

belongs to the closure R, of R,. Therefore y’ belongs to R= ﬁ R,
k=0

which is a subring of A4.
The relation R, n m< m?* implies R, N m< m?* since the ideal m#*
is closed. Therefore we have

@ ©

@
Rom = (n R,,) nm= ) (R,nm)yc M m* = (0),
E=0 £=0 B=0

whence the restriction to R of the natural homomorphism ¢ of 4 onto
AJm is one to one. On the other hand, since we have seen that every
element y of A4 is congruent mod m to an element ¥’ of R,  maps R
onto A/m. 'Therefore R 1s a field of representatives of 4, and Cohen'’s
Theorem is proved.

CoOROLIARY. An equicharacteristic complete regular local ring A is iso-
morphic to a formal power series ring over a field.

Let m be the maximal ideal of A, K a representative field of 4,
{xy,---,x;} a regular system of parameters. Then the subring
B=K[[x,,---,x,]1 of A is a power series ring in d variables (Corol-
lary 2 to Theorem 21,§9). Let X be its maximal ideal. Since
{xy, - - -, x4} generate min 4, we have m=A%. Since B/X£=B/(m 0 B)
is identical to 4/m, and since B is complete, Theorem 7 (§ 3) shows that
A=B (identify in that theorem the ring 4 with the present ring B,
and both modules E and F with the present ring A4).

We prove now an algebraic result whose geometric counterpart is the
fact that, if a subvariety W of a variety V carries a point P which is
simple on V, then W is simple on V.

Tureorem 28.  If A is an equicharacteristic complete regular local ring
and if v is a prime ideal in A, then A, is a regular local ring.+

PROOF. We set d=dim(4), d—r=dim (4/p). The theory of
chains of prime ideals in the power series ring 4 (VII, § 10, Theorem 34,
Corollary 1) shows that the dimension of A4, is r. We thus have to
prove that A, may be generated by » elements. We first prove that

+ This theorem has been proved by I. S. Cohen also in the unequal character-
istic case, under the assumption that p ¢ m?2, where p is the characteristic of the
field A/m (the so-called ‘““unramified case’’). The theorem has also been proved
for non-complete regular local rings 4 in special cases. Thus, Zariski has
proved the theorem in the case in which A is a “geometric” local ring, and
Nagata has proved the theorem in the more general case in which the prime
ideal P is “analytically unramified.” Recently Serre has proved the theorem

quite generally for arbitrary regular local rings, by using cohomological
methods.
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there exists a regular system of parameters {x,, - - -, x,} in A such that
the idea! (v, x,,,, - - -, x,) is primary “or the maximal ideal m. This is
a particular case of the following sharper result:

LemMa 1. Let A be a regular local ring of dimension d, m its maxima]
ideal, b an ideal in A, q the dimension of A[%, and {v;} (1 <j<h) a finite
family of non-maximal prime ideals in A. Then there exists a regular
system of parameters {u,, - - -, uz} of A such that the ideal (5, u,, - - - , u))
is primary for m, and that u, ¢ v, for every j.

Proor oF THE LEMMA. We proceed by induction on ¢, the case ¢=0
being trivial. Let ¢#£0. We denote by v, i=h+1, h+2 .- k, the
isolated prime ideals of b ; these prime ideals are distinct from m. From
the family {v;, v;} of prime ideals we extract those which are not con-
tained in any other ideal of the family. Let {p,} be this reduced
family. For every s, we have m2 ¢ p , whence we can find an element
¢, such that ¢, € m2, ¢, € p, for every t5s and ¢, ¢ . Now we fx an
element x of m such that x ¢ m2, and we denote by I the sct of those

indices s for which x e »,. Wesetu;=x+ > c¢. Foreverys thereis
sel

one and only one of the terms of this sum which is outside of p,, whence
u, ¢ p,. Furthermore, since x¢ m2? and ¢, € m2?, we have u, ¢ m2
We may thus begin the required regular system of parameters with #,
(Corollary 2 to Theorem 25, § 11).

We now use the inductive hypothesis. Since %, is not in any isolated
prime ideal of b, the local ring 4/(6 + Au,;) has dimension ¢—1 (§9,
Theorem 20 (b)). This local ring is a residue class ring 4'/b’ of the
ring A'= A[Au,, where ' =(b+ Au,)/Au,, and this latter ring 4’ is a
regular local ring (§11, Theorem 26). Applying the induction
hypothesis to 4’ and b, we find a regular system of parameters
{t'g, - - -, 44} of A" such that the ideal (b', 'y, - - -, #,) is primary for

the maximal ideal of 4’. If we take for u; (=2, - - - , d) a representa-
tive of #'; in A, then the system {u, - - -, u,} satisfied the conditions of
the lemma.

CONTINUATION OF THE PROOF OF THEOREM 28. Let K be a repre-
sentative field of 4. We apply the above lemma to the case b=y,
g=d—r. We change the notations of the lemma as follows: the elements

Uyy ooy Ug yy Uy yiys -+, #y Will now be denoted by u,.,, - - -, uy, uy,
- u,. Weset B=Kllu,,,,---,u,]l. InB/(»n B),the residue classes
#,,1," - -, iy generate the ideal of non units, and, in A/p, these elements

generate an ideal which is primary for the ideal of non units. Since
B|(p n B) is contained in 4/p and is complete, A/p is a finite modu'e
over B/(v n B) (Remark, p. 293,§9). Thus, by Corollary 3 to Theorem
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20 (§9), the rings A/v and B/(» 1 B) have the same dimension. As the
dimension of the former is d—r, B/(p n B) has also dimension d—7.
Now, B itself has dimension d—7, since it is a power series ring in d—r
variables over a field. Since v n B is prime, thisimplies, by Theorem 20
(§9), that » n B=(0).

We have already seen that 4/p is a finite module over B/(p n B)=B.
More precisely, A[p is generated by any system of elements {y';} whose

residue classes modulo Z (A[p)a; generate (A/b)/ Z (A/p)/u over

i=r+1

K (Theorem 7, § 3). An equivalent form of this condmon on the ele-
ments y’; is the following: the y’; are the p-residues of elements y, of 4
whose residue classesmodulo (9, u, ., - - -, u,) generate A[(p,u, 1 - - -, uy)
over K. We may thus take for elements y; the element 1 and a finite
number of suitable monomials in u,,---,u, Therefore we have
Alp=Blu'y, - - -, u',] (W';: p-residue of u;), whence A=p+Bluy,---,u,l.

The elements uy, - - -, u, are not necessarily in . However, we shall
now construct 7 suitable elements a, - - -, a, of » which will belong to
the polynomial ring Blu,, - - -, u,]. The p-residue u'; of u; has been
seen to be integral over B. Let p(X)=X"®+b, .y , XrO-1p ... 4
by ;X +b, ; (b;; € B) yield an equation of integral dependence for u'; over
B. We set a;=p;(u;). Then relation p,(u’;)=0 shows that a; € p.
Furthermore, since the p,(X) are monic polynomials, the elements u;
are integral over Bla,, - - -, a,] and therefore also over K[[a,, - - -, a,,
U,y - -+, u)l. Therefore 4 is a finite module over Kila,, - - -, a,
U,y -, Ugll, generated by a finite number of monomials m, in
uy - yu: A= Kl{ay, -+ -, 4, t,q, - -+, uglim,. In a representa-

tion 3= @@y, ay Uy, -+ -, ug)m, of an element z of 4, we may
a

single out the terms of ¢, which are independent of a,, - - -, a,; these
terms are in B=K[u,,,, - - -, u;]]; and the other terms are in the ideal

a= > Aa; We therefore have
A =a+Bluy,---,u,l

We are now in good position for studying the quotient ring Ap.
Since p n B=(0), 4, contains the quotient field L of B, whence it also
contains the polynomial ring S=L[u,, - - -, u,]. Theabove constructed
elements a; are in Snp, and S is integral over Lla,, - - -, a,], since u;

is integral over Bla;]. Therefore the idea! Z Sa; is of dimension 0

in S. Since S(p N S) contains this ideal, it follows a fortiori that also the
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ideal S(p n S) has dimension zero. Then, since S{p 7 S) is thus a maxi-
mal ideal in the polynomial ring Lfu;, - - -, %,] in r variables, it may be
generated by exactly » elements (VII, § 7, Theorem 24). Our proof
will thus be complete if we show that pA4, is generated by S(p 1 S).

Now this is immediate. The relations a<v and A=a~ Blu,, - - - ,u,]
show that p=a+(dnBlu,---,u)), whence pAy=ad,+
(» 0 Bluy, - - - ,u,1)Ap.  Since a is generated by the elements a; which
lie in »p n S, and since p " Blu,, - - -, u,) is obviously also in » N S, we
have pAp=(» n S)4,, and this proves Theorem 28.

REMARK. For every prime ideal p» in the power series 4=
K[lx,, - - -, x;11, Ap is a regular local ring. The corresponding state-
ment for a polynomial ring A=Klx,, - - -, x;] and a prime ideal b of 4
is easier to prove. If ¢ is the dimension of », we extract from
{xy, -+, x;} a maximal system of elements which are algebraically
independent mod p, say {x;,---,%}. Then A4, contains the field
L=K{(xy,---,x,) and therefore also the polynomial ring S=
Llx, .y, -+, x,. The ideal p4, is generated in A4, by the ideal
S 0 pA,, since this latter ideal contains p. Now S n pA4, is a prime
ideal of dimension 0 in S, since the p-residue of «; is algebraic over L for
j=q+1,---,d. Therefore this ideal, and hence also the ideal p4,, is
generated by d—g¢ elements (VII, § 7, Theorem 24). Since d—gq is the
dimension of Ay, our assertion is proved.

It may be noticed that the proof of Theorem 28 is essentially based
upon the same idea which runs through the above short proof for poly-
nomial rings.

The following theorem, due to I. S. Cohen, is a generalization of the
theorem of Macaulay for polynomial ring (VII, § 8, Theorem 26):

THEOREM 29. Let A be an equicharacteristic regular local ring of
dimension d, and a=(a,, - - - , a,) an ideal in A such that dim (Ajay=d—r.
Then a ts an unmixed ideal (i.e., all the associated prime ideals v; of a are of
dimension d —r; in particular, a has no imbedded components).

PROOF. We proceed by induction on 7, the case r=0 being trivial.
We first achieve a reduction to the case of a complete ring. Let 4 be
the completion of 4. Then Aa has dimension d—7 (i.e., the local ring
A[Aa has dimension d—7) and is generated by r elements. Suppose
our theorem is proved for the ring 4 (which is a complete equichar-
acteristic regular local ring). Then, every associated prime ideal p*;
of Aa has dimension d—r. Now Theorem 12 (§4) shows that, for
every associated prime ideal p of a, there exists a b*; such that
p*; 0 A=p. We thus have dim (4/v)=dim (4/4p)> dim(4/p*;) since
Ap<yp*,. Hence dim (4/v)=d—7r, and therefore dim (4/p)=d—r
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since p2a. We may thus assume that 4 is a complete ring. We sup-
pose that one of the associated prime ideals p of a has dimension <d—7,
and from this we shall derive a contradiction. In the local ring 4, the
ideal pA, admits the maximal ideal pA4, as an associated prime ideal.
By Theorem 28 A, is a regular local ring. The dimension 7 of 4, is
> 7, since we have assumed that » has dimension <d—r, and a4, is an
ideal generated by 7 elements. Furthermore, since every isolated prime
ideal of a has dimension d—r (Vol. I, Ch. IV, § 14, Theorem 30), every
isolated prime ideal of a4, has dimension n—7. Thus, with a change
in notations, we have to prove that the following situation is impossible:
we have a regular local ring 4 of dimension #, an ideal a=(ay, - - -, a,)
in A, of dimension n —7, generated by 7 elements, r <7, and the maximal
ideal m of 4 is an associated prime ideal of a.

Since a principal ideal in a local ring of dimension ¢ has either dimen-
sion ¢—1 or dimension ¢, the dimensions of the ideals (a4, - - -, a,),
(@y, -+ @_q), -+, (ay), (0) form a sequence of integers such that the
difference of two consecutive terms is 0 or 1. Since the dimension of
a is n—r, and since the dimension of (0) is 7, this implies that all these
differences are equal to 1. In particular, the ideal b=(ay, - - -, a, ;)
has dimension n—7+1, whence b is unmixed by our induction hypo-
thesis. By Lemma 1, there exists therefore a regular system of para-
meters {uy, - - -, u,} of A such that u, does not belong to any associated
prime ideals of b, nor to any isolated prime ideal of a.

We now express the fact that m is an associated prime ideal of a: we
have a:m >a (Vol. I, Ch. IV, § 6, Theorem 11), or equivalently, there
exists an element c¢a such that em<a. Then cu;€a=5+4a,,
whence we can write cu; —da, € b, where d is a suitable element of A4, or
again da, € b+ Au,. Suppose that we have shown that a, does not
belong to any associated prime ideal of b+ A4u;. Then the relation
da, € b+ Au, implies d € b+ Au,, and hence d—eu, € b, with suitable
e in A. Using the relation cu;—da, € b, we find that (c—ea,)u, €,
whence ¢ —ea, € b since u; has been chosen outside of all the associated
prime ideals of 5. We therefore have ¢ € b+ Aa,=aq, in contradiction
with the hypothesis ¢ ¢ a. '

Thus it remains to be proved that a, does not belong to any associated
prime ideal p of 6+ Au,. By the induction hypothesis, applied to the
ideal (b+ Au,)/Au, in the regular local ring A/Au,, such an ideal p has
dimension n—r. If p were to contain a,, it would contain a=5b+ 4a,,
and therefore p would be an isolated prime ideal of a, in contradiction
with the fact that u; has been chosen outside of all the isolated prime
ideals of o. This completes the proof of the theorem.
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THEOREM 30. An equicharacteristic regular local ring A is a unique
factorization domain.

PrOOF. The completion 4 of A4 is a power series ring over a field
(Corollary to Theorem 27), whence A is a unique factorization domain
(Chapter VII, § 1, Theorem 6). It is therefore sufficient to prove the
following lemma:

Levva 2. If the completion A of a local domain A is a unique fac-
torization domain, then A itself is a unique factorization domain.t

PROOF. We have to prove that every minimal prime ideal p(+(0)) of
A is principal.t  For this it is sufficient to prove that Ap is principal,
for, if we have Ap=Aa’ (@' € 4) and if {b,,---,b,} denotes a
basis of p, we have b,=a'b’; (¥'; € A) and a'=z c'b; (c'; € A); thus

a= (Z c'ib'i)a', whence 1= ¢';'; since 4 is a domain; then, since

13 13
A is 2 local ring, at least one of the terms ¢';4';, say ¢’,8'4, is invertible,
whence &', is invertible; since b,=a'b’;, we have Ap=Aa’ =Ab,.
Hence we have p=Ap n A=Ab, n A=Ab, (§ 2, Theorem 5, Corollary
2).

Since 4 is a UFD, it is sufficient to prove that all the associated prime
ideals of Ap are minimal (i.e., have height 1). For such an associated
prime ideal v*, we have v* N A=p (§4, Corollary 1 to Theorem 12).
Thus, if we denote by S the complement of p in 4, v*A is an asso-
ciated prime ideal of p 4 (Vol. I, Ch. IV, § 10, Theorem 17), and we are
reduced to proving that all the associated prime ideals of p4g have
height 1.

Now we notice that 4 is integrally closed. In fact, if we denote by
K the quotient field of A4 (considered as a subfield of the quotient field
of A) we have A=A n K: for, if the element x/y of K (x, y € A) belongs
to A, we have x € Ay n A=Ay (§ 2, Corollary 2 to Theorem 5), whence
x/y belongs to 4. Since 4 is a UFD, it is integrally closed in its
quotient field. It follows that also A is integrally closed in its quotient
field K.

Therefore, since p is a prime ideal of height 1, the quotient ring
Ag=A, is an integrally closed local ring of dimension 1, i.e., a discrete
+ This lemma and its proof have been communicated to us by M. Nagata.

I That this condition is satisfied if 4 is a UFD has been pointed out in
Vol. I, Ch. IV, §14, p. 238. Conversely, assume that this condition is satisfied
and let b be an irreducible element of 4. The ideal A4b is contained in some
minimal prime ideal 9 (Vol. I, Ch. IV, § 14, Theorem 29). We have p=Ac,
whence b is a multiple of ¢, and since b is irreducible we must have 4b= Ac¢, i.e.,

Ab is prime. Therefore 4 is a UFD by Vol. I, Ch. I, §14, Theorem 4. (Note
that UF.1 is satisfied since 4 is noetherian.)
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valuation ring (Vol. I, Ch. V, §6, corollary to Theorem 14). Hence
pAg="vA, is a principal ideal, and, since pAg=vA44g, vAs is also a
principal ideal. Thus, since Ay is integrally closed, all the associated
prime ideals of pA¢ have height 1 (Vol. I, Ch. V, §6, Theorem 14).
This proves lemma 2 and Theorem 30.

RemARK. ILemma 2 reduces the problem of unique factorization in
arbitrary (i.e., not necessarily equicharacteristic) regular local rings to
the case of complete regular local rings. The unique factorization
property holds also in an arbitrary complete regular local ring 4 of
dimension 1 or 2: it is obvious in dimension 1 since 4 is then a discrete
valuation ring; in dimension 2 one uses an analogue of Hensel’s lemma
for homogeneous polynomials in two variables.t It may also be proved
that, if the unique factorization property holds for regular local rings of
dimension three, then it holds in any regular local ring. (This has been
proved by O. Zariski in unpublished notes, in 1947; subsequently this
has been proved by M. Nagata [““A general theory of algebraic geometry
over Dedekind domains, II” (§ 5, Proposition 11), Amer. J. of Mathe-
matics, v. 80, 1958].) Using these facts and methods of cohomological
algebra, M. Auslander and D. A. Buchsbaum have recently proved the
unique factorization theorem in any regular local ring in their paper,
“Unique factorization in regular local rings”, PNAS, v. 45 (1959),
pp. 733-734.  We present their proof in Appendix 7, reducing the co-
homological prerequisites to the knowledge of the properties of chains
of syzygies given in VII, § 13.

§ 13. Analytical irreducibility and analytical normality of
normal varieties. In this section we intend to study the completions
of the local rings which occur in algebraic geometry. Such local rings
are the local rings o(W; V'), where W is an irreducible subvariety of an
irreducible variety ¥ (Ch. VI, § 14, p. 93). In other words, the
local rings which will be considered in this section are quotient rings
k[x,, - - -, x,]p of finite integral domains with respect to prime ideals p.

The results we are going to prove hold in a larger class of local rings,
but not for the class of all local rings.!] Actually they are consequences
of the following hypothesis, which is of algebraic nature:

t See W. Krull, “Zur Theorie der kommutativen Integrititsbereiche,” J. fiir
d. reine u. angew. Math., v. 192 (1953), or unpublished notes of O. Zariski.

1 See P. Samuel, Algébre Locale, Ch. V, Paris (Gauthier Villars), 1953.

'| See M. Nagata: ‘“An example of a normal local ring which is analytically
reducible” (Mem. Coll. Sci. Univ. Kyoto, Ser. A, 31 (1958), 83-85) and “An
example of a normal local ring which is analytically ramified”’ (Nagoya Math. J.,
9 (1955), 111-113).
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(D) The local ring A is a domain, and there exists an element d#0 in A
such that, if A denotes the completion of A and (A)' the integral closure of
A in its total quotient ring, then d(4) < A.

In the first part of this section we shall derive some consequences of
hypothesis (D). In the second part we shall show that the local rings
of algebraic geometry satisfy hypothesis (D), thus proving that the con-
sequences of (D) hold true for these local rings.

We shall say that a local ring 4 is analytically unramified if its com-
pletion 4 has no nilpotent elements (other than 0).

Lemma 1. If a local domain A satisfies condition (D), then it is
analytically unramified.

PROOF. Let @ be a nilpotent element of 4. For every element
x#0 of A, we have that x is not a zero-divisor in 4 (Corollary 6 to
Theorem 11, § 4), whence a/x is an element of the total quotient ring of
A. Since we have (a/x)?=0 for some exponent g, a/x is integral over 4.
Using condition (D), we see that da/x € A, d being an element #0 of 4
independent of x. Therefore the element da belongs to all the principal
ideals Ax (x€ 4, x # 0). If A is not a field, we fix an element y50
in the maximal ideal m of 4, and we apply the above result to the prin-
cipal ideals Ay", n=1,2,---. We then have da € Am" for every n,
whence da=0, and therefore a=0 since d is not a zero-divisor in 4
(Corollary 6 to Theorem 11, §4). This proves that 4 has no nilpotent
elements (#0) if 4 is not a field. If A4 is a field, then 4=4 and our
assertion is trivial.

LEvMMA 2. Let A be an integrally closed local domain such that A and
all its residue class rings A[v (v: prime ideal) satisfy condition (D). Then
A is an integrally closed domain.

[The statement that 4 is a domain is often expressed by saying that
A-is analytically irreducible, and the statement that 4 is integrally closed
is expressed by saying that 4 is analytically normal.}

PROOF. (1) We first prove that A is integrally closed in its total
quotient ring, i.e., that (4)'=A4. With the same notations as in condi-
tion (D), let d be an element#0 of A such that d(4)'<A4. We may
assume that 4 is not a unit in 4, for, otherwise, our assertion is evident.
Let z be any element of (4)’; the element dz belongs to 4. If we prove
that dz belongs to the ideal Ad, we will have dz=dz' with 2’ € 4,
whence z € 4 since d is not a zero divisor (in 4, and therefore also in
(A)).

We thus have to prove that, for every z in (4)’, we have dz € Ad.
This will be achieved if we prove that, for every associated prime ideal
biof Ad, the quotient ring /f;,, is a discrete valuation ring. In fact, assume
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this has been proved. Then it will follow that b, is a prime ideal of
height 1 of 4, and that the ideals which are primary for B, are its
symbolic powers. Hence we will have
(1) Ad =N RN

j
We denote by ; the normalized valuation of 45 and by w; the function
on A defined by wix)=v{px), ¢; denotmg the canomcal homo-
morphism of 4 into A', The function w, takes the value + co on the
kerne!l of ¢;, and satisfies the same relatlom as a valuation does:

(2)  wixy) = wix)+wi(y), wix+y) = min(wix) w(y)).
Furthermore the ﬁymbolic power p J(X) is the set of all elements x of 4
such that w(x) > s; it follows that s(j)=w;{d). This being so, we come
back to the element z of (4), and write an equation of integral de-
pendence for z over A:

(3) 2"ta, 214 tazta, =0 (a;€d).
The element y =dz belongs to 4 and we have
4) -y = a,_ ydy""14+ .- +adrly+dra,.
If we set w;(y)=a and w(d) =4, (2) shows that
no> mingg;c,-1{ie+(n—17)B) = nB+ming;c,_y (H{a—p)).

If a<p, then ming.;c,_1(#o— B)) (n— 1)(oz B), and we get the in-
equality na=nB+(n— 1)(a B), t.e., «>p, in contradiction with a<p.
We therefore have a > §, 1.e., w(y) = w;(d) for everyj. Hencey belongs
to ;@ =5 6UN for every j, and therefore to Ad, by formula (1).

It remains to be proved that, for every associated prime ideal b of Ad,
Ay is a discrete valuation ring. Since A is an integrally closed domain,
we have Ad= () p;", where the p; are prime ideals of A4, of height 1

(Vol. I, Ch. V, § 6, Theorem 14). Therefore we have (§ 4, Theorem
11, Corollary 2)

(5) Ad = n A‘pi(n(i)).
We consider any one of the ideals p;, and we call it p. Condition (D)
and Lemma 1 applied to 4/p show that 4/Ayp has no mlpotent elements,

i.e., that Ayp is a finite irredundant intersection of prime ideals p p;. We
con81der one of them, say b,=5, and study 4;. Taking x' € n P

x' ¢, we have 5= Ap. Leta be an element of » which is not m p(z)
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since 4, is a discrete valuation ring, v is an isolated primary component
of Aa, and there exists an element x” of 4 such that x” ¢ p and x"p< 4a.
Since x” is not a zero divisor mod Av (Corollary 6 to Theorem 11, § 4),
we have x” ¢ b, whence the element x=x'x" does not belong to 5. On
the other hand we have xp=x"x'p<x"4p< Aa. Denoting by ¢ the
canonical homomorphlsm of 4 into 4, we deduce that ¢(x)p A5 < p(a)4;.
Since x ¢ b, @(x) is a unit in A;, and, since a € p= b, the last relation
shows that the maximal idea! pA4; is the prmczpal ideal generated by
@(a). Therefore A;, and similarly every Ap , is a discrete valuation ring.

Now we prove that we not only have Ay = n v;, but also
(6) Apm = n 5,-(").
J

This we prove by induction on n.  The proof of the inclusion p™ <
is straightforward (we recall that p=4np,). Conversely, consider
any element y of (1 5,. We have y € Ap (s1nce n>1), whence (using

the same elementsj a, x" as above) x"y € Aa; we write x"y =ay, (y, € A).
Let ¢; be the canonical homomorphism of A into A;,i, v; the normalized
valuation of /fp , and w; the mapping ¢ v;. We have w;(x")=0 (since
x"¢Dh;), wiy)= > n, w ('a) =1 (since ¢;(a) generates the maximal ideal of
Ap ), whence w (y1)> n—1. Hence y, € n b1, and therefore

y, € Ap=1 by the induction hypothesis. Since aeyp, we have
x"y=ay, € Ap™, whence y € Ap™ since x” ¢ p. This proves (6).

Combining (5) and (6) (applied to each p,) we see that Ad is a finite
intersection of symbolic powers b,"®), where the b, are prime ideals
of A4 such that /f,—,k is a discrete valuation ring. This proves the an-
nounced assertion.

(2) We now know that 4 is integrally closed in its total quotient ring
S. By Lemma 1, A has no nilpotent elements, whence its zero idea!
is an irredundant intersection of prime ideals §;. The elements of 4
which do not belong to |J 3; are regular in A, and are therefore units in

S. Hence the zero ideal of S is the intersection of the maximal ideals
Sa;. Therefore S is isomorphic to the direct sum of the fields S/S4q;
(Vol. I, Ch. I11, § 13, Theorem 32). If the number of these fields were
greater than 1, S would contain an idempotent e£0, 1.  Sincee2—e=0,
e is integral over A, whence it belongs to 4, in contradiction with the
fact that a local ring cannot contain any idempotent e distinct from 0

+ In other words, we have p=b N 4.
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and 1 (since e and 1—e would then both be non-units). Hence Sis a
field, and 4 has no zero divisors. This completes the proof of Lemma 2.

REMARK. We have only used the hypothesis (D) for 4 and for the factor
rings A/p, where p is a prime ideal of Ad.

In the next lemma we use, for avoiding typographical complications,
the notation ¢(B) for the completion of a semi-local ring B, and the
notation R’ for the integral closure of a ring R in its total quotient ring.

LemMa 3. Let A be a local domain satisfying condition (D). Then A’
is a semi-local ring.  Furthermore, if, for every maximal ideal m of A',
the local ring A'w and all its residue class rings A'w[v (p prime) satisfy (D),
then the ring c¢(A4') is canonically isomorphic to ¢(A) .

proOF. Condition (D) applied to 4, i.e., the existence of an element
d+#0 in 4 such that de(4) < c(A4), implies that ¢(A4)" is contained in a
finite ¢(4)-module, whence it is itself a finite ¢(4)-module since ¢(4) is
noetherian. Therefore ¢(4) is a complete semi-local ring, and ¢(4) is
a topological subspace of ¢(4)’ (Theorem 15, § 6).

On the other hand, since no element 5 0 of 4 is a zero divisor in ¢(4)
(Corollary 6 to Theorem 11, § 4), the total quotient ring S of ¢(4) con-
tains the quotient field K of 4. We have K n¢(4)=4, since, if an
element a/b (a, b € A) of K belongs to ¢(4), we have a € b-¢(4), whence
a €b-c(A)nA=A4b, and afbe 4. It follows that the relation
d-c(4)Y<c(4) (de 4) implies dA'=c(4) nK=A4. As above, this
shows that A’ is a finite A-module, therefore a semi-local ring, and that
4 is a topological subspace of 4’. Therefore ¢(4) may be identified
with a subring of ¢(4’). By Theorem 16 (§ 6), an element of ¢(4) which
is not a zero divisor in ¢{(4) is not a zero divisor in ¢(4’). Hence the
total quotient ring T of ¢(4’) contains the total quotient ring S of ¢(A4).
Furthermore the relation d4'c A4 gives, by passage to the limit,
d-c(A'Y< ¢(A), thus proving that the elements of ¢(A4") admit 4 as a com-
mon denominator. Therefore ¢(4’) is a subring of S, showing that
T=S. The relation d-c(A4’)=c(A4) proves also that ¢(4’) is a finite
¢(A4)-module, whence that ¢(4’) is integral over ¢(4). Therefore c(4")
is a subring of the integral closure ¢(4)" of ¢(A4) is S.

For completing the proof it remains to be shown that ¢(4")=c¢(4)’,
i.e., that ¢(4') is integrally closed in its total quotient ring S. We know
(§ 7, Corollary 2 to Theorem 18) that ¢(A4’) is a direct sum of complete
local rings B;. If we prove that all the rings B; are integrally closed
domains, everything will be proved. For, denote by K; the quotient
field of B;. The direct sum Y K; is then the total quotient ring of
c(A")=3 B;. Let x=(xy,---,x,) be an element of > K; that is
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integral over > B;. Writing component-wise an equation of integral
dependence for x over 3 B;, we see that x; is integral over B; for every ¢,
whence that x; € B; and that x€ > B,.

We now prove that every B; is an integrally closed domain. We
know (§ 7, remark to Corollary 2 to Theorem 18) that B; is isomorphic
to the completion of A'w , m; denoting one of the maximal ideals of 4".
Since A’ is an integrally closed domain, so is A'm,. For completing the
proof it suffices to notice that, by the hypotheses, Lemma 2 may be
applied to A'm,.

In order to be able to apply Lemmas 1, 2, 3 to the local rings of
algebraic geometry (which we call, for short, “algebro-geometric local
rings”), it suffices to make sure that, given an algebro-geometric local
ring A, then A itself, all the rings A/p (p: prime) and all the rings A'm/p’
(A’ integral closure of A4, m maximal ideal in 4’, »’ prime ideal in A'n)
satisfy condition (D). It is easily seen that all these local rings are
algebro-geometric. In fact

(a) As to A/p, we write A= B,, where B is a finite integral domain
klxy, ---,x,) and q a prime ideal in B. Then B,=B[(p N B) is a finite
integral domain, p n B is contained in q, and A4/yp is isomorphic to (Bl)"x’

where a,=q/(» n B) (Vol. I, Ch. IV, Formula (1) at the end of § 10).
Thus A/p is algebro-geometric.

(b) As to A'wm, we still write 4=B, and observe that the integral
closure B’ of B is a finite integral domain (Vol. I, Ch. V, § 4, Theorem 9).
Denoting by S the complement of q in B, the intregral closure A’
of A=B,=Bgis B'g (Vol. I, Ch. V, § 3, Example 2). Thus, by the
transitivity of quotient ring formation (Vol. I, Ch. IV, § 10), the ring
A'w=(B'g)m is equal to B’y 5, whence it is algebro-geometric.

(c) As to A'wm/p’, we apply (a) and (b).

This being so, it is sufficient to prove the following:

LemMma 4. An algebro-geometric local ring A=k[x,, x,, - - -, x,1q Such
that k(x) is separable over k satisfies condition (D).

PROOF. We first prove the following strong variation of the normaliza-
tion theorem: if the prime ideal o is zero-dimensional then it contains a
separating transcendence basis {2, Z,, - + - , 2,} of k(x)|k such that k[x) is
integral over k[z]. Passing to the homogeneous ring O=k[ yo, v, + +, ¥,,)
and to the one dimensional homogeneous prime ideal ¥ ="*p (p. 186), it
will be sufficient to prove that 8 contains r homogeneous elements
8y oy - -+ €, such that {y,, £} is both a system of integrity of © and a
separating transcendence basis of k(v)/k for we can then set 2, ={;[y,™,
m;=degree of {;). By Vol. I, Ch. II, §17, Theorems 41 and 43, 2
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separating transcendence basis of k(y)/k is the same thing as a p-basis of
k(x) (if the characteristic p of kis #0). Bythelemmaonp. 198itisthere-
foresufficient that foreachj=1,2,... 7+ 1theelementsZ;, - -+, L ; of B
have the following properties: the ideal Do+ OF; +- - -+ OF;_; (where
{y=2o) is of dimension 7+1—j, % contains none of the isolated prime
ideals ®; of this ideal, and §y, §;, - - -, §;_; are p-independent elements of
k(y). AssumeZ,,L,,---,L;_, havealready been constructed (note, forj =0,
that y, ¢ % and is a transcendental over k(x)). Let u and v be homo-
geneous elements of Osuchthat u¢ |J B, ,ueB,veB,ve M B, and
v & k(g &1s - -+ §j_1) (?) (the existence of v follows from the fact that
the elements of every non-zero ideal in © generate k(y) over k). Let
pg, pbh, be the degree of u and v respectively (where ptra, prb). If
a<bweset{;=u"“+of ifa>bweset{;=u®+ys**17'pe. Ttis then
immediate that gy, T, - -+, §; also satisfy the above conditions. The
existence of a separating transcendence basis {2,, 2,, - - -, 2,} which is
also a system of integrity of o =k[x] allows us first to reduce the proof of
the lemma to the case in which q is zero-dimensional, by adjoining to

k a maximal subset of {z,, 2,, - - -, 2,} consisting of elements which are
algebraically independent over & mod q. Assuming now that q is
maximal we choose {2,,2,,---,2,} as above, we set r=~k[2],

3=(2y, g, -+, 2,)=0af)z. Itisclear that {2, 2,, - - -, 2,} is a system of
parameters in % =o,.

The local ring 4 is not, in general, a finite module over B=1;, How-
ever, if we denote by .S the complement of 3 in r, then the ring =0y is
a finite module over B=rg, and therefore is a semi-local ring. Further-
more A4 is a quotient ring of I with respect to some maximal ideal.
Then B, which is a power series ring in 7 variables over , is a subring of
I. By what has been seen in § 7 (Remark, p. 283), 4 is a direct sum-
mand of ]. If we denote by ¢ the projection of  onto A4,  maps z;
(considered as an element of B and ) on 2; (considered as an element
of A); in order to avoid confusions, we denote this latter element by
@(2;). Since the elements @(2y), - - - , p(z,) of 4 are analytically inde-
pendent over k (Corollary 2 to Theorem 21, § 9), ¢ maps isomorphically
B =k[[zy, - - -, 2,]] onto the subring k[[p(2,), - - -, (2,)]] of A (subring
over which 4 is a finite module; see § 3). Furthermore, by Theorem
16 (b) (§ 6), and since B has no zero divisors, no element #0 of B isa
zero divisor in 1. From this it easily follows, by taking into account
the fact that 4 is a direct summand of I, that no element #0 of p(B)
is a zero divisor in 4.

From all this we deduce that the total quotient ring Z of 4 contains
the quotient field L of p(B), and is a finite dimensional vector space over
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L. The integral closure (4)’ of 4 is the integral closure of ¢(B) in Z,
since A is integral over (B). Furthermore Z is a direct summand of
the total quotient ring T of I. Theorem 16 (§ 6) shows that T is a
finite dimensional vector space over L, and that, if {a;,---, a} is a
basis of the quotient field &(x) of I over the quotient field k(2) of B, then
it is also a basis of T over L. Lemma 4 will be proved if we prove the
existence of an element d#0 of B such that d(B)' <1 ((B)' =integral
closure of B in T): for, applying the prOJectlon @ and noticing that any
element of Z which is integral over o(B) is the pr03ectlon of an element
of T which is integral over B, we get o(d)-¢(B)' < 4, i.e., p(d)(A)' < 4,
and we have ¢(d) € 4, ¢(d)#0.

For proving the existence of d, we may assume that the basic elements
a; belong to 1. The trace mapping Ty, k() €xtends in a unique way
to an L-linear mapping 7 of T into L. Since k(x) is separable over k(z),
there exist elements a'y, - - -, @, of k(x) such that v(a;a’;)=3$;; for all
5, j (Vol. I, Ch. V, § 11, proof of Theorem 30). Now, if y is an element
of T that is integral over B, we see reachly that the elements 7(a;y)
are integral over B, and hence belong to B since B is mtegrally closed.

Since y= Z 7(a;y)a’;, we have y € z Ba',, and therefore (B)' Z Ba',.

Taking for d a common denommator in B such that da’; e I for everv N
we get d(B)' <1, and Lemma 4 is proved.

We now restate, in geometric language, the results obtained by com-
bining Lemmas, 1, 2, 3 and 4:

TueoreM 31 (Chevalley). Let V be an algebraic wvariety,W a sub-
variety of V, both irreducible over a perfect field k. Then V is analytically
unramified at W, i.e., the completion of the local ring o(W; V') has no
nilpotent elements.

In particular the extension of a prime ideal p of k[X,,---, X,] to
k[[X,, - -, X,]] is an ideal that is equal to its radical.

THEOREM 32 (Zariski). If, furthermore, V is normal at W, i.e., if
o(W; V) is integrally closed, then V is analytically irreducible and
analytically normal at W, i.e., the completion of o(W; V') is a domain and
is integrally closed.

Tueorem 33.  With the hypothesis of Theorem 31, the integral closure
of o(W; V') is a semi-local ring whose completion is canonically isomorphic
to the integral closure (in its total quotient ring) of the completion of
o(W; V).
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RELATIONS BETWEEN PRIME IDEALS IN A NOETHERIAN DOMAIN
0 AND IN A SIMPLE RING EXTENSION o[f] OF o

Let o be a noetherian domain and let o’ be a domain containing o
and such that o'=0o[t], where ¢ is some element of o’. We wish to
investigate the relations between prime ideals in 0 and in o’. We first
prove the following lemma:

LemMma 1. Let t be algebraic over the quotient field of o, let v’ be a
prime ideal in o' =o[t] such that the prime ideal p=1y' 0o has height 1
(i.e., v is @ minimal prime ideal in 0). Then the p'-residue of t is algebraic
over o/p.

PROOF. Upon passing to the rings of quotients o, and o's—p, We
achieve a reduction to the case in which o is a local domain having p
as its only proper prime ideal (since 9'0’s-p is obviously a prime ideal
in o’p—p whose contraction to op is poy). We therefore assume that o
is a local domain and that the minimal prime ideal p of o is also the
maximal ideal of o (o is then a 1-dimensional local domain).

Let T be an indeterminate, let O'=0[7] and let M’ be the kernel of
the homomorphism ¢ of O onto o° which is uniquely determined by
the following two conditions: (1) ¢ is the identity on o; (2) p(7T)=1t.
Then ¢ is a proper homomorphism, i.e., M’ #(0). Ifweset P’ =qp~Y(p’),
then it is immediately seen that 8’ n o=y and that the B’-residue of T’
can be identified with the p’-residue of 2. So we have to show that the
B’-residue of T is algebraic over o/p.

Since T is an indeterminate, we have ©O'p no=9p. Hence there is a
homomorphism of £/9’p onto O'/B’ which sends the O'p-residue of
T into the B’-residue of T and which reduces to the identity on o/p.
Thus, for the proof of the lemma it will be sufficient to show that this
homomorphism is proper, i.e., that O'p <R,

Assume the contrary: O'p=%'. We fix an element x#0 in . In
the local domain o the principal ideal ox is primary and hence contains

a power of p. Therefore O’x contains a power of B’, and therefore
p p p
321
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B’ is contained in every prime ideal of ©O'x, in particular in every
isolated prime ideal of ©O'x. By the principal ideal theorem (Vol. I,
Ch. IV, Theorem 29) it follows then that B’ is 2 minimal prime ideal in
£’, in contradiction with ' >M' >0. Q.E.D.

Before proceeding with the proof of the next proposition we shall
give another proof of the preceding lemma, which does not make use
of the principal ideal theorem.

In the first place, we can achieve a reduction to the case in which ¢
belongs to the quotient field of o. In fact, there exists an element
a#0 in o such that the element r=at# is integral over 0. We set
o"=o[7], p"=p"no’. Itis clear that the p"-residue 7 of 7 is algebraic
over o/p (use a relation of integral dependence of 7 over o) and that
o"[p"=0[p[7]. Therefore it is sufficient to prove that the p’-residue
of ¢ is algebraic over 0”/p”. Now, since p is minimal in o, p” is mini-
mal in 0” (Vol. I, p. 259), and since ' no”"=p" and ¢ belongs to the
quotient field of 0”, the desired reduction is achieved.

Assume then that ¢ belongs to the quotient field of o. We may also
maintain our previous reduction to the case in which p is the maximal
ideal of the one-dimensional local domain o. Let #=py/x, where
x, y €0,and let % be the ideal generated by xand y ino. If xis aunitin
o then o’ =bp, and the lemma is trivial in this case. If x is not a unit and
¥ is a unit in o, then y=xt eo’p<yp’, ie.,, y € p'No, in contradiction
with y ¢ ». Hence we may assume that both x and y are non-units
in 0. Then % is primary for p and thus we know that for large n the
length A(%") is a polynomial in n, of degree 1 (VIII, §8). Conse-
quently A(U#+1) —A(UA")=g=const., for n large.t Therefore A(pA")—
A(A") < g, for all n=n,, where n, is a suitable integer. This implies
that if n2>max (n,, ¢) then the n+1 basis elements &%, x"1y, - - . y"
of A~ are linearly dependent mod p%* over the residue field o/p(UA/pUA*
is a vector space over o/p, of dimension <g). We have thus a relation
of the form

a@"+ax"ly+ - - +ayt =0,

where the a; are in o and not all in . Dividing through by x* we
conclude that the p’-residue of ¢ is algebraic over o/p (the elements

+Actually, all we shall need in what follows is that A(Q*1) —A(%") is bounded
from above. A direct proof of this is immediate :

Fix an element x#0 in %. Then ox is primary for P, whence A" < ox for
large n. Therefore A"=Bx where B=A":(x). We have A(U")=X(B)+
1(B/Bx), where ! refers to lengths of p-modules. Since B/Bx and ofox are
isomorphic 0-modules, it follows that AMA™) =A(B) + A(vx), and therefore (since
B D ATHA(AR) — A(A1) S A(0x), for all large 7.
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ay, as -+, a, cannot all belong to v, for if they do we would have
ay=—(at+ - -+ +atyeo'vNo,ie., a,€ v, a contradiction).

We shall use the preceding lemma for proving the following:

ProPOSITION 1. Let v be a noetherian domain and let o’ =0[t] be a

domain which contains o and is a simple ring extension of . Let p’ be a
prime ideal in o, different fromo’; let o=y’ o and let T be the p'-residue
of t.
f(A) If t is transcendental over o, then (a) h(»")=1+h(») and = is
algebraic over o[p, if P’ #0’'p, and (b) h(»")=h(p) and r is transcendental
over o[p,if ’=0"p. Furthermore,if p is any prime ideal in o then o’y
is a prime ideal in o', and we have o’p No=yp.

(B) If t is algebraic over o, then h(»")<h(vp); and if, furthermore,
7 is transcendental over o[v then h(%") < h(p).

PROOF. We first make a remark which will be useful in the proof of
either part of the proposition. Let ¢ be a prime ideal in o’ such that
9’ > q" and assume that p’ No=q  No=p. Let o be the q’-residue of ¢.
We have o'/p"=0/p[r] and o’/a"=0/p[o]. Thus the natural homo-
morphism of v’/q” onto o’/p” sends o into = and reduces to the identity
on o/p. Since this homomorphism is not an isomorphism, # follows
that o is transcendental over o[y, while T is algebraic over ofp. From
this it follows also that there exists no prime ideal in o’ which is properly
contained in v’ and properly contains q'.

We now begin with the proof of part (A) of the proposition. Since
t is transcendental over o, it is seen immediately that if p is any prime
idea! in o then o’p No=yp and the o’p-residue = of ¢ is transcendental
over o/p. Hence o’/o’p (=0/p[7]) is an integral domain, and o’p is thus
a prime ideal in v’ (and contracts to p in o). This proves the last asser-
tion of part (A) of the proposition, and, in view of the preceding
“remark,” it also establishes the fact that = is transcendental over o/p
if and only if p’=0'p. It also follows that

&) h(o'p) 2 h(v),
and that, consequently, if p’ is a prime ideal in o’ then
(2) ((p, no —_ p’ p’ # D,p’) = ((h(p’) _2_ 1+h(p).”

To complete the proof of part (A) of the proposition it remains to be
shown that A(p')=1+h(p) or A(p')=Ah(p) according as p'#0'p or
' =0'p.

Let

3) p’>q > - >(0)
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be a strictly descending chain of prime ideals in o’ beginning with p’
and having maximal length, and let a’no=a. Assertion (A) being
trivial if p’=(0), we use induction with respect to h(»’). We consider
separately the two cases: (2) p'#0'v or (b) »'=0"p.

CASE (2): »'#0'p.

If q'=0"p, then a=y, and A(q")=A(») by the induction hypothes's.
Hence A(v")=1+h(a")=1+A(p).

If o'#0'p, then p>q (again by the preceding ‘“‘remark”), and
hence A(v) > h(q). We also have a’#0’q, for in the contrary case we
would have the strictly descending chain p’>0'p > o', contrary to the
maximality of the chain »'>4q'> --.. Hence, by our induction
hypothesis, we have A(q')=1+/h(a). Therefore A(p)=1-+h(a")=
2+h(q) <1+ h(p), whence h(p")=1+h(p), in view of (2).

Case (b): »'=0o'p.

If g'=0"0q, then v > aand A(v")=1+h(q")=1+h(q) (by the induction
hypothesis). Hence A(»") < h(p), and thus A(p")=h(p), in view of (1).

Now assume that ¢’ >0'q. By the induction hypothesis, we have
h(q")=1+h(a). Since p’'=0'p, we have necessarily that b > q and also
that 7 is transcendental over o/p. This property of 7 can also be
expressed as follows: if o is the q'-residue of ¢ (whence o is algebraic
over o/q, since g’ >0'q), then the v’/q’-residue of o is transcendental
over the ring (o/q)/(b/a). By Lemma 1, this implies that p/q is not a
minimal prime ideal in the ring o/q. In other words: A(p)=2+h(q).
Hence, A(v")=1+h(q")=2+h(q) S h(p), and thus A(p")=h(p), in view
of (1).

This completes the proof of Part (A) of the proposition. Note that
we had to use Lemma 1 only in the case »'=0'p, ¢’ >0q.

We now deal with part (B) of the proposition. Let T be trans-
cendental over o and let £'=0[7T]. We have a homomorphism of £’
onto o’ which sends T into ¢ and reduces to the identity on o. Let I’
be the kernel of this homomorphism. Since ' no=(0) and since
the M'-residue ¢ of T is algebraic over o, it follows from part (A) that
h(M)=1. Now, let %' be the prime ideal in £ such that R'/M'=p".
Then B’ No=yp and

4 L+h(p') < A(R).

Now, the p'-residue 7 of ¢ is also that B'-residue of 7. Hence by
part (A) of the proposition, we have A(R')=h(p)+ 1 if 7 is algebraic
over o, and A(P')=~hA(p) if 7 is transcendental over 0. Using (4), we
find, in the first case: A(p')<A(p), and in the second case: A(»')=
h(p)—1. This completes the proof of the proposition.
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In Proposition 1 it was assumed that there exists a prime ideal p” in
o’ such that p’ no is the given prime ideal p of 0. We express that
assumption by saying that p is not lost in o’. There arises naturally
the question of whether a given prime ideal p in o is or is not lost in o”.
The answer is simple: p is not lost if and only if o’pno=yp. The
condition is obviously necessary for if p’ No=p then p<o’ppo<p’'no
=p, whence o’p no=p. The converse has been established in the
course of the proof of Theorem 3 of Vol. I, Ch. V, § 2 (by a reduction
to the case in which o is a local ring and p is its maximal ideal).

Another necessary and sufficient condition that p be notz lost in
o’=0o[f], a2 condition which is valid also if o is not noetherian, is the
following: if £’ denotes the integral closure of oy in the quotient field K’
of o', then 1]t does not belong to the intersection of the proper prime ideals
of £'. For the proof we make use of Theorem 8 in VI, §5:

o = n Rw
veN

where N denotes the set of all valuations of K’ which have center p
in 0. Assume that there exists a maximal ideal I’ of O’ such that
1/t¢ M.  Applying the cited Theorem 8 of VI, §5, to the integrally
closed local domain £’y we see that there exists a valuation v, in
N such that vy(1/£)<0. Hence vy(f)20 and v, is non-negative in
o[#], and thus, if p’ is the center of v, in o[f] then »'no=p. Con-
versely, assume that there exists a prime ideal " in o{f] such that
p’No=p. We fix a valuation v, of K’ which has center p’ in o[f].
Then v, has center p in o, te., v,€N, and furthermore v,(£)20,
whence vy(1/£)<0. This shows that 1/¢ does not belong to the center
M of vyin L.

We add a few remarks in the special case in which oy is integrally
closed and t belongs to the quotient field of 0. In that case, the second
of the above conditions takes the following simple form: p is lost in
o[t] if and only if 1/t is a non-unit in o,. Thus p is not lost in of#] in the
following (and only in the following) two cases: (1) € 0y; (2) £ ¢ o,
1/t ¢ 0,. In case (1) we have 0’s_p=0, and this implies at once that
there is only one prime ideal p’ in o such that p’no=p and that
0’p.=0p.  In case (2), Theorem 10, Corollary, of VI, § 5, yields a good
deal of information. Since the prime ideals in 0" which contract to
p are in (1, 1) correspondence with the prime ideals in o’5—p which
contract in oy to 'pop, we may assume, for simplicity, that o is a local
domain and that p is its maximal ideal. Under this assumption we
see that, in case (2), o'p is one of the prime ideals in 0" which contracts
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to v and that the o’p-residue 7 of ¢ is transcendental over o/p. The
other prime ideals in 0" which contract to v are in (1, 1) correspondence
with the maximal ideals of the polynomial ring o/p[7].

For purposes of generalization of Proposition 1 we shall now restate
Proposition 1. The notation being the same as in that proposition,
we denote by dim, o’ the transcendence degree of the quotient field
of 0" over the quotient field of 0. A similar meaning is attached to the
notation dim, y0'/p".  Then Proposition 1 is expressed by the following
inequality:

(5) h(v")+dim, 5 o'/ < A(p) + dim, o’
with equality if dim,0o'=1.

A straightforward induction on 7 yields at once the following
generalization of Proposition 1:

ProrosiTiON 2. Leto'=o[ty, t,, - - -, t,], where o and o’ are noetherian
integral domains, and let v, v’ be prime ideals in o and o’ such that »' no=
p(»"#R). Then inequality (5) holds, and we certainly have equality in
(5) if dimy o' =n.

We shall say that the dimension formula holds for a noetherian integral
domain o if for any integral domain o which is finitely generated over o
and for any pair of prime ideals p, " in 0 and o’ respectively (p'# R)
such that ¥’ no=p, we have
(6) h(v")+dim,  0'[p" = h(b)+dim, 0.

We say that the chain condition holds for prime ideals in a noetherian
domain o if for any prime ideal p in o, ps R, all maxima! chains of
prime ideals in o, (different from o,) have the same length (therefore
have length equal to the dimension of the local ring op). It is clear
that in order to check whether o satisfies the chain condition for prime
ideals it is sufficient to check whether the above condition concerning
o, is satisfied for all the maximal ideals p in o.

ProrosiTION 3. Let o be a noetherian integral domain and let
Ty, Ty ---,T, be transcendentals which are algebraically independent
over o. If for any n the domain o[T,, T,, - - -, T, satisfies the chain
condition for prime ideals then the dimension formula holds for o.

PROOF. Let o', p, b’ have the same meaning as in Proposition 2 and
let ©'=olT,, Ty, ---,T,). We have o'=9'/M’, where M’ is a prime
ideal in ©’ such that M’ no=(0). By the second part of Proposition 2
we have

(7 h(M')+dimy 0’ = n.
Let o'=P'/M', where B’ is a prime ideal in D’ such that P'OM’.
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Then clearly 8’ no=yp. Therefore, again by the last part of Proposi-
tion 2 and in view of ©/B'=0'/p’, we have

(8) h(2B")+ dim, 5 0’0" = h(v)+n.

Since the chain condition for prime ideals holds in ©, we have A(B’)=
h(M')+ h(v"), and from this (6) follows in view of (7) and (8). Q.E.D.
By the dimension theory of algebraic varieties we know that the chain
condition for prime ideals holds in the codrdinate ring of any affine
variety, i.e., in any finite integral domain over a field & (see VII, §7,
Theorem 20, Corollary 2). Hence, Proposition 3 implies that the
dimension formula holds for any finite integral domain o (and hence
also for any local ring of o with respect to a prime ideal p <0). How-
ever, this conclusion follows also directly from the dimension theory
of algebraic varieties, without the intermediary of Proposition 3; it is
sufficient to observe that for any prime ideal p of a finite integral
domain o (over a field k&; p#0) we have A(p)=dim, o —dim, o/p.

A more interesting feature of Proposition 3 is its application to the
construction of examples of noetherian integral domains which do not
satisfy the chain condition for prime ideals [compare with the remarks
made in Vol. I, p. 242). To construct such an example we have only
to find a noetherian integral domain o for which the dimension formula
does not hold. We shall construct a local domain o and a semi-local
domain o’ =0[#] having the same quotient field as o such that, with the
same notations as in Proposition 1, part (B), we have A(p") < h(p) with
7 algebraic over b, where b is the maximal ideal of 0.+ Then, by
Proposition 3, the domain o[7T], T-transcendental over o, does not
satisfy the chain condition for prime ideals.

ExAMPLE. We first prove several simple lemmas.

Lemma 2. Let o be an integral domain having only a finite number of maxi-
mal ideals my, my, - - -, M. If each ring om is local (i.e., noetherian), then o
is noetherian (hence semi-local).

PROOF. Let % be any ideal ino. We can find elements a,, a,, - - -, a,ino
such that for each i=1,2,. .-, ¢ these elements generate in om . the ideal
om . Let b be an arbitrary element of %. Then for each ; we have
be; € 3 j0a; for some ¢; in o and notinm,. Since the elements ¢, ¢y, - - -, €5
generate the unit ideal in o it follows that b € 3 04;, showing that % has a
finite basis. Q.E.D.

Lemma 3. Let £,,9,, - - -, D, be local domains contained in some field, let
M; be the maximal ideal of O;, let 0=, 0 L,N---NO, and let m;=M; no.

+ The example of such a pair of rings 0 and o’ (given below) is due to M.
Nagata (see reference in Vol. 1, p. 242, footnote). Our observation that o[7]
provides a counter-example to the chain condition for prime ideals is new.
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If Qi=0mi, i=1,2,---,q, then 0 is noetherian and its maximal ideals are in
the set {m;, My, - - -, M}

PROOF. If x €0 is a non-unit in o it must be a non-unit in at least one of
therings ©;. 'Thus x belongs to one of the idealsm;. This proves the lemma,
in view of Lemma 2.

Let R=Fklx, y] be a polynomial ring in two independent variables x, y over
a field k. We fix a zero-dimensional discrete valuation v, of rank 1, which
is non-negative on R, has k as residue field, and is such that v(x)=1 (see VI,
§ 15, Example 2). Furthermore, we assume that the center of v in R is the
maximal ideal (x, y) of R. We set £, =R,=valuation ring of v. We then
consider the point x=1, y=0 in the (x, y)-plane and we denote by ©, the
local ring of that point, i.e., the ring of quotients of k[x, y] with respect to the
maximal ideal (x—1,y). If M;=LCx and M,=L,-(x—1, y) denote the
maximal ideals of £, and £, respectively, we set 0'=9, NL,, m'; =M, no’,
m,=M, No’".

Since 0’2 k[x, ylitis clear thato'm’ =D, Itisalso obvious thato'm’ <O,.
We show that ©,<0"w’ and that consequently O;=0"w’. If €D, we write

A . .
¢ = B where numerator and denominator are in klx, y]. Let 9(B)=n=0.

Then v(4)=n and hence A=x"a, B=x"b, with a, b in ;. Since x is 2 unit
in ©,, we have also a, b € O,, whence a, beo’. Furthermore, since v(b)=0
a

it follows thatb ¢ m’,. Hence é= 3 € o'w’,, which proves our assertion that

Dl =D,|1i'l-

Since £, and £, are local rings, the ring o’ is noetherian, by Lemma 3.
Since neither one of the two ideals m’;, m’, is contained in the other (x € m’,,
x¢m'y x—1¢m'y, x—1em’'y), it follows again by Lemma 3 that o’ is a
semi-local ring, with m’; and m’, as its only (distinct) maximal ideals.
Furthermore, we have 0’2 k=p0'/m’;=0'/m’,.

We now set o=k+(m’; N m’y). It isimmediately seen that o has only one
maximal ideal m, namely m=m’, N m’, (since every element of o which is not
in m is a unit in o). We assert that o'=o0+kx. For, let £€0’ and let
E—ciem’y, f—c,em’y, where ¢, co€k Then €—ci+(c;—c)xem
(since x € m'; and x—1 € m’,), and this proves the assertion. 'Thus o’=p[x].

We now prove that o is noetherian* (whence o is a local domain). If % 1s
any ideal in o, different from o, the ideal Ao’ in o’ is contained in o since
Ao =A+Ax and Ax<mx<mo. Hence Ao’ is an ideal ino. As an ideal
in 0’ it has a finite basis {ay, a,, - - - , @3} consisting of elements of A. Then
Ao'=>0'a;=>0a;+> kax<=A+> kax. This shows that Ao’/YA, regarded as
a vector space over k (by viewing both %o’ and ¥ as vector spaces over k), is
finite dimensional. It follows that any strictly ascending chain of o-ideals
between % and Ao’ is necessarily finite. Now, let %, =%, < - - - be an ascend-
ing chain of ideals ino. Since o’ is noetherian we must have %, 0’ =%, ,0'="---

+ The fact that p[x] is noetherian does not automatically imply that p is
noetherian. For instance, if ¥ and v are indeterminates over a field k then
the ring R=~k[u, u®v, udv? - .-, u™""}, - - -] is not noetherian, but the ring
R[v](=k[u, v]) is noetherian.
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for some n. Without loss of generality, we may assume that this is so already
forn=1. Then
W, A, < - - - <A 0,

and this shows, by what we have just proved above, that W, =%, ,=- - - for
some ¢. Hence o is noetherian.

We have h(m';)=1, h(m’,)=2, whence dim (0')=2. By the dimension
theory of semi-local rings we have dim (0)=2, since o’ is integral over o.
Therefore h(m)=2. On the other hand, A(m’,)=1 < A(m), and the m';-residue
of x is algebraic over o/m (=k; in fact, that residue is equal to 0). There-
fore, the dimension formula (5) does not hold for 0, 0’, with y=mt and p'=m’;.
Consequently, o[7'] does not satisfy the chain condition for prime ideals.
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VALUATIONS IN NOETHERIAN DOMAINS

In Chapter VI we have derived a number of results concerning the
dimension, the rank and the rational rank of valuations in algebraic
function fields (see, for instance, VI, § 10, Corollary of Lemma; VI,
§ 14, Theorem 31, Corollary and VI, § 15, Theorem 36). Our purpose
in this appendix is to generalize these results to valuations of quotient
fields of arbitrary noetherian domains (and also of fields which are of
finite transcendence degree, or are finitely generated, over such fields).+

Let R be a noetherian domain, K the quotient field of R and v 2
valuation of K which is non-negative on R (VI, § 9, p. 38). Let b be
the center of v in R. The following characters of v may be considered:

(1) the rank of v (rank v);

(2) the rational rank ot v (r. rank v);

(3) the relative R-dimension of v (dimg v): this is the transcendence
degree of the residue field 4,, of v over the field of quotients F of R/».

Then we may also consider the height h(v) of p. If we denote by o the
local domain Ry, then o is also non-negative on o, and the center of v in
o is the maximal ideal m of o. The relative dimension of v is not
affected if we replace R by o, since o/m is the field of quotients of R/y.
The height of p is now also the dimension of the local domain 0. We
shall dea! directly with o and discard the domain R altogether. We
set r=rank v, p=r. rank v, d=dim, v, s=dim (o). To express our
assumption that v is non-negative on o and that the maximal ideal m
of o is the center of v, we shall say that v dominates o.

ProrosiTiON 1. If v is a valuation of the field of quotients K of a
local domain o and if v dominates v, then

) rank v+ dim, v £dim (0) (or, r+d=5s)
(and hence r and d are finite).

1+ This generalization is due to S. Abhyankar and is given in his paper “On
the valuations centered in a local domain,” Amer. J. Math., 78 (1956), pp. 321-
348. Our proofs differ from those given by Abhyankar. In particular, our
proofs of Propositions 2 and 3 make no use of Cohen’s structure theorems for
complete local rings.
330
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pROOF. We first prove that r=<s. Let B>%B,> ... >%B, be a
strictly descending chain of prime ideals in the valuation ring R, of v,
where P is the maximal ideal of R, (¢—an integer 21). For each
i=1,2,-.-, ¢, we fix an element #; such that £, € B, _;, 7; ¢ B, (B,="B),
we consider the ring o'=of¢;, 7, ---,¢] and we set »'=PBno,
p;=B;no’ ({=1,2,--.,¢9). We have »'>p’;> ... >, whence
h(p')Zg. On the other hand, we have »' no=m, since P no=m.
By Proposition 2, Appendix 1, we have therefore the inequality
h(»")+ dims, 0'/p" <, whence

2) g+dimgp0/p’" < 5.

Hence ¢<s, showing that rank v <s.

We next show that dim, » is finite. Let x;, x,, - - -, x, be elements
of R, whose v-residues are algebraically independent over the field
o/m. We set now o'=o[x,, x5, -+ -, x,] and »'=P no’. Then again
p’No=m, and this time we have dimymo'/p’=¢. Hence, again by
Proposition 2, Appendix 1, we have

h(p)+q=s,

showing that ¢ is bounded, whence dim, v is finite.

From r<s follows inequality (1) in the case dim, v=0. Since we
know now that dim, v is finite, we may proceed by induction from
d—1 to d, assuming that d>0. We fix an element x in R, whose
v-residue 1s transcendental over o/m, we set o'=po[x] and »'=B no’.
We have now, by Proposition 2, Appendix 1: A(p")+1=<s. On the
other hand, the dimension of v relative to o’ is d— 1, and hence, by our
induction hypothesis, we have r+d—1=<h(»’), and this yields the
desired inequality (1).

We note that Proposition 1 remains true if v is a valuation of an
algebraic extension of K, for the rank, rational rank, and the dimension
of v are not affected by an algebraic extension of K. (See VI, § 11.)

The following result is stronger than Proposition 1 (since p27):

ProrosiTION 2. With the same assumptions as in Proposition 1, we
have

r. rank v+ dim, v £ dim (o) (or, p+d = s).

PROOF. We consider separately various cases.

Case 1. rank v=1, dim¢=0.

In this case the value group I" of v consists of real numbers. Since
every element of-I" is of the form v(a)—o(b), with a, b in m, the set
v{m} (={v(a)'a € m}) has the same rational rank as I. The elements
of v{m} are positive real numbers. If « € v{m} we denote by 2, the
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set of elements x in o such that v(x)2«. Then %, is an ideal in o
(a valuation ideal; see Appendix 3). If B is any ideal in o then
min (v(y), y € B) exists since B has a finite basis. We denote this
minimum by 2(8). We may normalize I" so that o(m)=1. For any
o in o{m} we can find an integer # such that n2a. Then mrc9[,
showing that ¥ is primary, with m as associated prime ideal. The set
of valuation ideals %, in o (« € v{m}) is naturally ordered by set theoretic
inclusion: %, >, if @<B. The fact that each %, is m-primary shows
that each valuation ideal ¥, is preceded by only a finite number of
valuation ideals %,. Hence the ordered subset v{m} of I" (and also the
ordered set of ideals ¥ ) is a simple infinite sequence, say o; <ay< - - -
<a;< ---,wherea,=1and «; > + co. This set v{m} is closed under
addition.

The length A%,) of %, Is clearly =z For any given positive
integer 7 let i(n) be the subscript such that o, =7. Then m"< 9,
and therefore

3) Xm™) 2 i(n).

in)’

Let now ¢ be a positive integer such that the rational rank of I"
(and hence also of v{m}) is 2¢. We can then find in {m} elements
T To Ty (Ty=0;=1) which are rationally independent. We
assume that 7, <7,< --- <7,. Denote by o, the number of ordered
g-tuples (jy,ja - - -, J,) of non-negative integers j,, j,, - - -, f, (not all
zero) such that

4) Jimitaret -0 Hme S n(=0y,).

Since the elements j;,+j,m5+ - - - +j,7, are among the «,’s and are
distinct, it is clear that #(n) =0, Hence, by (3):

(5) Am™) 2 o,
We now proceed to find an estimate for o,. Let n’ denote the
integral part of qi If155,8n fori=1,2,---,¢ thenjirigg(since
Tq

T;S7,), whence jyr, +j,ro+ - - - +j,7,Sn. Therefore

(6) "' < o,

Since ql—1<n', it follows from (6) that there exists a polynomial
T,

P, of dggree g, such that P(n)<o, for all n. On the other hand,
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A(mn) is a polynomial P, (n), of degree s, for n large (VIII, § 8, Theorem
19). Hence by (5) and (6) we find

9 Py(n) = Pu(n),

and hence ¢<s. We therefore have p<s in case 1.

Case2. ranko=1,dimov >0. The proof in this case is by induc-
tion from d—1 to d (=dim, o) and is identical to the inductive argu-
ment given in the last part of the proof of Proposition 1.

Case 3. rank v>1. We now use induction with respect to
r (=rank 2). Let v=v,09, where v, is a valuation of K, of rank 1,
and 7 is a valuation of the residue field 4, of v, of rankr—1. We
denote by 4, the residue field of v; this is also the residue field of 3.
Let p, be the center of 2, in 0. Then, by the case r=1, we have

(8) r.rank v, +dim, v, < A(p,),
where, if we set F,=field of quotients of o/p,, then
9) dimo v, = tr.d. 4, [Fy.

The valuation ¢ dominates the local domain 5=0/p,. Let 9, be the
restriction of ¥ to F,. Then rank §y<rank o=r—1, and hence by
our induction hypothesis we have

(10) r.rank 9y+dimg 9y < A(m/p,).

Adding (8) and (10) we find

(11)  r.rank o —(r.rank §—r.rank 9,)+dim, v, +dimz §, < A(m) = s.
We sh all prove in a moment that

(12) rrank 9—r.rank 9, < tr.d. 4, [Fy—tr.d. 45/,

where 4;_ is the residue field of 9,. Note that, by Proposition 1, the
transcendence degrees on the right-hand side of (12) are all finite. In
fact, the right-hand side‘is equal to dim, v, — dim; 9+dim; 9,. Note
also that dim; 9=dim, . Hence from (11) and (12) we find

r.rank v+ dime v < s,

which completes the proof of the proposition.

As to (12), this relation merely expresses the following general
lemma:

Lemma 1. Let K be a field, K, a subfield of K, v a valuation of K
and v, the restriction of v to K. If 4 and 4, are the residue fields of v
and v respectively, and if tr.d. K|K is finite, then

(13) r.rank v —r.rank v, < tr.d. K/Ky—tr.d. 4/4,,.



334 APPENDIX 2

PROOF. Let tr.d. K/Ky=g and tr.d. 4/4,=h, so that h<g. Fix
h elements x,, x,, - - -, x, in K such that their v-residues %; are alge-
braically independent over 4, Let K'=K(x,, x5 ---,x,) and let
v’ be the restriction of v to K’. From the fact that the &, are alge-
braically independent over 4, follows at once that if f(x,, xp - - -, &)
is any non-zero polynomial in x,, x,, - - -, x;,, with coefficients a; in
K,, then v'(f(x))=min {vy(a;)}. Hence the value group I" of 7' is
the same as that of v,. On the other hand, a simple argument similar
to the one given in the proof of the lemma in VI, § 10 (p. 50) shows
that if I' is the value group of v then

rrank I'/I" < tr.d. K/K' = g—h,

and this establishes the lemma.

Combining Proposition 2 with the above Lemma 1, we have the
following

CoroLLARY. The assumptions being the same as in Proposition 1,
except that we now assume that v is a valuation of an extension field
K’ of K such that tr.d. K'|K is finite, we have

(14) r.rank v+dim, v £ s+tr.d. K'/K.

For the proof it is only necessary to apply first Lemma 1 to v and
the restriction v, of v to K, and then Proposition 2 to v, and o.

In either Proposition 1 or Proposition 2 we may have the equality
sign, i.e., either the rank of v or the rational rank of v may have its
maximum value dim (o) —dim, . Since r.rank v 2 rank v, it follows by
Proposition 2 that if rank v=dim (0)—dim, v then also r.rank v=
dim (0) —dim, v. Therefore, information about valuations v for which
the rational rank takes its maximum value dim (o) —dim, v will yield
also information about valuations v for which the rank takes that
maximum value. The results proved below deal precisely with the
case in which either r.rank or rank v has its maximum value. First we
give the following definition:

Let I' be an ordered (additive) abelian group, of finite rank 7, and
let (0O)=Iy<I'y< --- <TI,_, be the isolated subgroups of I. Then
I' is said to be an integral direct sum if and only if each group I/I;_,,
i=1,2,---,r(I,=0),is a finite direct sum of cyclic groups. Note
that if I" is of rank 1, so that I' is therefore a subgroup of the additive
group of real numbers, then I' is an integral direct sum if and only if it
is a direct sum of cyclic subgroups, i.e., if and only if there exist real
numbers 7, 7,, - - -, 7, in I which are rationally independent and such
that every element of I'is a linear combination of the r’s, with integral
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coefficients (in that case the rational rank of I' is p). If r>1, we
know that the rational rank of I' is the sum of the rational ranks of the
r groups I;/T";_;. It follows that if I" is an integral direct sum and if,
furthermore, rank I'=r.rank I', then each of the groups I';|I";_, is
cyclic, hence is discrete, of rank 1, and consequently I' is discrete. We
shall make use of this remark in Proposition 3.

We first prove the following complement to Lemma 1.

LevMa 2. If in (13) of Lemma 1 the equality holds and if furthermore
K is finitely generated over K, then I'|I'y is an integral direct sum and
4 is finitely generated over 4, (here Iy denotes the value group of v,).

PROOF. We use the notations of the proof of Lemma 1. In the
transition from v, to o’ there is no change in the value group (whence
I =T,),and the residue field 4’ of ¢ is a purely transcendental extension
of 4, (of transcendence degree %). Since the equality holds in (13),
we have that r.rank I'/T"y=g—h. 1f we set p=g—h and fix p elements
Y1 Yo Y, In K such that o(y,), o(y,), - - - y2(y,) are rationally

independent mod I'y, then y,, y,, - - -, 3, are algebraically independent
over K’ (VI, § 10, Lemma, p. 50) and it is immediately seen
that the restriction of v to the field K*=K'(y,, v, - - -, ¥,) is a valuation

v* having the following two properties: (a) if I'* is the value group of
v* then I'*/I", is an integral direct sum; (b) the residue field of v* coin-
cides with the residue field 4’ of 2. Now, K is a finite algebraic exten-
sion of K*. Hence, also I'/T", is an integral direct sum (compare with
proof of Theorem 36 in VI, § 15), and the residue field of v is a
finite algebraic extension of 4. Q.E.D.

ProrosiTiON 3. Let 0 be a local domain, K its quotient field, K' a
finitely generated extension of K and v a valuation of K' which dominates
o. Ifr.rank v+ dim, v=dim (0)+tr.d. K'[K, then the value group I of
v is an integral direct sum, and the residue field 4, of v is finitely generated
over the field of quotients F of ojm.

PROOF. We first achieve a reduction to valuations of rank 1. Let
r=rank v >1 and assume that the proposition is true for valuations of
rank<r. lLet v=v,00. With the same notations as in Case 3 of the
proof of Proposition 2 and setting 0, =0, , we have, by the corollary of

that proposition:

(15) r.rank o) +dim, v; £ dim (0,)+tr.d. K'/K;

(15" r.rank §+dim; 9 < dim (8) +dim, 2,.

Hence, by addition, and observing that dims ¢ =dim, :
r.rank v+ dim, 2 < dim (0,) + dim () +tr.d. K'/K.
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Since dim (0;)+dim (5)<dim (o), it follows that in (15) and (15') we
must have the equality signs (and also—incidentally—dim (o,)+dim
(6)=dim (o), i.e., A(v;) +~~(m[p,)=h(m)). Therefore, by our induction
hypothesis, applied to v, we have: (a) the value group of v; must be
an integral direct sum, and (b) the residue field 4, is a finitely generated
extension of the quotient field of 5. Since & is a valuation of 4,, it

follows from (b) and our induction hypothesis, that also the value
group of 7 is an integral direct sum and that the residue field of 7 is
finitely generated over the field of quotients of 5/M. Since ¥ and v
have the same residue field and since o/m=5/m, the proposition
follows for the given valuation o.

We assume now that rank v=1. Next we achieve easily a reduction
to the case K=K'. For let v, be the restriction of v to K. Using the
assumption of our proposition and applying Lemma 1 and Proposition 2
to the valuations v and v, respectively, we find that (a) r.rank o —
rrank vy=tr.d. K'/[K—tr.d. 4/4,, and (b) r.rank vg=s—tr.d. 4,/F. 1If
we assume the truth of our proposition in the case K'= K, it then follows
from (b) that the value group I'y of v, is an integral direct sum and that
4, is finitely generated over F. From (a) it follows, in view of Lemma
2, that I'/T"y is an integral direct sum and that 4 is finitely generated
over 4, This shows that the proposition holds for the given valua-
tion v.

We can therefore assume that K'=K and that rank v =1.

Our next preliminary step is a reduction to the case in which dim, v =
0. For assume that dim, v >1. Choose an element ¢ in K such that
the v-residue of ¢ is transcendental over F (where F=quotient field of
o/m) and set R;=o[f]. If v, is the center of v in R; and if we set
0;=Ryp, then o, dominates o and v dominates o,. Since the p,-
residue of ¢ is transcendental over F, we know (Appendix 1, Proposition
1, part B) that dim (o,) =dim (0)—1. Now, r.rank v + dim, v=dim (o),
and dimpv=1+dim, v. Hencer.rankv +dim, v=dimo—12dim(o,),
and consequently r.rank v+dim, v=dim (0;). If we assume that the
proposition is true for v and o, (note that dim, v=dim, v—1) we may

conclude that the value group of v is an integral direct sum and that
4, is finitely generated over F; (=quotient field of o,/m,). Since F,
is a simple transcendental extension of F, the truth of the proposition
is established for v and o.
We may therefore assume that K'=K, rankv=1 and dim, v=0.
The assumption of our proposition is now that r.rank v = dim (o) (=s).
We shall use the notation of the proof of Case 1 of Proposition 2,
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and as ¢ we now take the integer s. To prove that I" is an integral
direct sum we have only to show that the subgroup I'y of I" which is
generated by 7, 75, - - -, 7, has finite index (compare with the proof
of Theorem 36 in VI, §15). We shall assume the contrary and show
that this leads to a contradiction.

Under the assumption that the index I'/T'j is infinite we can find an
infinite sequence of elements y,, vy, - -+, ¥,, - - - in v{m} such that for
each v it is true that y, does not belong to the group I',_, generated by
T Ty "' s Te Y1 Yo ° * * s Yoy (DOte that the elements of v{m} generate
I). Let g, be the least positive integer such that ¢,y,eI',_; (¢,>1;
such an integer exists since every element of I is rationally dependent
on Ty, Ty - +y 7). Let 8,=[qryi+qye+ -+ - +4¢,,] ([] means “in-
tegral part”). We consider the elements & of I" which are of the form

a=jyT+igret o HimH vt oo - i,y Where the f’s are non-

negative integers and J.,1<¢3,/,2<G2 - ,Js4,<q, These ele-
ments belong to v{m}, and distinct sets of integers (j,, Js, * - - , J;,,) give
rise to distinct elements of v{m}. If jir + ... +j7.<n—3, then

a<n and hence the valuation ideal ¥, is contained in Wiy Where
a;my=n. It follows that for any n we have A(m")2q,q, - - - 9,9,-s,

[see (3) and the definition (4) of 6,]. By (6) there exists a polynomial
P(n), of degree s, such that 0,2 P(n), for all n. We therefore have:

(16) 4192 -+ - ¢ P(n—38,) S A(mn).

For fixed v, the leading coefficient of P,(n—8,) is the same as the leading
coefficient ¢ of P,. Since A(m~) is itself a polynomial of degree s, for
n large, its leading coefficient ¢’ must therefore satisfy the inequality
q192 - - - q,c=c’. Since this is true for every v and since ¢,q,- - - g,
tends to infinity with v, we have a contradiction. Thus I"is an integral
direct sum.

There remains to prove that the residue field 4, of v is finitely
generated over the quotient field F of o/p, or equivalently (since we are
dealing with case in which 4, is algebraic over F), that [4,:F]< co.
Assuming the contrary, we shall show that for each integer N there
exists an integer N, (depending on N) such that

17 A7) 2 NP (n—No),

for all large n, and this again contradicts the fact that, for large n, A(m")
itself is a polynomial of degree s in 7.

Since [4,:F1= 0o, by assumption, given any positive integer N we
can find, in 4,, N elements {,, {,, - - -, {; which are linearly indepen-
dent over F. We fix elements w;, w,, * + -, wy in K whose v-residues
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are {,, {,, - - -, {i respectively. Suppose that the w’s are written as
quotients of elements o, with common denominator x:w;=x;/x,, and
let o(x¢)=a. Using the notations of the proof of Case 1 of Proposition
2, let %, be the valuation ideal in o which is the immediate successor
of &,. We assert that

(18) N2,) = M%)+ .

In fact, %, /%, is a vector space over F (since m2%,=%,) and clearly
M%) —AY)=dim %, /%, Now, we have v(x;)=e, 1=1,2,.--, N,
whence x; € %,. If we have a relation of the form a,x,+ - -+ +ayxy €
A, with a; € 0, then v(a,w, + - - - +aywy) >0, and hence, if 4; denotes
the m-residue of ga;, then a,{,+ --- +ay{y=0. Therefore a,=

- =day=0, ie., ajay---,ay€em, and this shows that the %,-
residues of x,, xy, - - -, Xy are linearly independent vectors of the space
*, /% This proves (18).

We now fix some element y in v{m} such that the w’s admit a repre-
sentation of the form w; =2;/2, with v(z¢)=y and all the 2’sino. We
now note that this property of y is shared by any element of v{m} which
is of the form y+a,, «, € v{m}, for we have only to take an element 2
in m such that () =e, and write w; =2;2[/202. Sincey+a,+1>y+ca,
it follows from (18) (as applied to a=y +«,) that

)\(QIW%H) > A(Qly+ay)+N, v=20,1,---;¢,=0.
Therefore
(19) A, +‘,v) = Ny, ally 21

Let Ny=[yl+1 and let (in the notations of the proof of Case ! of
Proposition 2) o,_y, denote the number of non-negative solutions
(JisJas -+ - »Js) of the inequality jy7my+jo7s+ - +];r =n—N,. For
any such solution we have ji7,+7,mo+ -« +j7,Sn—7y, ie., the
element a=j,7,+ - - - +j7, of v{m} is such that y+«<n. Thus the
number of e,’s in v{m} such that y+a, <7 is at least equal to o,_p,
and since for each such «, we have m"<9(, ., it follows from (19) that

)\(nl”) ; ATO'"_NO.

This establishes (17) and completes the proof of the proposition.

CoroLLARY 1. If the assumption r.rank ov-dim,v=dim (o)+
tr.d. K'[K of Proposition 3 is replaced by the stronger assumption rank v+
dim, v=dim (o) +tr.d. K'/K (the other assumptions remaining the same)
then v is discrete and 4, is finitely generated over F.
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This follows from Proposition 3 and from the remark made just
before the statement of Lemma 2.

A valuation v of the quotient field K of o is said to be a prime
o-divisor of K if v dominates o and if dimp, v=dimo—1.

COROLLARY 2. A prime o-divisor v of K is a discrete, rank 1 valuation,
and the residue field of v is finitely generated over the field of quotients
F of o/m.

Obvious.
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VALUATION IDEALS

Let R be an integral domain and K the quotient field of R. The
valuations of K which are non-negative on R lead to a special class of
ideals in R which we shall call valuation ideals. Their definition is as
follows:

DEefFINITION.  An ideal % in R is a valuation ideal if it is the inter-
section of R with an ideal of a valuation ring R, containing R; if v is the
corresponding valuation we say that % is a valuation ideal associated with
the valuation v, or briefly: that % a v-ideal in R.

Let v be a valuation of an extension field K’ of K and let v, be the
restrictionof v to K. Itisclear thatif %, isanidealin R,and A=, N R
is a v-ideal in R, then A=A, N R, where A, =A, N R, , and hence A
is also a vy-ideal. Hence in studying valuation ideals in R we may,
without loss of generality, restrict ourselves to valuations v of the
quotient field K of R.

If v is a valuation, non-negative on R, and ¥ is an ideal in R, then
the following statements are equivalent:

(a) A is a v-ideal.

(b) If a,be R, a €N and v(b)=v(a), then b e A.

(c) The following relation is satisfied

(1) RANR =
That (a) implies (b) is immediate, for if A=, n R, where %, is an
b
ideal in R, then b=;-a € R,-ac¥,. Now, assume (b). Any element

b of R can be written in the form b=ayc,+a,c,+ - - - +a,c,, with
a;e A and ¢;e R,. If v(a;)=min {v(a,), v(ay), - - -, ¥(a,)} then v(b)=
v(a;), and thus if b€ R then b € %A. This proves (c). That (c) implies
(a) follows from the definition of z-ideals.

If A is an arbitrary ideal in R and v is a valuation of K which is

non-negative on R, then the ideal R n R is, of course, a v-ideal in R,
340
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and is the smallest v-ideal in R which contains the given ideal %; it
can be characterized as being the set of all elements b of R such that
v(b) = v(a) for some a in A.

Since the set of ideals in R, is totally ordered by set-theoretic inclu-
sion (VI, § 3, Theorem 3) it follows that for a given valuation v, non-
negative on R, the set of v-ideals in R is also totally ordered by set-
theoretic inclusion. In the special case of a noetherian domain R
this set is even well-ordered in view of the “maximum condition” in
R (see Vol. I, p. 156). We shall derive later on in this section some
results concerning the ordinal type of the set of v-ideals in a noetherian
domain R (for a given v).

We shall now discuss some examples.

ExampLE 1. Any prime ideal p in R is a valuation ideal. This is
obvious if p=(0). If p is a proper prime ideal in R then the statement
follows from the existence of valuations v which are centered at b,
for if v is any such valuation and if 9, is the maximal ideal of R, then
M, NR=yp. We see here incidentally that a valuation ideal in R may
be associated with more than one valuation v.

ExampLE 2. Let R be a Dedekind domain. Then every primary
ideal o is a valuation ideal, and conversely. For if p=+/q (and leaving
aside the trivial case q=(0)), then q=yp”, for some n=1. Thus, if
vp is the p-adic valuation of K which is defined by the prime ideal p
we have that q is the set of all elements x of R such that vy(x)2n,
showing that q is a valuation ideal, by the above criterion (b). The
converse is also obvious, since every valuation v of K which is non-
negative on R is either the trivial valuation or is a p-adic valuation v,
defined by a prime ideal p of R, and in the latter case the vy-ideals in R
are the powers of p.

ExXaMPLE 3. In the general case not every primary ideal is a valua-
tion ideal, and not every valuation ideal is primary. For instance,
let R=k[X, Y] be a polynomial ring in two indeterminates, over a
field %, and let % be the idea! generated by X2 and Y2 Then % is
a primary ideal, with (X, Y) as associated prime ideal. If v is any
valuation of k(X, Y), non-negative on R, and if, say, v(Y) 2 v(X), then
v(XY) 2 v(X?), while XY ¢ A. Thus % is not a v-ideal. On the other
hand, let m and 7z be positive integers and let % be the ideal X7 (X, Y™).
This ideal is not primary, and its associated prime ideals are (X) and
(X, Y). We show that % is a valuation ideal. The quotient ring of
k[X, Y] with respect to the prime ideal (X) is a discrete valuation ring
of rank 1. Let v, denote the corresponding valuation of A(X, Y).
Then v, is a one-dirnensional valuation of (X, Y) (namely the prime
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divisor of k(X, Y)/k whose center in the (X, Y)-plane is the line
X=0 (see VI, §14)). The residue field of v, is the field 2(Y) (or can
be canonically identified with this field). Let v, be the valuation of
k(Y) which is non-negative in k[ Y] and has as center in k[Y] the ideal
(Y) (v, is then the prime divisor of (Y whose center on the line X=0
is the origin ¥Y=0). Let v=v,00, be the composite valuation of
k(X, Y) obtained by compounding v, with v,. Then v is a discrete,
rank 2 valuation, and its value group can be identified with the set of
all pairs of integers (7,7), ordered lexicographically (see VI, §10,
Remark (A) concerning discrete ordered groups of finite rank). For a
suitable identification we may assume that #(X)=(1,0) and o»(Y)=
(0,1). Then our ideal X" (X, Y™) consists of all elements f of R
such that v(f) 2 (n, m), and is therefore a v-ideal.

However, the following is true quite generally: the radical V% of a
valuation ideal N is prime, and if U s associated with a given valuation

v then also the prime ideal V¥ is a valuation ideal associated with v.
In fact, if xy € V¥, so that (xy)" € % for some 7= 1, then assuming that,
say, ¢(¥) 2 v(x), we have v(y?) 2 v(x"y"), whence y> € ¥, by criterion
(b) of wv-ideals. This shows that VY is prime. Furthermore, if
a" € ¥, and b € R is such that v(b) = v(a), then v(d") = v(a™), whence also
brisin ¥, ie., be VY, showing that V% is a v-ideal. We include this
result in the following lemma and we leave it to the reader to prove the
other assertions of that lemma (the proofs being straightforward):

Lemwva 1. If %, B are v-ideals in R and € is an arbitrary ideal in R,
then V¥, % 1B and A:C are v-ideals.

Since V¥ is prime, it follows that if a v-idea! admits a primary
(irredundant) representation then only one prime ideal of % is isolated.
We now prove the following proposition:

PropositioN 1. If a v-ideal % (associated with a given valuation v)
in R admits an irredundant primary decomposition %= q, 0 a0 - - - N q,
then the prime ideals p; =V a; form a descending chain (in a suitable
order) and are themselves v-ideals (associated with the given valuation v).
If, say, p;>9,> --- >p, then also the ideals a;Nnaq; 10 --- Na,
(t=1, 2, -- -, h; ie., the isolated components of %) are v-ideals.

PROOF. If p is a prime ideal of % there exists an element ¢ in R such
that ¢ ¢ % and A:(c) is primary for » (Vol. I, Ch. IV, § 5, Theorem 6).
By Lemma 1, %:(c) is a v-ideal and hence, again by Lemma 1, p is a
v-ideal. Since the set of all v-ideals in R (associated with the given
valuation v) is totally ordered by set-theoretic inclusion, we must have
P >p,> - - - >y, for a suitable labeling of the prime ideals p; of .
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The last assertion of the proposition follows from Lemma 1 and from the
relation Az (a; N apN -+ - Na_ =0, N 0;.10 -+« N0

We now fix once and for always a non-trivial valuation v of K which
is non-negative on R and we study the totally ordered set of valuation
ideals in R which are associated with v. We shall find it often con-
venient to replace R by the quotient ring Ry, where b is the center of
v in R. This will not affect essentially the valuation ideals of R, in
view of the following lemma:

Lemwma 2. If % is any v-ideal in R then the extension %¢ of A in Ry is
a v-ideal in R, and we have W=N*«. The correspondence N — A maps
in (1, 1) fashion the set of v-ideals in R onto the set of v-ideals in R,,.
If W=a,N0 050 -+ N 0, is an irredundant primary decomposition of %
then Ne=q,°N G5 N - - - N a,° is an irredundant decomposition of Ae.

PROOF. If x e we have x=y/z, where y,2€R, ye¥, z¢p.
Then v(2)=0 and v(x)=v(y). If x’=9y'[/2’ € Ry, where ¥', 2’ € R and
% ¢ », and if v(x") = v(x), then v(y") = v(y) since v(x")=2(y"). There-
fore ¥ €% and x" € Ae. This shows that A€ is a v-ideal in R,. We
have A< A, and, on the other hand, we have just seen that if x is any
element of %A¢ we have v(x)=v(y) for some y in A.  Since A is a v-ideal
in R this implies that A=A, whence A«c=A. If A’ is any v-ideal in
Ry, A=%A'e1s a v-ideal in R, and for every x in A’ there exists an element
y in % such that v(x)=2(y). This implies at once that the two v-
ideals %¢ and %A’ must coincide, thus A'¢=YA". The last part of the
Lemma follows from Vol. I, Ch. IV, §10, Theorem 17 and from
Proposition 1 by observing that the prime ideals p; of Proposition 1 are
all contained in .

LemMma 3. If v has rank 1 and v is the center of v in R then every
v-ideal in R (other than (0) and R) is primary for p. If R is noetherian
then these ideals form a simple infinite descending chain having zero inter-
section.

PROOF. Since every proper ideal in the valuation ring R, is primary,
with M, as associated prime ideal, and since p=M, N R, the first
assertion of the lemma is obvious. From this it also follows that if R
is noetherian every proper v-ideal ¢ in R is preceded by at most a
finite number of v-ideals. Furthermore, (R, qp) N R is a v-ideal strictly
contained in @, and this shows that the sequence {q,} of v-ideals (differ-
ent from (0) and R) is infinite. The intersection of the q; must be the
zero ideal (it is true, quite generally, for a valuation v of any rank, that
the intersection ‘of all the v-ideals different from (0) is the zero ideal,
because if 0#x € R and p is the center of v in R then v(x) < v(¥) for
every element v of R (xp) and hence x is not contained in the v-ideal
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R (xp)n R). This also shows that the sequence {q,} of v-ideals
(different from (0) and R) is infinite.

We now restrict ourselves to noetherian domains R and we study the
well-ordered set of valuation ideals of a valuation v of rank » > 1, non-
negative on R (r is necessarily finite; see Appendix 2). We denote
by p the center of v in R. Letv=v,09, where v, is of rank 7 — 1 and &
a rank one valuation of the residue field of v,. Since every ideal in
R, isalso an ideal in R, it follows that the v,-ideals in R are also v-ideals.

Lemma 4. If A is a v-ideal (different from (0)) there exist two con-
secutive v,-ideals B, and B, such that B,>UA > B, and we have B,p>< A
for some integer p20. The number of v-ideals between B, and ¥ is
Sinite.

PROOF. Since R is noetherian, every ideal % in R is finitely generated
and therefore v admits, on %, a smallest value. As in Appendix 2,
we denote this smallest value by o().

Let B, be the first (i.e., the largest) v,-ideal which is a proper sub-
ideal of . Let B;=R,ANR. Then B, and B, are v;-ideals in R
such that 8,2% >, From the definition of B, it follows that B,
is the smallest v,-ideal which contains %. Hence there are no v,-
ideals between B, and B,.

The value group 4 of ¥ is an isolated subgroup of the value group I’
of v, and I'/4 is the value group of v, (VI, § 10, Theorem 17). By the
definition of B; we have v,(B,)=2v,(%), and since A<=B,, we have also
(%) 2 v(B,). Hence 0=ov(A)—v(B,) € 4. We now consider the two
possible cases: (1) v(p) ¢ 4 and (2) v(p) € 4.

In case (1) we have v,(9) >0 (in this case, p is also the center of
v, in R, since—on the one hand—the center p, of v, is the greatest
prime ideal in R such that v)(,)>0, and—on the other hand—p,
must be contained in b because v is composite with v;). We have
therefore v,(B,p) >v,(B,) and hence B,>B,p, showing that A > B .

In case (2) we have v,(p)=0 (in this case, the center of v, in R is
proper subideal p, of p), and hence O <v(p)e 4. Since we have also
0<v(A)—v(B,) €4 and since 4 has rank 1, there exists an integer
p20 such o(p?)2v(A)—o(B,;). For such an integer p we have
(B, p°) = v(A), showing that B,pr<A (since A is a v-ideal).

At this stage we replace R by Ry, (see Lemma 2) and we therefore
assume that R is a local domain, with p as maximal ideal.

If ¥ is any ideal in Rand ¢ is any integer 2 1, then the ideals between
B and Bp? correspond in (1, 1) fashion to the R/ps-submodules of
B/Bpe, where B/Bp? is to be considered as a module over R/p?. Now
R/v? is a ring satisfying both chain conditions (since R is noetherian
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and p is maximal in R; see Vol. I, Ch. IV, § 2, Theorem 2). Since
B/Bp? is a finite (R/p?) module, it has a composition series (Vol. I,
Ch. III, § 10, Theorem 18). It follows that any descending chain of
ideals between B and Bp? is finite. In particular, there can only be a
finite number of v-ideals between B, and %, since AD>B,p>. This
completes the proof of Lemma 4.

CoROLLARY. If B, and B, are two consecutives vy-ideals (B, > B,)
then the v-ideals U such that B,>% > B, are finite in number if p is also
the center of vy, and form a simple infinite sequence in the contrary case.

For, if p is the center of v, then we have seen that AD>B,p if
B,°UA>B,. If p is not the center of v,, then the assertion follows
from the last part of the lemma and from the fact that the v-ideals
(R8N R,qg=1,2,-- -, are all distinct and lie between B, and B,.

PrROPOSITION 2. Letrbetherank of v,let M>My > - - - >M,_, >(0)
be the prime ideals of R, and let p=py>p,> --- >, (> (0)) be the
distinct prime ideals in the set {MNR, My NR,---, M,_0R}. The
ordinal type of the well ordered set of v-ideals in R, different from (0), is
w” (where w is the first infinite ordinal number). If is any v-ideal in R,
different from (0), and if the ordinal type of the set of v-ideals preceding U
is of the form mywho+mywhi+ - - - +mhe,t where h>hy>hy> --->
h,20 and where my, m,, - - -, m, are positive integers, then Phy Prp = s
Py, are the prime ideals of %A (here py=1y).

PROOF. The proposition is obvious if r=1 (see Lemma 3). We
shall therefore use induction with respect to 7.

Let v=v,00, where v, is of rank r—1 and ¢ is of rank 1. Then
My, My, - - -, M,_, are the prime ideals of R,, other than (0). If pis
also the center of v, in R (ie., if MNR=M, NR), then the set
{My R, MynR,---,M,_,nR} also consists of & elements, and thus,
by our induction hypothesis, the set of v,-ideals in R is of ordinal
type w”* Since in this case there is only a finite number -of v-ideals
between any two consecutive v,-ideals (see above Corollary), it follows
also that the set of v-ideals has ordinal type w”. If p is not the center
of v,, then our induction hypothesis implies that the set of v,-ideals in
R has ordinal type w”~?, and it now follows from Lemma 4 and its
Corollary that the set of v-ideals in R has ordinal type w”.

Now let % be any v-ideal, different from (0), and let B,, B, be two
consecutive z,-ideals such that 8,°5%>%3B, (Lemma 4). We shall
consider separately the two cases: (a) B,=%; (b) B,>.

+ Concerning the notation mwh +m,wh+ - - - +muwh see F. Hausdorff,
Grundziige der Mengenlehre (1914), p. 112.
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We denote by 'y, »'y, - - -, 9’,_, the distinct prime ideals in the set
{M,NnR,M,NR,---,M_,1R} (we assume that we have p'y>
p'1> e >‘lplg—l)’

Case (a): B,=% If MAR=M,;nR then g=h and p';=p,.
From Lemma 4 and its Corollary follow that in this case the set of
v,-ideals preceding % has ordinal type of the form m’ wh +m' jwh +
.-+ +m' wh, where the m’, are positive integers. Hence, by our
induction hypothesis, the prime ideals of 2 are p',,o, p',,l, ceey, p’hq, ie.,
Phgr Prpp * * 5 Pp- If M n R#M, n R, then the ordinal type of the set
of v,-ideals preceding % must be equal to mywho l+ - - - +mwh?
(always by Lemma 4 and its Corollary; note that, by the Corollary, %
can have in this case no immediate predecessor in this set of v-ideals,
whence k,>0). Hence ', _y, 91, -+, ', _y are the prime ideals
of %, and since we have obviously p’;=p;,, in the present case, the
proof of our proposition is complete in Case (a).

Case (b): 8,>%. In this case, A has an immediate predecessor in
the set of v-ideals (either B, or some v-ideal between B, and %). Hence
h,=0. Since B,p°< for some positive p and since B, ¢, it follows
that p itself is one of the prime ideals of %, i.e., O, (h,=0) is one of the
prime ideals of %. Since all the prime ideals of B, are contained in p,
the set of prime ideals of % consists of p and of the prime ideals of B,.
The set of v-ideals, preceding B, has ordinal type mgwh +mwh+ - - -
+m,_wh1+m',, where m' 20. By case (a), applied to the v-ideal
B, (instead of to the ideal ¥ of the present case), we have that the prime
ideals of 9B, are either p,, , 9, Ph_p s P (ifm';>0)or b, , 0y, -+, Pr_,
(if m’,=0). In either case, the desired conclusion concerning the
prime ideals of % follows. This completes the proof of the proposition.



APPEXNDIX 4

COMPLETE MODULES AND IDEALS

The subject matter of this appendix is of considerable importance
for algebraic geometry. It deals with a general algebraic concept
which, when specialized to the field of algebraic geometry, leads not
only to the concept of a complete linear system on an algebraic variety,
but also to the concept of a complete linear system with so-called
‘‘assigned base loci,” as it gives a simple and workable formulation of
the intuitive geometric notion of “base conditions.”

Throughout this appendix we shall deal with a fixed integral domain
o and a fixed field K containing o (K is not necessarily the quotient field
of 0). We shall deal with o-modules M contained in K. Certain
additional conditions will be imposed on o and the modules M as and
when these conditions are needed. Thus, we may have to assume
sometimes that o is integrally closed, or that o is noetherian, or that
M is a finite o-module.

The following special situations are of particular importance in
geometric applications: (1) o is a field & (the ground field), K is a field
of algebraic functions over k, and M is a finite k-module (contained in
K); (2) o is integrally closed and MM is an ideal in o.

1. We denote by S the set of all non-trivial valuations of K which
are non-negative on o (S=the Riemann surface of K relative to o;
see VI, §17). If v € S we denote by R, the valuation ring of ».

DrrINITION 1. If M is an o-module (contained in K) THE COMPLETION
OF M is the v-module

(1) M = RM.
veS
The completion of M will be denoted by M'. The module M will be said
to be complete if M=DM'.
COROLLARY. If § denotes the integral closure of o in K and if we set
M=35M, then M'=M', where M’ is the completion of the 5-module M.
347
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For S is also the set of all valuations of K which are non-negative
on 3, and hence
M =NRM=NRM=M.
vesS veS
It follows that the class of complete 5-modules coincides with the class of
complete o-modules. In the study of complete o-modules it would be
therefore permissible, without loss of generality, to restrict the treat-
ment to integrally closed domains o.

We list at once a number of formal properties of the operation of
“completion” consisting in passing from M to M’'. To what extent
these properties characterize axiomatically the operation of completion
will be briefly discussed later on in this appendix. We denote by & the
integral closure of o in K. In the following proposition, M, N and
L denote o-modules contained in K.

ProposiTION 1. The operation M — M’ satisfies the following
conditions:

(a) o'=0.

(b) M'>M.

(c) If M> N then M'>N'.

(d) (MY =D1".

(e) (MN) =(M'N'")', where by the product MN of two o-modules
M, N we mean the o-module generated by the products mn (m e M,
neN). \

(f) (xM) =xM’ (x € K).

(g) If (MN)'=(ML) and if the o-module M is either finite or is the
completion of a finite o-module, then N'<L’.

PROOF. Property (a) follows from VI, § 4, Theorem 6, while (b) and
(c) are self-evident. From (b) and (c) follows (M")'>M’, but on the
other hand, we have for any v in S: (M'Y<RM'<R(R,M)=RM,
whence (M')Y<M’, and this proves (d). The inclusion (MN)'<
(M'N"Y follows from (b) and (c). On the other hand, we have, for
any ve S: M'cRM, N'<R,N, whence M'N'c R MN. Therefore
M’'N'<(MNY', and thus, by (c) and (d), (M'N’)Y'<(MN)’, which
proves (e). Property (f) is self-evident.

For the proof of (g) we observe that it is sufficient to consider the
case in which M is a finite o-module, for if M is the completion of a
finite o-module M, then we have (MN)'=(M'(N)=(M'N") =
(MoN), and similarly (ML) =(M,L)’, and thus (M N)' <(MyL)'.
Assume then that M is a finite o-module. Now observe, that if Z is
any o-module and v € S then Z'<R,Z, and hence R,Z'=R,Z. We
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have therefore R,MN=R(MN)<R(MLY=RML. Since M is a
finite o-module, R M is also a finite, therefore a principal, R, -module
(R, being a valuation ring). Therefore we can cancel M in the inclu-
sion RMN<RML. We thus have RN<R,L for all v€ §, and this
establishes (g).

CoroLLARY. We have

(2) (ox) = bx, xeK;

(2 oM = M.

Relation (2) follows from (f), by setting M=o, and from (a). We have
M'=(oM) =0BM'Y>8M'>M’', and this establishes (2'). Relation
(2') shows that M’ is always an 8-module. Of course, we know that
already, in view of the Corollary of Definition 1, but we have derived
this here again as a formal consequence of relations (a)}~(f). Other

formal consequences of these relations (more precisely: of the relations
(b), (c) and (d)) are the following:

(h) (S My =(3 My
() QM= M,

where {M;} is any (finite or infinite) collection of o-modules. Note
that relation (i) implies that the intersection of any (finite or infinite)
number of complete modules is complete.

For any non-negative integer ¢ we denote by ¢ the o-module
generated by the monomials mm, - - - m, m;€ M (here M° stands
for o).

DEFINITION 2. An element z of K is said to be integrally dependent on
the module M if it satisfies an equation of the form

(3) 0t a 2 4 a3t - ta, = 0,a;€ M,

It is not difficult to see that the above definition is equivalent to the
following one: z is integrally dependent on M if there exists a finite
o-module N (contained in K) such that

(4) 2N<MN,

where MN denotes the o-module generated by the products mn, m e M,
neN. For, if (4) holds then (3) follows by using a basis of N and
determinants (see the proof of the lemma in Vol. I, p. 255). On the
other hand, if (3) holds then (4) is satisfied by taking for N the module
M-t M2z + - - - + Mz?-2+ 0291, where M, is a finite submodule
of M such that a; € My fori=1,2,.--,q.
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From criterion (4) it follows immediately that the set of elements 2
of K which are integrally dependent on M is itself an o-module. We
may call that o-module the integral closure of M in K.

THEOREM 1. The completion M’ of M in K coincides with the integral
closure of M in K.

PROOF. Let z € K be integrally dependent on M. Using (4) we can
write

(5) ;= > mgn;, i=1,2,---,h,

- 177
=1
where N= Z on; and m,;; € M. Let v be any valuation in S (i.e., v is

non-negatwe on o) and let m,, be one of the A% elements m;; for which
v(m,g) is minimum. Dividing (5) by m,, and observing that m,;/m,,
€ R, for all 7 and j, we see that z/m, is integral over R, whence
z/mge R, z€ Rm =R M. Since this holds for all v in S we deduce
that 2 € M".

Conversely, assume that ze M’'. Let L denote the set of all
quotients m/z, m € M, and let us consider the ring o[L]. For any v
which is non-negative on o[L] (and hence also on o) there exists an
element m of M such that 9(2)=v(m) (since € M’). Hence there
exists no valuation v of K which is non-negative on o[L] and such that
N, contains the ideal o[L]-L. Therefore this ideal must be the unit
ideal in o[L] (VI, § 4, Theorem 4). Thus, there exists a finite set of

elements of L, say m, /2, my/2, - - -, m,/2 such that
m, m m

{2, 222 ., TRy,

©) ,Z - ( z )

where the f@ are polynomials with coeflicients in 0. We can write
each of these polynomials in the form

FO(myfz, mofz, - - -, my[z) = Fy_O(my, my, - - -, my, )[z971,

where ¢ is a suitable integer, mdependent of 7, and where the F,_,®
are homogeneous polynomials in m,, m,, - - -, m,, 2, of degree q 1,
with coefficients in 0. Then, multiplying (6) by 2 we find at once that
z satisfies an equation of the form (3). This completes the proof.
REMARK. Every element of M* is a finite sum of products of the
form mym, - - - m,;, where the m; are elements of M. It follows there-
fore from Definition 2 and from Theorem 1 that the completion of M
is independent of the choice of the ring 0. Thus, if }{ happens to be
also a module over another ring o, (for instance, if o, is a subring of o)
then the completion of M as an o,-module is the same as the completion
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of M as an o-module. If we take for o, the prime subring k of o and
we treat M as a k-module, then the valuation space S which occurs in
our Definition 1 of completion becomes the set of all valuations of K.

We have therefore
DRM = [ RM.

We give here a direct proof of this equality.
We have to show if xe [} R, M then v(x) = v(M) for any valuation
veS

v of K (and we may assume here that v ¢ S). Let I" be the value group
of v, let H be the set of all elements « of I' such that a=1(z) for some
zin Rpo. Let 4 be the set of those elements « of H which have the
property that also —aisin H. We note that H is closed under addition
(in I') and that if « € H and BZ « then also B € H. From this it follows
easily that 4 is an isolated subgroup of I' (see VI, § 10; note that 4 is
non-empty since 1 €0 and since therefore 0 € 4). The isolated sub-
group 4 determines a valuation v, of K with which v is composite and
whose value group is I'/4 (v, is the trivial valuation if 4=1I"). Now,
if a is any element of o then ov(a) is either in 4 or is a strictly positive
element of I. Therefore v,(a)=0, i.e., we have v,€ S, and thus
x€ R, M. There exists then an element m of M such that vy(x)2
v,(m), or—equivalently—v(x/m) € 4 U I'x. 'Thus v(x/m) = v(a) for some
a in o, and v(x) = v(am), am € M.

2. We shall now present Theorem 1 under a different form, using
properties of graded domains (VII, §2). We adjoin to the field K a
transcendental 7, we set M* = Mt and we regard M* as an o-module. Let
M*' be the completion of M* in K(¢). Using either criterion (3) or (4)
of integral dependence over M* and applying Theorem 1 we find at once
that an element 2’ of K(#) belongs to M*' ifand only if 2’/te M’'. Hence

1
(7) M = ;-M*'.
Hence the determination of M’ reduces to that of M*". We consider

the ring R*= z M*s (M*°=op). From the fact that ¢ is a trans-

cendental over K follows that R* is a graded domain, M*? being the
set of homogeneous elements of R*, of degree ¢. Let F be the field of
quotients of R* and let F be the subﬁeld of F consisting of the homo-
geneous elements of F which are of degree zero. We have F=F(?),
and it is clear that F, is the smallest subfield of K which contains the
ring o and all the quotients m/m’, where m, m" € M, m’#0. In other
words, F, is the set of all quotients m,/m’,, where m, m’, € M? and
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g=0,1,2,.... Let F’, be the algebraic closure of F, in K, and let
R*' be the integral closure of R* in F’((f). Then, by the Corollary to

Theorem 11 of VII, §2, R* is a graded domain: R*= > R *".
q=0

From Theorem 1, and using criterion (3) of integral dependence over
modules, we see at once (compare with the Remark at the end of VII,
§ 2) that

(8) M* = R*.

Relation (8) expresses in a different form the content of Theorem 1.
At this stage it will be convenient to introduce certain notations and
terminology. Given the o-module M, the field F, introduced above
shall be denoted by o(M). The module M shall be said to be homo-

geneous if the sum R= > M is direct (so that R is therefore a graded
g=0

ring). It is immediately seen that if M is a homogeneous module,
then every element m of M, m+# 0, is transcendental over o(M), and that
if this last condition is satisfied by some element m of M, m#0, then
M is homogeneous.

The above transition from M to M* is only necessary if M is not
homogeneous. If M itself is homogeneous, then it is not necessary to
introduce a new transcendental #, and we can deal directly with the
graded ring R (instead of with R*). Summarizing, we can now state
the following result:

THEOREM 2. If M is a homogeneous o-module, if F’ denotes the field
generated (in K) by M and the algebraic closure F', of o(M) in K and if

R’ is the integral closure,t in F', of the graded ring R= > M, then the
g=0

completion M’ of M is the module R’, of homogeneous elements of R’, of
degree 1. If M is not homogeneous, then the adjunction of a transcendental
t to K reduces the determination of M’ to the case of the homogeneous
o-module tM.

COROLLARY 1. The completion M’ of M is not affected if the field K
is replaced by any field between F' and K (where F' is the field defined
in Theorem 2; in particular, we may replace K by F").

As a special case of complete o-modules we have the so-called
complete ideals in v, where an ideal % in o is said to be complete if it is
complete as an v-module.

+ Note that if ¥ is any element of M, different from zero, then the quotient
field of R is given by F(y), where Fo=0(M), and F'=F’(y). Therefore, by

the Corollary of Theorem 11 in Ch. VII, § 2, R’ is a graded domain.
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COROLLARY 2. If % is an ideal in o then the completion N’ of A is a
complete ideal in the integral closure 5 of o in K, and if S’ denotes the set
of all valuations v of the quotient field of © which are non-negative on o
then
9 A = () R

ve S’

For, in the case of the present corollary, the field F’ of Corollary 1
is precisely the quotient field of 5, and this implies (9). Since A<o<R,
for all ve S’ and since () R,=5 it follows that €A'<5. Since A’ is

ve S’

also an 5-module and is the completion of the ideal 5% (see Corollary
of Definition 1), %’ is a complete ideal in 5.

3. We now study briefly the important case of complete ideals in an
integrally closed domain o.

If o is integrally closed in K and % is an ideal in o, then the completion
%’ of % is a complete ideal in o (Corollary 2 of Theorem 2). We have
therefore

o= | RA= N (nRY.

Since o N R is a valuation ideal in o (Appendix 3), we see that every
complete ideal in o is an intersection of valuation ideals. On the other
hand, if B is a valuation ideal in o, associated with a valuation v (v € S),
then 8=0nR,B (Appendix 3, formula (1)) whence B'=0nB'c
o NRB=21B,1e.,B =B. Thus, every valuation ideal in o is a complete
ideal, and so is every intersection (finite or infinite) of valuation ideals
[see property (z) of the ‘operation]. Consequently, the class of complete
ideals in o coincides with the class of ideals which are intersections (finite
or infinite) of valuation ideals.

If K, is the quotient field of o and v, is the restriction of v to K,
then o N RA=0nR,A. Therefore we may replace K by K, and we
shall assume from now on that K is the quotient field of o.

If % is a complete ideal then

A= (0NRY)
veS
is a representation of % as intersection (generally infinite) of valuation
ideals, but there may be other such representations, and among these
there may be even some which are finite intersections (take as ¥, for
instance, a valuation ideal). In the case of a noethertan domain o we
have the following result:
THEOREM 3. Let 0 be a noetherian domain, K a field containing o and 5
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the integral closure of v in the quotient field of o. If an ideal N in d is the
completion (in K) of an ideal B in o (in particular, if o itself is integrally
closed and % is a complete ideal in o), then U is a finite intersection of
valuation ideals of © associated with discrete valuations of rank 1.

PROOF. We first establish a lemma on complete o-modules, where o
is not necessarily noetherian.

LemmA. Let K be a field containing o, let M be a finite o-module
contained in K and let {x;} be a finite v-basis of M. For each i let o,
denote the ring generated over o by the quotients x;[x,, j#1, and let 5, be
the integral closure of v; in K. If M’ is the completion of M in K then

M, = n Bix,-.
i

ProOF OF THE LEMMA. If y € M’ and v is any valuation of K which is
non-negative on d,, then v € S and v(x;) 2 v(x;) for all j. Thus R, M=
R x;, v(v) 2 v(x;) for all such v, and hence y € 8,x;.

Conversely, let y be an element of the intersection of the 5,x; and let
ve.S. If 7is an index such that v(x;) = v(x,) for all j, then v is non-
negative on 5, and hence v(y) 2 v(x;). Thus y € Rx;=R,M, and this
shows that y e M’. The lemma is proved.

The proof of the theorem is now immediate. We identify the ideal
B of the theorem with the module M of the lemma. Since, by assump-
tion, the completion % of B (in K) is contained in the integral closure & of
o in the quotient field of o, % is also the completion of B in this quotient
field. We may therefore assume that K is the quotient field of o.
Each ring o, is noetherian. Now, it can be provedt that the integral
closure of a noetherian domain is a Krull ring (VI, § 13). Hence each
of the rings 5, is a Krull ring.t Since x; € 0<5,, the principal 5;-ideal
b,x; is a finite intersection of valuation ideals in 5; belonging to essential
(therefore discrete, rank 1) valuations (VI, § 13). Taking intersections
with 5 we see that the theorem follows from the above lemma.

COROLLARY. If, under the assumptions of Theorem 3, the ideal %
admits an irredundant primary representation (in particular, if % is a
complete ideal in a noetherian integrally closed domain), then 2 also
admits an irredundant primary representation in which every primary
component 1s itself a complete ideal.

Since each essential valuation of 5; is of rank 1, the corresponding

4+ See M. Nagata, “On the derived normal rings of noetherian integral do-
mains,” Mem. Coll. Sci., Univ. Kyoto, 29, Mathematics No. 3, 1955.

1 The cited general result of Nagata is not needed if p is a ring of quotients
of a finite integral domain, for in that case we know (Vol. I, Ch. V, § 4, Theorem
9) that the rings #; are noetherian.
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valuation ideals in 5, of which % is the intersection, are primary ideals.
Those which are associated with the same prime ideal in o yield a partial
intersection which is a primary complete ideal.

One often deals with complete fractional o-ideals, i.e., with finite
complete o-modules contained in the quotient field of o. It is clear

. . . 1
that any such complete fractional o-ideal is of the form ;‘ZI, where U

is a complete (integral) ideal in o (use property (f) of Proposition 1).

4. We shall now discuss briefly the axiomatic aspects of the pro-
perties (aj{(g) (see Proposition 1) of the ‘operation. 'The operation of
completion of o-modules M, in K, is not the only ‘operation on o-
modules which satisfies properties (a)—(g) of Proposition 1. If we
examine the proof of that proposition we see that we have not used the
fact that the set .S consists of all the valuations v of K which are non-
negative on o, but only the fact that the intersection of all the valuation
rings R,, v € S, is the integral closure of o in K. Therefore, if we choose
any subset S; of S with the property

(10) N R, =5

v€S|

and define for any module M in K its completion M’ by
(11) M = N RM,

veS;

we obtain another ‘operation which satisfies conditions {(2)—{g). An
important special case is the one in which o is a noetherian integrally
closed domain, K the quotient field of o and S, the set of all essential
valuations of o (i.e., the set of p-adic valuations v,, where » is any
minimal prime ideal of ). In that case the “complete” ideals in o are
the ideals whose prime ideals are all minimal in o, and the “completion”
of an ideal % in o is obtained by deleting from an irredundant primary
decomposition of % those components which belong to prime ideals
which are not minimal in o.

It can be proved that any ‘operation is “‘equivalent” to a ‘operation
defined by a suitable set of valuations S, satisfying (10), two ‘operations
being “equivalent” if they coincide on the set of all finite o-modules in
K. For the proof we refer the reader to the paper of W. Krull, entitled
“Beitrige zur Arithmetik kommutativer Integritdtsbereiche,” Math.
Zeitschrift, vol. 41 (1946).

We note that if we have two ‘operations, say ‘! and ‘2, defined by
sets .S, and S, of valuations satisfying (10), and if S;<.S, then M'1>
M2 for any module M. Applying this inclusion to the module M1
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instead of to M we find M'1>(M'1)'2, and since the opposite inclusion
is obvious, we have

(12) MY = (M2, if S,c8,,

i.e., every module which is complete with respect to the ! operation
is also complete with respect to the ' operation. (We may say in that
case that the '2 operation is “‘finer” than the ! operation.) In particu-
lar, if we take for S, the set .S of all valuations which are non-negative
on o we conclude that in any ‘operation the complete modules are integrally
closed (in K).

5. We shall now discuss briefly the application of the concept of
complete modules to the theory of complete linear systems in algebraic
geometry.

Let V/k be a normal projective variety, of dimension 7, let o=4&,
let K=k(V) (we shall assume that k is maximally algebraic in k(V)),
and let us first study the ‘operation defined by the set S, of all prime
divisors of K/k which are of the first kind with respect to V/k (VI,
§ 14). Condition (10) is satisfied (with S, replaced by S,; see end of
VI, § 14). In this case, given a finite k-module M in K, the completion
M’ of M in K is obtained as follows:

For any prime divisor v in S, we denote by W, the center of v on V'
(W, is an irreducible (r —1)-dimensional subvariety of V/k). We set
n,=min {v(m), 0£m € M} and

(13) Z(M)=D= -3 nW,
ve Sy

Since M is a finite k-module, 7, is finite for every v in S, and only
a finite number of n,’s are different from zero. Thus, the above sum
is finite, and D is an element of the free group of divisors on V/k
(see VII, §4bis), or—in algebro-geometric terminology—D is a divis-
orial cycle on V[k. The completion M’ of M is then the set of all ele-
ments x of K such that (x)+ D is an effective divisorial cycle (i.e., a
divisorial cycle of the form > hyW, hy,=0). Here (x) denotes the
divisor of x (we include the zero in M’). The set of effective divisors
(x)+D (0#x e M’) is called a complete linear system on V|k, or, the
complete linear system determined by the cycle D (and is often denoted
by |D!). It consists of all effective divisorial cycles D’ on ¥ which are
linearly equivalent to D, i.e., which are such that D’ — D is the divisor of
an element x of K (x#0).

A basic result in algebraic geometry is the following: the above
complete module M’ is finite dimensional (as a vector space over k). We
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have all the tools for a short proof of this result. First of all, we replace
M by the homogeneous module N=M¢, where ¢ is a transcendental
over k(V). Then N'=M't, and we have only to prove that N’ is
finite dimensional. We now use the notations of Theorem 2, where
M is to be replaced by N, o by & and K by k(V)(#). Since N is a finite

k-module, the graded ring R= z N¢ is a finite integral domain over k.

On the other hand, the field F’ is a finite algebraic extension of the
quotient field of R (since we are dealing with subfields of an algebraic
function field A(V)()). Hence R’ is a finite R-module (Vol. I, Ch. V,
§4, Theorem 9). On the other hand R’ is also a graded ring (VII,
§2, Theorem 11). Hence R’ has a finite R-basis consisting of homo-
geneous elements (of non-negative degree). A basis of N over &, to-
gether with those basis elements of R’ over R which are homogeneous
of degree 1, will therefore constitute a set of elements which span R,
over k. Since N'=R’, (Theorem 2), N’ is finite dimensional.

The mapping x — (x)+D (0#xe M’, (x)+D e |Dl) is such that
two elements x,, x, of M’ are mapped into the same cycle in !D! if
and only if x,/x; € k. This shows that the complete linear system !D!
(if it is not empty) has a natural structure of a projective space of
dimension s, if s+1 is the dimension of M’'. We say then that |D|
has dimension s.

If D, is any divisorial cycle which is linearly equivalent to D (not
necessarily an effective cycle) then it is clear that |D!=!D,! (in view of
the transitivity of linear equivalence: if D;— D is the divisor of a func-
tion y in K and D,— D is the divisor of a function 2z, then D,—D, is

the divisor of z/y). If D,—D=(y), then the module M '1=§ M’

consists of all functions x, in K such that (x,)+ D, is effective. This
module M, is therefore also complete and serves to define the same
complete linear system |D| (= |D,!) as the one defined by M’. Observe

1
that if we denote by M, the module y M, then Z(M,)=D, (see (13))

and M, is the completion of M,.

Conversely, suppose we are given a divisorial cycle D on V/k and
assume that there exist effective cycles which are linearly equivalent to
D (the set of all such cycles will be denoted by !D!). Then the set L
of all elements x in K such that (x)+ D is effective (we include 0 in
that set) is a k-module of dimension 21. We assert that L is finite-

q
dimensional and complete. 'To see this, write D= > n,W,, where the
i=1
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W, are distinct irreducible (r — 1)-dimensional subvarieties of V/k and
the n; are integers different from zero (if D is the zero-cycle then
L=k, and our assertion is trivial). Let v; denote the prime divisor
of K[k defined by W;. For each 7/ we fix an element y;#0 in K such
that v,(y;) < —n; and v(y;)=0 if j#7 (see VI, § 10, Theorem 18), and
we set y=y,y,- -y, and N=k+k-y. It is immediately seen that the
cycle Z(N) (see (13)) is such that Z(N)— D is effective. That implies
that whenever (x)+ D is effective, also (x)+ Z(V) is effective; in other
words: L is a subspace of the completion N’ of N. Since N’ is finite-
dimensional, so is L.

Let I'=Z(L). Itis clear that D— Z(L) is effective. If x50 is such
that (x) + Z(L) is effective, then a fortiori (x)+ D is effective, and hence
x€ L. It follows that L is a complete module, as was asserted.

The complete linear system defined by L is ! Z(L)!, not necessarily
'D!. However, if D, is any member of !D! then D,=(x)+ D, where
x €L, whence D,=4—Z(L)+D, with 4 in 'Z(L)!. Conversely, if
de !Z(L)! then (4—Z(L)+D)—D=4—Z(L)=(x), x€L, whence
4+(D—Z(L))e |D!. This shows that 'D! consists of the cycles of
VZ(L)! augmented by the fixed effective cycle D— Z(L).

In view of the (1, 1) correspondence D, — D,+(D— Z(L)) between
cycles D, in D! and those in 'Z(L)!, we have a natural projective
structure in !D!.  Any subspace of 'D! is called a linear system on V.

6. We shall now discuss an extension of the notion of a complete
finite k-module in A(V') and of the corresponding notion of a complete
linear system on V..

If S, is any set of valuations of k(V) such that S, contains the set S,
of the preceding section and if M is any finite k-module, we can con-
sider the S;-completion of M, i.e., the completion of M with respect to
the set S, (see (11)). We denote this completion by M’ , and we say
that M is S;-complete if M's =M. We reserve the notation M’ for
the Sj-completion of M. It is clear that M’ is a subspace of M".

If S is the set of all valuations of A(V') then we know, by (12), that
M's =(M’s) s and that therefore M’y is also S-complete. Thus all
our new complete modules are S-complete. We shall say that a finite
k-module is complete in the wide semse if it is S-complete, strictly
complete if it is S-complete.

We note that given M and S, there exists a finite set of valuations
vy, Vg, + -+, O, Such that sz is the union of Sy and {vy, vy, - - -, vV }, then
M's,=M's. For, if M's =M’ then we can take for {vy,- - -, v} the
empty set. If M’ isa proper subset of /' then there exists a valuation
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v, in S, such that M'¢ R, M. Then, if we denote by S, the set
{Sp, v1} we will have M’>M 3, SM's. If M's>M' 5, We can find
a valuation v, in S, such that M 5, >Mg S>M's, where Sz—{Sl, V).
Since M’ is finite-dimensional, thls process must stop after a finite
number of steps.

It follows from this observation that if we set v;(M)=aq,, where «; is
then an element of the value group of v;, then M’ consists of all elements
x of M’ satisfying the inequalities

(14) 'l),-(x) —2— ai’ i = 1, 2, Tty q.
Conversely, let v;, vy, - - -, v, be a finite set of valuations of k(V"),
let «y, @, ---,a, be arbitrary elements of their respective value

groups, let M’ be a strictly complete (finite) module and let N be the
set of all elements x of M’ satisfying inequalities (14). Then N is
complete in the wide sense and is, in fact, S,-complete, where S,;=
{So» V1, Vg, - - -, v,}. For, if y is any element of () RN, then

ve S,
yenRNC N RM =M'ie,yve M, and'v,(y)>'v(N)l_>_a,,whence
veS ve S
yeNO 0

We note that N is also the set of elements of N’ satisfying (14),
since N'c M.

By an elementary base condition (v, «) (to be imposed on elements
x of k(V)) we mean an inequality of the type v(x)2=«, where v is a
given valuation of A(V) and « is a given element of the value group of .
The foregoing considerations can be then summarized as follows:
every complete (finite) k-module N, in the wide sense, is obtained from a
strictly complete ( finite) k-module (in fact, from N') by imposing on the
elements of the latter module a finite number of elementary base conditions,
and every module thus obtained is complete in the wide sense.

The choice of the finite set of elementary base conditions (v, «) is not
uniquely determined by N. We shall show now that any elementary
base condition (v, &), imposed on a given finite k-module M, is equivalent
with a suitable elementary base condztzon (D, v) such that T is a prime
divisor of k(V')[k (equivalent in the sense that both conditions determine
the same submodule of 7). It will follow from that, that any complete
(finite) k-module, in the wide sense, can be obtained from a (strictly)
complete k-module by imposing on the latter a finite number of ele-
mentary divisorial conditions. Naturally, the prime divisors in question
will be, in general, of the second kind with respect to V/k.

To prove our assertion, we denote by M, the submodule of M con-
sisting of those elements x of M which satisfy the inequality v(x) >
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v(M). We next define in a similar way a submodule M, of M, (M,=
{x € M,'v(x) >ov(M,)}, and so we continue until we reach the sub-
module N =M, of M consisting of those elements x of M which satisfy
the given elementary base condition v(x)2«. We thus have M>
M,>M,> --- >M,=N. For each 1=0,1,-.-,h—1 (My=M) we
fix an element 2; such that 2; € M;, ;¢ M, ,, we consider the finite

k-module Li=z— M; consisting of the elements x/z;, where x is any

element of M, and we denote by R the finite integral domain k[L,,
Ly, ---,L, ;). Itis clear that v is non-negative on R and that if »
denotes the center of v in R then a quotient x/2;, with x in M, belongs
to p if and only if xe M,,,. This being so, we fix a prime divisor ¢
of k(V) whose center in R is the prime ideal p (see VI, § 14, Theorem 35)
and we set %(N)=v. We show that if x€ M and ¥(x)>v, then x € N,
and this will establish the equivalence of the two base conditions
(v, @), (9, v) with regard to the module M. We shall show that the
assumption that x € M, x ¢ M, ,, 1<h, leads to a contradiction. We

have that ziqé p, whence ¥(x)=9(2;). On the other hand, since all

3

. u ~ .
quotients — u € N, belong to v, we have v=9%(N)>%(2;). Hence
2
%(x) <v, a contradiction.

A simple consequence of this result is the following:

Every complete (finite) k-module M, in the wide sense, is a strictly
complete k-module with reference to a suitable projective model V[k of
k(V)[k. For the proof it is sufficient to construct a model V/k of k(1)
such that:

(1) ¥ dominates V (see VI, § 17);

(2) each of the prime divisors v;, vy, - - -, v, which occur among
the elementary divisorial base conditions of definition of M is of the
first kind with respect to V/k.

To construct a model ¥ satisfying these two conditions, we have
only to construct first a model V'; of k(V")[k such that the prime divisor
v; is of the first kind with respect to V';[k (V], § 14, Theorem 31) and
then take for 7 the normalization of the join of V/k, V' [k, V'y/k, - - -,
V' [k (the join of two models has been defined in VI, § 17, and the ex-
tension to any finite member of models is obvious). If we set S;=
{Se» 1, ¥a, - + -, v,} and denote by S, the set of prime divisors of K [k
which are of the first kind with respect to ¥ [k then we have S, S, < .S,
and hence M, being .S,-complete, is also Sy-complete (see (12)), i.e., M
is strictly complete with reference to V/k.
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We have discussed so far only the extension of the notion of complete
k-modules. The corresponding extension of the notion of complete
linear systems on V/k is a straightforward matter of re-interpretation
of the preceding discussion in terms of linear systems, taking into account
that every k-module M defines a divisorial cycle D= Z(M) (see (13))
and 2 linear subsystem L(M) of the complete linear system | D! (defined
by M’). If M is complete (in the wide sense) we call L(M) complete
(in the wide sense). We thus can speak of ‘“elementary base con-
ditions” to be imposed on a linear system and we can then easily restate
the preceding results in the terminology of linear systems.

We note that our definition of a complete linear system (in the wide
sense) 1s invariant under birational transformations. For any such
complete system is defined by a module M which is S-complete,
where S is the set of all valuations of A(V)/k, and which therefore
defines a complete linear system (in the wide sense) on any other
projective model of 2(1)/k.
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COMPLETE IDEALS IN REGULAR LOCAL RINGS OF DIMENSION 2

The theory of complete ideals in polynomial rings klx, y] of two
variables presents some particularly striking features. 'This theory,
developed by the senior author in 1938+ will be presented in this
appendix in a much simpler form and in greater generality. The
generalization consists in dealing with arbitrary regular local rings of
dimension 2, rather than with that special class of such rings which
is obtained by taking quotient rings of k[x, y] with respect to maximal
ideals in k[x, y].

Very little is known about complete ideals in regular local rings of
dimension greater than 2. It is almost certain that the theory developed
in this appendix cannot be generalized to higher dimension without
substantial modifications both of statements and proofs.

1. Let o be a regular local ring of dimension 2. We shall denote by
m the maximal ideal of o and by k& the residue field o/m of 0. By the
unique factorization theorem in o (Appendix 7, Lemma 2), every prime
ideal in o, other than m, is principal, and every ideal 2 in o is of the
form x%B, where x € 0 and B is an ideal which is primary for m (x being
the g.c.d. of the elements of %, different from zero). If A is complete,
so is B (since B=A:0x), and conversely. This fact indicates that in
our proofs below we shall have to be concerned primarily with ideals in
o which are primary for m.

For any ideal % in o, A#(0), we denote by 7, or 7(%), the integer
with the property: Y<wm’, A< wm+1 and we call r the order of %.
Clearly, 720, and r=0 if and only if A=0. In particular, the order »
of an element x of v, x50, is the order of the principal ideal ox; thus,
xEem, x¢ mrtl,

We know that the associated graded ring of o (with respect to m) is
a polynomial ring klz,, 2,] in two variables, over & (VIII, § 11, Theorem

+ See O. Zariski, “Polynomia! ideals defined by infinitely near base points,”’
Amer. J. Maths., 60 (1938), pp. 151-204,
362
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25). If 0#xeo and x is of order 7, then x has an initial form (VIII,
p. 249), which we shall denote consistently by %; here % is a homo-
geneous polynomial in kfz,, 2,1, of degree r. The form % depends
not only on x but also on the choice of a regular system of parameters
1y, ¢ Of 0, the effect on & of a change of parameters being the same as
that of 2 linear homogeneous (non-singular) transformation of the
variables 2, and z,, with coefficients in k. We shall fix once and for
always a regular system of parameters ¢, #,. The fact that xe m’
and x ¢ m™*? signifies that x has an expression of the form x=f(¢,, ,),
where f is 2 homogeneous polynomial of degree r, with coefficients in o,
not all in m.  If we then denote by f the polynomial expression obtained
from f by reducing the coefficients of f mod m, then ¥=f(z,, 2,).

If % is an ideal in o, of order », we denote by L) the set of initial
forms of those elements of % which are exactly of order ¢ (we include
the zero in L, (). The homogeneous ideal in kfz,, 2,] which is
generated by the union of all the sets L,(¥) is called the initial ideal of %
(compare with VIII, § 1). Itis clear that L (%)= {0} if i <r, L(%)#{0}
if 127, and that L,(%) is a vector space over k.

We shall be particularly interested in the form space L (%). We
shall call L) the initial form module of %. We denote by (%) the
greatest common divisor of the forms belonging to L () (and different
from zero). We call (%) the characteristic form of A. If s is the degree
of c() then 0<s=7.

The order function r(x) defines a valuation v, of the quotient field
of o (VIII, § 11, Theorem 25, Corollary 1). We call this valuation
oy, the m-adic prime divisor of o; this is a discrete, rank 1, valuation,
centered at m. Since v, (#,)=v,(t,) =1, the v,-residue of #,/¢,, which
we shall denote by 7, is #0, co. If « is any element of the residue
field of vy, («#0), and if, say, « is the residue of x[y, where x, y €0,
then x and y must have the same order r. We can write then x=
f(ty, 2) y=g(t,, t,), where f and g are forms of degree r, with coefhi-
cients in o, not all in m. Then x/y=f(1, t,/t,)/g(1, t,/t;) and a=
7@, n/gQ, ), where f and g denote the reduced polynomlals, mod m.
This shows that k() is the residue field of v,,. It is immediately seen
that = is transcendental over k. In fact, if F(Z) is a non-zero poly-
nomial with coefficient in k, of degree r, fix a polynomial F(Z) of,
degree 7, with coefficients in o, which reduces to F mod m, write
F(z,/z,)=f(z,, 25)[2{, Where f is a form of degree r (with coefhicients
in o), and consider the element £=f(t,, #,)/t,”. Since not all the
coefficients of f are in m, we have v,(f(¢,, t,))=7, whence v,(£)=0.
Therefore the v,,-residue of ¢ is different from zero. But this residue
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is obviously F(r). Hence F(r)#0, which proves that 7 is transcen-
dental over k. Thus, the residue field of vy, is a simple transcendental
extension of k (=o/m), and this justifies our term m-adic prime divisor
(see Appendix 2).

Let v be any other valuation of the quotient field of o, centered at
m and different from the m-adic prime divisor v,. We set y=o(m),
i.e., y=min{ov(t,), v(t,)}. Let, say, v(¢,)=vy. Since vis not the m-adic
prime divisor v,,, there exists an element x in o (x#0) such that v(x) >
ry, where r is the order of x. If we write, as above, x=f(t,, t,), then
we find that v(f(1, £,/t;)) >0. Thus, if we denote by { the v-residue
of t,/t; then we find f(1, {)=0, and hence { is algebraic over k. This
conclusion holds for every valuation v which is centered at m and is
different from the m-adic prime divisor v,, of o.

DeriNiTION 1. Let §(z,, 2,) be the irreducible form in k{z,, 2,] such
that §(1,0)=0 (the form g is determined only to within an arbitrary
non-zero factor in k). Then g(z,, 3,) is called the DIRECTIONAL FORM of
the valuation v.

The directional form of v is, of course, of positive degree. We
agree to regard 1 as the directional form of the m-adic prime divisor vm.

Lemma 1. Let v be a valuation centered at m and different from the
m-adic prime divisor, and let § be the directional form of v. If x is an
element of o (x#0), of order r, then v(x)>ry if and only if the imitial
form % of x is divisible by g (in k[2,, 2,]).

PrROOF. In the preceding notations we have v(x)>ry if and only if
f(1, 0)=0, hence if and only if f(2,,2,) is divisible by #(2,, 2,) in
k[z,, 2,). Since #=f(z,, 2,), the lemma is proved.

In the sequel we shall also speak of directional forms of an arbitrary
ideal % in 0. We give namely the following definition:

DerINITION 2. If U is an idealino, different from zero, every irreducible
divisor §(2,, ,) of the characteristic form (%) of A is called a directional
form of %. (We agree to regard 1 as a directional form of % if ¢(A)=1.)

2. At this stage we shall introduce a construction which associates
with each irreducible form g(z,, 2,) in k[2,, 2,] another regular local
ring o’, of dimension 2, which dominates o (i.e., which is such that o is
a subring of o/, and m’ no=m, where m’ is the maximal ideal of o0’)
and has the same quotient field as 0. In algebraic geometry this con-
struction is the well-known “locally quadratic” transformation of an
algebraic surface, with center at a given simple point P of the surface.

Let §=g(z,, 2,) be an irreducible form in k{2, 2,l. We denote by
0’;, or simply by o’ (whenever the form g is fixed throughout the
argument), the set of all quotients y/x, where x and y are elements of o,
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such that: (1) order of y>order of x (i.e., if x € m® and x ¢ m**! then
y € m"); (2) g does not divide the initial form & of «.

PROPOSITION 1.  Assuming that g+ z, we set ' =t,[t, (where (t,, t;)
is a fixed pair of regular parameters of o) and R'=volr'l.t  The set of
elements F(r') of R’ (F-polynomial over o) such that the reduced poly-
nomial (mod m) F(2) is divisible by (1, 2) (2 being an indeterminate)
is a maximal ideal in R', and o' is the ring of quotients of R’ with respect
to this maximal ideal. Furthermore, o' is a regular local ring, of dimension
2, which dominates o (and is different from o). The residue field of v’ is
k(a), where o is a root of the irreducible polynomial g(1, 2). The m-adic
prime divisor of v is non-negative on o' and its center in o' is the principal
ideal o't,.

PrROOF. Let G(2)=g(1, 2) and let « be a root of the irreducible
polynomial G(2) in some extension field of k (note that since z,#
(21, 25), G(2) has positive degree). The transformation ¢ of R’ onto
the field k() which associates with each element F(r") of R’ the element
F(a) of k(c) is a mapping. 'To see this it is only necessary to show that
F(¢)=0 whenever F(+')=0 (Vol. I, Ch. I, § 11, Lemma 2). Let n be
the degree of F and write F(2) in the form f(1, 2) where f(z;, 2,) is a
form of degree n, with coefficients in o. The assumption F(r')=0
implies that f(t,, £,)=0. Hence, by the basic property of regular
parameters, the coefficients of f, i.e., of F, are all in m. Hence F(2)=0,
which proves our assertion. The mapping ¢ is therefore a homomor-
phism of R’ onto the field (), and ¢ is not an isomorphism since
@=0o0n m. The kernel of p is a maximal ideal " of R’. An element
F(r") of R’ belongs to v’ if and only if F(a)=0, i.e., if and only if
F(2) is divisible by g(1, 2) in k[2]. This proves the first assertion of
the proposition.

If y/x o’ and n is the order of x, then we can write x=f(¢,, t,),
y=h(t,, t,), where f and & are forms of degree n, with coefficients in o,
and f(2,, 2,) is not divisible by g(2;, #,). Dividing both x and y by
ti* we find y/x=H(r")[F(r"), where H(2)=h(1, 2) and F(2)=f(1, 2).
The fact that f(z,, 2,) is not divisible by §(z,, 2,) implies that F(z) is
not divisible by g(1, 2). Hence F(') ¢ v’, y/x € Ry, and thus o'= R’}..
Conversely, let H(r')[F(r") be an arbitrary element of R'y, where
therefore F(z) is not divisible by g(1, 2). Let s=deg F(2) and let
f(21 22)=21F(2,/2;). Then f(2,,2,) is a form of degree s, and
f(21, 2,) is not divisible by (2, 2,). If n=max (deg H, deg F), then
H(r")[F(r"Y=hy(ty, ts)[f1(ts, t2), where h; and f, are forms of degree

+ If §=2z, the roles of z,, 2, as well as of ¢, and ¢, in this proposition have to
be interchanged.



366 APPENDIX 5

n and fi(2y, 25) =2,""f(2y, 2,). Since F(zy, 25)# 2y, also fi(2y, 2,) is
not divisible by #(2;, 2,), and this shows that H(+')/F(r') € o’. Thus
R'p.<0’, and consequently Ry, =0’. Furthermore, if m’is the maximal
ideal of o’ then o’/m’=R’'[p"=k(«). Thus k() is the residue field of o’.

If x e m we have x=a,t, +a,t,, where ay, a, €0, or x=t,(a, +a,r’)
= F(r'), where F(3)=a,t, +~a,t,. Then F(z)=0, showing that x € m’.
Thus mcm’, m’ no=m, and o’ dominates o. We observe that we have
now shown incidentally that N

(1 R'm = R't,.

The element #,/t, does not belong to o, as follows immediately from
properties of regular parameters (or observe that the residue of t,/t,
in the m-adic prime divisor vm of o is a transcendental over &, while
the vm-residue of each element of o is in k). Henceo is a proper subring
of o'.

Let ¢ be the degree of §(z,, 2,). We fix an element u in o such that
i =g(z,, %) and we set

(2) t’z = u/th.

Then it is clear that ¢, e m’. We proceed to show that ¢, and t',
form a basis of m'.

Consider any element of m’; it can be written in the form y/x, where,
if xem®, x¢ mrtl then & is not divisible by g(2,, 2,) and y e m=.
It is clear that x/t, is an element of R’ which does not belong to p’
and hence is a unit in o’. Therefore v/t,* must belong to »’. If
y € m* 1 then, by (1), y € R't;"+! and y/t," € R't,, and thus y/x € 0't,.
Assume v ¢ m*+!, Then 7 must be divisible by g(z,, 2,). We fix an
element w in o such that & is of degree n— ¢ and such that § = @g(2,, 2,).
Then y—wue m*, or y—wue R'-t,"*1.  Since w(t;" 7€ R’, we find
that y/t,"e R't',+ R't;, showing that y/xeo't;+0't’,. This proves
our assertion that

(3) m' = o't +0't',.

We now consider the m-adic prime divisor o, of 0. It is clear from the
definition of o’ that vy is non-negative on o’. Since vn(t,)=1, the
center of v, in o’ contains the principal ideal 0o't,. Conversely, if y/x
belongs to the center of v in 0’ then in the preceding notations we must
have y e m**1 and we have already shown that this implies that
ylx € o't,. Hence the principal ideal o't, is the center of v, ino’. Thus
0't; is a prime ideal in o’. It is different from m’ since v, (t',)=
Um(#)—¢=0 and since therefore t', ¢ 0'¢t;. This shows that the local
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ring o’ is of dimension 22. Then (3) leads to the conclusion that o’
is a regular ring of dimension 2 and that {¢,, #'y} is a pair of regular
parameters of o’. This completes the proof of the proposition.

The local ring o” which we have just constructed will be referred to
as the “quadratic transform” of o, relative to the directional form g.

If % is an ideal in o and 7 is the order of % then vm(A)=r, whence
0'A<0ty”, o'Ad0’t,;” 1. Hence

(4) D,QI = tl’Q[,)

where 9’ is an ideal in o’. We call %’ the transform of % in o’.

PROPOSITION 2. Let ¥ be an ideal in o, of order r, and let §° be the
highest power of § which divides the characteristic form c(%) of A. Then:

(a) The order r' of the transform %' of % in o' is not greater than o,
but is positive if o is positive. Thus, in particular, %' is the unit ideal if
and only if § does not divide c().

(b) If A is primary for m then A’ is either primary for m' or is the
unit ideal.

PROOF. We fix an element x in o such that the initia! form & is of
degree r and is exactly divisible by g°. Then x'=x/t;ye?¥’. Let
&= gof, where J is of degree r—aq (¢ being the degree of §), and let
v be an element of o such that =y. Then x—u° € m+1, where u is
the previously chosen element of o such that #=g. Dividing through
by t,” and setting ' =v/t;"7°¢ we find (using (1)) that ' —#',%0' € 0't,
(recall (2)). Now, since @ is not divisible by g, ' isa unitino’. Hence
x' ¢ m'o+1 showing thatr' <¢. If ois positive then the above argument
shows that if x is an arbitrary element of % and x’'=x/t,” then x" € m’
(and in particular, x" € 0't, if x € m™*1). This shows that if o is positive
then %'<m’, completing the proof of part (a) of the proposition.

Assume now that o is primary for m. If ¢(%) is not divisible by g
then we know already that 9U'=(1). If ¢(%) is divisible by g, and if,
say, as in the preceding part of the proof, x is an element of % such
that & is of degree r and is exactly divisible by g, then we have in o’
the element x” such that ¥’ —#',%" € 0't;, where ¢’ is a unit ino’. On
the other hand, since  is primary for m, some power of ¢, belongs to
¥, say #," € %, where we may assume #>7r. Then t,"7 €, i.e., some
power of ¢, belongs to ?'. Since x’ € 9, this implies at once that also
some power of t', belongs to %', showing that %’ is primary for m’.
This corapletes the proof.

We shall now study the class of ideals % in o which are contractions
of ideals in o’ (any ideal 2 in this class is then necessarily the con-
traction of its extended ideal 0'%). We shall refer to the ideals of that



368 APPENDIX 5

class as contracted ideals. (Later on we shall use this term in a wider
sense, since we shall replace o’ by a semi-local ring o', no’yn - -- no’,,
where the local rings o'}, 0’5, - - -, 0’,, are quadratic transforms of o,
relative to distinct directional forms g,, g5, - -+, ,..) We observe that
every power of m is a contracted ideal, since o’'m*=0'¢," and clearly
0't," No=m" {every element of 0o'¢," has value =7 in the m-adic prime
divisor of v). We also observe that as a consequence of Proposition 2,
part (a) we have the following

CoroLLARY. If % is a contracted ideal and § does not divide the
characteristic form c(X) of A then A is a power of m

For we have then %'=0’ and hence A=0't,;” no=m’, where r is
the order of .

ProPOSITION 3. Let % be an ideal in o, primary for m, let r be the
order of %, let s be the degree of c(X) and let

(5) B = Arm .

If W is a contracted ideal then c(¥) is a power of § (possibly, «(¥)=1),
and we have

(6) A= Bm—.

Furthermore, B also is a contracted ideal, and we have r(B)=s, ¢(B)=
().

PROOF. If § does not divide ¢() then, by the above corollary,
A=m", ¢(A)=1, and all the assertions of the lemma are trivial (B is
now the unitideal). We shall therefore now assume that g divides ¢(%).

Let = g* be the highest power of § which divides ¢(%), and let o be
the degree of . We fix in % an element x such that & is of degree r
and &=@J, with @ and ¢ relatively prime; here J is a form zﬁ(zl, 2p)
of degree r — g, with coefficients in . We assert that for each integer
721 there exist elements x; and y; in o such that
™) x—xy;emi; & =¢,5; =
The assertion is trivial for j=1 (take for x, and y, any two elements
of o such that &, =@, #;=4). Assume that, for a given j, a pair of
elements x; and y; satlsfymg (7) has already been found. Since ¢
and i are relatively prime, every form in 2,, 2,, of degree =r—1,
belongs to the homogeneous ideal (@, J) in k[z,, 2,].+ We apply this

+ This is trivial if y=1. If the degree r—a of :ﬁ is positive we observe that
the space of forms of degree r —1 which can be written as linear combinations
A, o 1§+ B,_13p, where A and B are forms of degree 7 —o—1 and o —1 respec-

tively, has precisely the desired dimension 7(=(r — &) + o) and thus consists of
all the forms of degree r—1.
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fact. If x—x;v; € m"/*1 we set x;.,=x;, ¥;.;=y;. In the contrary
case, we express the initial form x=xy; (of degree r+j) as a linear
combination 4,,; ¢+ B, 4, we fix elements v and w in o such that
t=B., W=A4,.; ,and we set x;,,=x;+9, y;.,=y;+w. Thenitis
seen at once that x—x;,,V;, € m’+1+1 %i.y=@, ¥j.1=4. This
establishes (7) for allj.

We now define 8 by B=%:m"~°, whence

(8) AD mr—oB.

Since ¥ is primary for m we have m"J< m’—® for large j. For such

a large j relation (7) yields the inclusion x;¥; € %. Hence tx—’ t:):’_ -e A,
SN2}

where 0% =t"%". Since §; is not divisible by ¢ and is exactly of degree
r—o, y;/ty’" is a unit in o’. Hence x;/t,” € A’ and o'x;m™ o<, A =
o'%.  Since oA N o=1, it follows that x;m™ec W, x; €V, x,y; € m"”%
i.e., x belongs to m’—*®B. This holds for every element xof A whlch
does not belong to m™*! and is such that % is not divisible by g+
Now, if y is any element of % which does not satisfy either one of these
two conditions, then we see that both x and x+y belong to m"—9,
and hence y € m°B. We have thus shown that A< m’9, and this,
in conjunction with (8), yields the equality A =m"—8. This equality
implies that ¢(%) is at most of degree o. Since @(=g") divides (%)
and is of degree o we conclude that ¢(%)=g" and that o=s. We thus
have (5) and (6). By (6) we have at once that 7(8)=s and that conse-
quently ¢(B)=c(A)=2" Thus everything is proved except the asser-
tion that B also is a contracted ideal. Now, we have 0’8 =#%’, where
o’ is the transform of %A (ie, o'A=A'). If then yeo'B no then
o'ymr—sC U’ =0'%, whence ym—~<A, yeW:m*=B. This com-
pletes the proof.

CoroLLARY 1. If o is an integer such that r=oc=s and we set
A:m—o=C, then A=m"C, €=m"B, and € also is a contracted ideal.

We have Y=m"—B=m"°.-me—B, hence m B¢, and thus
Acm—C<U. Consequently A=m"°€. The proof that € is a con-
tracted idea! is identical with the above proof that ¥ is a contracted
ideal (with s replaced by ). Furthermore, we have €: mo—s=(%: m"~°):
mes=9:m's=PB. Since 7(€)=o0, (€)=c(%A), the relation E=m"—Y
follows by applying Proposition 3 to the ideal € instead of to .

COROLLARY 2. If U is a contracted ideal, primary for m, and q is any
integer =1, then m% also is a contracted ideal.

Let ®=0'm?A no. Using the notations of Proposition 3, we have
r(D)<g+7r (since Do>mY), and vu(D)=g+7r. Hence 7(D)=g+r.
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The characteristic form ¢(D) of ® divides ¢(ma), i.e., ¢(A). If then
o is the degree of ¢(D) we have o <s. Since D is a contracted ideal,
we have, by Proposition 3:

D = mreog,

where €=®:m"*9 is again a contracted ideal. Since 0’®=0"mA,
it follows that o’'m’—*€=0"%. By Corollary 1, applied to the ideal D
instead of to ¥, m"°E is a contracted ideal. Hence m™*E=o'm"—E n
0=0"ANo=A. Therefore ®=mA, which proves our assertion.

CoROLLARY 3. If U is a contracted ideal in o, primary for m, then the
initial form module of U is the set of all forms of degree r (=order of %)
which are divisible by c(Y).

This is a direct consequence of (6).

3. We now undertake an extension of the preceding results to the
semi-local case, as explained below.

Let gy, 8o, - - -, &, be distinct irreducible forms in k[2,, 2,] (distinct
in the sense that no two are associates) and let o’; be the quadratic
transform of o, relative to the directional form g;. We set

) o' =0 n0,N--- N0,

It is not difficult to see that o’ is a semi-local ring having m maximal
ideals ', W'y, - - -, WM',,, where M’; =0’ n m’;, m’; being the maximal
ideal of o', and that o’;=0y.,. This is obvious if g;#z, for i=

1,2,.--,m, because in that case each o', is a ring of quotients of R’
(=0[t,/t,]) with respect to a maximal ideal p’;; and similarly if Z;# 2,
fori=1,2,-.-,m. If both 2, and 2, are among the m forms §; and

if & is an infinite field, we can choose a linear form ¢,2; + 52, (¢4, ¢, € R)
which is different from all the g;, and we can reduce the situation to
the case §;#2, (i=1,2,---,m) by choosing a new pair of regular
parameters 74, 7, such that #,=c¢,2,+¢,2,. The following procedure
will work, however, also in the case of a finite field k. We choose an
irreducible form A(z,, 2,) in k[z,, 2,] which is different from all the g,
we fix an element ¢ in o such that §=~A(z,, 2,) and, denoting by A the
degree of k, we consider the ring

e t21, 1]
S =05 y ooy —""
A 3

The ring S’ consists of all quotients of the form 7/£", where 7 is an
arbitrary integer and n € m™. Since g; does not divide £, S’ is a sub-
ring of o’;. Let m’; n.§'=9";. Then p’; is a prime ideal in §’, and we

have S’y ©o’;. On the other hand, let y/x be any element of o',
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where x, y €0, & is not divisible by g; and order y=order x. TUpon
replacing, if necessary, x and y by x* and x*~!y respectively, we may
assume that the order of x is a multiple of A, say #»A. Then writing
y/x as a quotient of ¥/£” and x/£" we conclude at once that y/x € S'p. .
Thus o’,=S’p,i, 71=1,2,---,m, showing in the first place that each
p’; is a maximal ideal of S’ and that—since S’ is noetherian—o’ is a
semi-local ring. The relations o', =o'y, are now obvious. It now also
follows that o’ is the set of all quotients y/x, where x, y €0, % is not
divisible by any of the m forms g;, and order of y 2 order of «.

ProrosiTiON 4. Let % be an ideal in o, primary for m, and let r be
the order of A. We assume that o'% 0 o=%, where o’ is the semi-local
ring defined in (9). We set

(10) Ay=0ANo, = 1,2,'-~,m.~
Then

(11) A=A nWp - NY,.
The characteristic form c¢(%;) of U; is a power of §;:
(12) oU;) = gM, N 20)

and we have

(13) o = TI g

If () =1 then A is a power of m. If () # 1 and if for a suitable labeling
of the indices we have \;21 for i=1,2,---,n (1Sn<m) and A;=0 for
i=n+1,.-., m, then setting

’=D’1n0’20 e nD’n
we have already
O'UANo = A

PROOF. We set € =0'%, €' ;=0 A=0"€". From the theory of
quotient rings we know (Vol. I, Ch. IV, § 11, Theorem 19) that €'; n o’
is obtained from €’ by considering an irredundant decomposition of
¢’ into primary components and deleting those components which are
not contained in M’; (recall that o’;=o'yy. ). Since My, M'y, - - -,
M’ are all the maximal ideals of o', it follows that

3

(@’i n D’) =€,
i=1
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m
or equivalently, since {1} €',<o’:
i=1

m
’ ’
n ¢, =¢,
. i=1
ie.,

(14) A o2 = oo,
i=1

Using (10) and the assumption that oA No=%A, we find (11). Now
each %, is, by definition, the contraction of an ideal in o’;. Hence, by
Proposition 3, we have that ¢(,) is a power of g;, which proves (12).

Since A=Y, we have 7(%;)<7. On the other hand, since A, <o’ A
we have v,,(%;) 2 v,(¥) =7, where v, is the m-adic prime divisor of o.
Hence ()= 7, and thus

(15) ;) =7 = r(N).

Applying again Proposition 3 we find that if we set

(152) AWy:mr— = B,

where s; =degree of ¢(¥;), then

(16) A; = m"5B,.

We set s=s;+8,+ --- +5,, and we observe that since 7(B;)=s; we

have m"s8,B,- - B, <B,m 5 <A,;, and similarly that m’—B,B,
<8, 1=1,2,---,m. Hence

(17) msB,B, - - - B, A

Since ¢(B;)=c(%,)=g, the characteristic form of the ideal on the
left-hand side of (17) is [ g;4. Hence it follows from (17) that ¢()
divides [T g4. On the other hand, since A<=, §;% must divide ¢().
(In this argument one must bear in mind that the ideals %, %; and
m' 58,9, - - - B,, all have the same order 7.) This proves (13).

If ¢(A)=1, then all 5; are 0, A;=m" (by (16)), and thus A=m".

If ¢(A)#1 and 5;,=0 for i=n+1,---,m, then A,=m" and o' A=
o' A, =o' m fori=n+1,.-.,m.Hence, by (14)

oA =0 ANLAN --- N Ano'm”.

Now, each ideal o’;m is the center, in o’;, of the m-adic prime divisor
of o. Hence o'm” is the symbolic power B’ where B’ is the center
of vy ino’. It follows that every prime ideal of 0"Y is contained in one
of the maximal ideals %', M',, - - -, M’,. Therefore o' A=L"A N0,
and thus A=A No=LC"AN0 No=LC"ANo.
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This completes the proof.

We call an ideal % in o a contracted ideal if we have o'% no=% for
some semi-local ring o’ which is an intersection of suitable quadratic
transforms o'y, 0’5, - - -, 0, of 0.

COROLLARY 1. Let % be an ideal in o, primary for m, let g, 85, - - -,
&, be the distinct irreducible factors of the characteristic form c(%) of %,
let o'; be the quadratic transform of o, relative to the directional form g,,
and let o'=0'ynNo'yn -+ No',. If Wis a contracted ideal then already
o' U No=U (if c(N)=1 then A is a power of m, and we have V'A No=A
for every quadratic transform o’ of %).

COROLLARY 2. The assumption and notations being the same as in
Corollary 1, the initial form module of U is the set of all forms of degree r
(r=order of ) which are divisible by c().

This follows from (17).

THEOREM 1. (Factorization theorem for contracted ideals.) Let % be
a contracted ideal in o, primary for m, let r be the order of %, s the degree
of c(), let c(W)=g g - - - g, \m, where the §; are the distinct irreducible
factors of (%), and let s; be the degree of M. There exists one and only
one factorization of % of the form

(18) A= m—B,B,---B,,

such that each B; is a contracted ideal whose characteristic form ¢(B,) is a
power of §;. If we denote by o'; the quadratic transform of o relative to
the directional form §; and set

(19) o’'Ano = A,

then

(20) ‘ B, = U 1mr—,

and we have

(21) A = m™—uDY,,

(22) A=A 0nAn --- NY,
(23) ) =r.

Furthermore, we have 8,8, - - - B, =A:m",
PROOF. We first prove the uniqueness of the factorization (18).
Let (18) and

o = m—B, B, - B,

be two such factorizations. We have ¢(%)=¢(B,)c(By)- - - ¢(B,),
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hence ¢(%B;)=g>. Furthermore, r(¥)=r—s+r(B)+r(B)+ --- +
r(%8,,), and since r(%B;) = deg ¢(B,) =s;, it follows that »(B;)=s;. Simi-
larly, o(B,)=gM, r(B,)=s;. Since B; is a contracted ideal and ¢(%B;) is
a power of g;, we have 0’8, N 0=9%3,, by above Corollary 1. Similarly
o' B, no=\B,. Now, assuming, as we may, that z,#7,(2;, 2,), we
have o'8;=0",¢," for i>1 (Proposition 2, part (a)). Hence o' %=
t75w0'B,. Similarly o' 2€=¢7"w0';B,. Hence o' ;8,=0';8B, and
hence B;=0" B, No=0"B,No=2,. Similarly B,;=9; for all i=
1,2,--.,m

To prove the existence of the factorization (18) we define the ideals
%; by (19) and the ideals B, by (20). Then, by Propositions 3 and 4,
and by (15), the relations (21), (22) and (23) are satisfied, the B, are
contracted ideals, and we have ¢(%,)=g, by (12). Furthermore, we
have by (17):

m—B,B, - - B, <A

To prove the opposite inclusion, let x be any element of % such that
the initial form # of x is precisely of degreer. Let =y, - - - 0,41,
where ; is a power of g; for i=1,2,...,m, and .., is not divisible
by any of the g;. Let p; be the degree of §; (1=1,2,-.-,m+1), so
that p;=s; fori=1,2,--- ,m,and p;+py+ - -+ +p, . =r. We assert
that for any integer j=1 there exist elements x;;, x5, « + -, X9, ; 1N ©
such that

(24) X—Xy;Xq; * * .xm_‘_l'jemfﬂ; ‘Q‘.J. = Ql;i, 1 = 1,2’ .. .’m+1‘

The assertion is trivial for j=1 (take for x;; any element of o such that
x;;=1,). Assume that for a given j we have already determined m+1
element x;; satisfying (24). If x—x;x5; - x,., ;€ m+* we set
;~ In the contrary case, we consider the initial form of
X—Xy;%g; *** Xy ;- Lhis is a form of degree r+j. Now, since any
two of the forms i, are relatively prime, it is a straightforward matter
to show that the homogeneous ideal in k[z,, 2,] generated by the
m+1 forms @; =l - - - $uu)/P; contains all forms of degree=r—1
(=p1tpat -+ +pur1—1). [The proof is by induction with respect
to m, the case m=2 having been settled in the course of the proof of
Proposition 3; see footnote on p. 368.] We can therefore write

Xi,jr1=X

m+1

X—X3;X05 * * * Xpt1,j = Zl A5
i=

where 4; is a form in 2, 2,, of degree p;+j (with coefficients in &).
We fix in o an element u;, such that ;= 4; and we set x; ;.,=x;;+u,.
The m+1 elements x; ;., satisfy all our requirements.
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Since the ideals B; (=1, 2, - - - , m) are primary for m, we can take
in (24) j so large as to have
(25) micm 8,8, .- B,.

For such a large value of j we will have, by (17): xy x5, - - - %%, ; € %.
We may assume that §,#2,. Since iy s, -+, ¥, $upy are not
divisible by g, and since the initial form $s - - - ,., Of xyx5; - - -
11, is of degree 7—p, it follows that 3‘3’"_%+*“ is 2 unit in o’,.
1
Hence, if we set o’ A=¢,"%’y, then x,;/t,1€ W'y, and thus x,;m"c
o' A No=2A;, and x,; €Ay :m 1. Since p, 2s,, we have, by Corollary
1 of Proposition 3: %Aj:m'7=m,~4B,. Hence x,;€emnB,.
Similarly, x;; € m#=%;, i=1,2,...,m, and we have also x,,, ;€
mem+1. Hence xy;- %5+« « Xpypq,; € MB,B,y, - - -, B, whence by (24)
and (25) we and that

Xm

xeM BB, - - B,

This inclusion holds for every element x of % such that x ¢ m’+%, but
then, as in the proof of Proposition 3, we see at once that it holds for
every element x of %. Hence A< m"—B,B, - - - B,,, and this estab-
lishes (18).

Since, by (18), m’— factors out from %, it is clear that if we set
D=U:m"~ then A=m"D. To complete the proof of the theorem
we have only to show that D=%,8,---8,. We observe first of all
that from o’%A N o= follows that o’D No=D, i.e., that also D is a
contracted ideal. In fact, if x€0’D no then x=3 x’;y;, where x"; € 0’
and y;€®. Hence xm <o ANno=A, xeD, as asserted. We can
therefore apply Theorem 1 to the ideal ®. We have to find, first of all,
the ideals o', ® no. Let A;:m—==D,. Since o’ W; No=%; and r=
(%), s=s;=deg (%), it follows from Corollary 1 to Proposition 3
that %, =m"—®D,. Hence, assuming—as we may—that z, # §;, we have
o’ A, =t,""0";D,. On the other hand, we have o', %;=0"% (by the
definition (19) of %), whence o' ¥, =0 ;M =D=¢""0",D. Hence
150", D, =t7"0",D, o', D;=0";D. But from o’ no=2; follows—
as was just shown above—that also 0/;®; N0=9;. Hence we conclude
that o/, D No=D;,i=1,2,--.,m Since A=m"D, we have (D)=
(), so that the integers s; of Theorem 1 are not affected by passing
from A to ®. We have now 7(D)=s. By Corollary 1 to Proposition 3
we have that D;:ms—5i=%;:m—5, ie, D;:m~*=B;. Thus also the
ideals B; are not affected. 'Thus the analog of (18) for D (instead of )
is D=9,8,---B,. This completes the proof of the theorem.
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CoroLLARY 1. If % is a contracted ideal and q is any integer =1
then also mU is a contracted ideal.

It is sufficient to consider the case in which % is primary for m since
every ideal in o is of the form x%, x € v, % primary for m. We use the
notations of Theorem 1, we set 0o'=0'; 003N --- N0, and D=
o'mAno. It is clear that r(D)=¢g+r. We have o' D=0'mUA=
o' ;me*r—;B,, and since ma+—;Y; is the contraction of its extended
ideal in o’; (Proposition 3, Corollary 2), it follows that if we set

Qi =0 ,iQ N 0,
then
<Di = mq*’_’i%,.

Thus ¢(D,)=¢(B;)=F. I weset D,;:me*7— =B, then D, = metr—=§
and therefore, by the uniqueness of factorization of contracted ideals,
we have B,=9,. By Theorem 1, applied to D (instead of to %), we
have therefore ® = metr—B,B, - - - B,, = maA.

CoroLLARY 2. Let B,,B,,---,DB, be contracted ideals whose
characteristic forms ¢(B,), ¢(B,), - - -, «(B,,) are two by two relatively
prime (any number of the c(B;) may be equal to 1). Then the product
BB, - - - B, s also a contracted ideal.

If some ¢(%B;) is 1, say ¢(B,)=1, then B, is a power of m (Proposition
4), and from Corollary 1 of Theorem 1 it follows that it is then sufficient
to prove that B,8,--- B, is a contracted ideal. We may therefore
assume that ¢(B,)#1 fori=1,2,--. m. A further obvious reduction
is permissible, whereby we may assume that every B, is primary for m.
Finally we can carry out a third reduction to the case in which each
characteristic form ¢(B,) is a power of an irreducible form. In fact, by
Theorem 1, each contracted ideal which is primary for m is a product
of contracted ideals having only one directional form.

Let s;=deg ¢(®;). If the order r, of %B; is greater than s; then
m7i—s; factors out from %B,, i.e., we have B;=m"—¢; where €, is a
contracted ideal (Proposition 3), and Corollary 1 of Theorem 1 allows
us to replace in the proof B; by €, We may therefore assume that

ri=s;,1=1,2,---,m Wesets=s +s,+ -+ +s,, we denote by 0’;
the quadratic transform of o relative to the directional form of %B;
and we set A=0'B;B,--- B, No, where o'=0";n0'5N --- N0’

We have then 0'%=0'8,8,---9B,,, and hence o' A=0",8,B,--- B, =
o’;ms—B;. Consequently, if we set =0 no then A;=mB,
(since both %; and ms—*%B,; are contractions of ideals in 0’;). From
this, by unique factorization, we conclude that B; =%;: m*=, and from
Theorem 1 we deduce that A=B,B,--- B,
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COROLLARY 3. With the assumptions and notations as in Theorem 1,
the decomposition (22) of % is the only decomposition of U into contracted
ideals ¥; satisfying (23) and such that ¢(%;) is a power of g;.

Let 91 Ay 1Ay -+ - N, be another such decomposmon Then
(%) dxvxdes ¢(), and thus the degree o; of ¢(¥;) is not greater than s,.
Since mr—e; factors out from %;, we can write oA, =m—=iB,, where B, is
again the contraction of an ideal in 0’;, We have m—$,8,-..8,<
m—B; =%;, hence

(26) mr—s%1%2 A %mc mr_:%l%2 M %m (= Q().

On the other hand, m"=%,;B,- - %B,=m"~$,, and passing to the
extended ideals in o’; we find that o’;m™8;<o’,; m"—B,. Since both
9B, and B; are contracted ideals it follows that SB,C B,. Therefore, by
(26), we have

m=sB B, - B, = B, B, - - B, (= A).

By the unique factorization property of contracted ideals it follows
now that 8,=9%,, whence %,=9; (i=1,2,--.,m).

We conclude the theory of contracted ideals with the following result:

THEOREM 2. Any product of contracted ideals in o is a contracted
ideal.

PROOF. Let®,, %, - .-, A, be contracted idealsino. Itissufficient
to give the proof in the case in which the ¥; are primary for m. Using
Theorem 1 we begin by factoring each %, into a product m*( %, - - -
A, of contracted ideals such that ¢(%;;) is a power of an irreducible
form in k[2,, 2,). Then, in the set of my+my+ - - +m, ideals %;;
we group together those ideals whose characteristic forms are powers
of one and the same irreducible form in &[z,, 2,], we form the product
of the ideals belonging to one and the same group and we denote the
various partial products thus obtained by %B,,8,,---,%, By
Corollaries 1 and 2 to Theorem 1 it is sufficient to prove that each B,
is a contracted ideal. We therefore may assume that the characteristic
forms ¢(%;) of the given 7 ideals %; are powers of one and the same
irreducible form g in k[2,, 2,], # 1. The proof of the theorem will
now be based on (and, in fact, will be an immediate consequence of)
the following two lemmas:

Lemma 2. If % is an ideal in o and R' is the ring o[t,[t,], a necessary
and sufficient condition that we have R'U No=% is that the following
equality be satisfied:

(27) Aoz, = Arm.
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PROOF. Assume that R no=9% and let x be any element of
A:ot;. Then xt,=ae N, xty=a-t,/t; € R'ANo=Y, and so
x € A:(ot,Lot,) = Arm,
which proves (27).

Conversely, assume that (27) holds true and let x be any element of

t O\
R'%no. Then x= Y a‘(t—f) , a;€ %A We see that g, is divisible by

i=0
t, in o, say a,=tb, and since a,€ % it follows from (27) that #,b,
also belongs to %«. If, then, we set #,b,=5, ; we find

x =n22 (t ) +(a,,_1+b,,_1)(t2)n_ .

i=0
This is a new expression of x as a polynomial in #,/¢;, with coefficients
which still belong to ¥, but the degree of the polynomial is now at
most n—1. Continuing the reduction of degree we arrive at the
desired conclusion.

Lemma 3. If two ideals %, U, are such that A, :ot,=U;:m and
Wy:0t, =y m, then we have also A W yi0t, =AU Wy:m

PROOF. Since o/ot, is a regular ring of dimension 1, hence a principal
ideal ring, there exists in ¥; an element x; such that (¥, #,)=(x;, t,),
i=1,2. We observe that our assumptions on %; and %, imply that
A, tot, (1=1,2). Hence neither x, nor x, is divisible by #,. Now,
let ¢ be any element of %,A,:0¢,. Then

£ty = 2 (g2 + Byjty)(@g%p+Byjty),
where the o’s and f’s are in o and o;;x;+B, .2, €. Since x; €%,
it follows that B;f,€®; and hence B;z,€%;. Furthermore,
2 @y;00;-xy%, is divisible by #;, and therefore X «a,; is divisible
by #,. We then find easily that &£,7, has an expression of the form
t,(yxx,+8), where yeo and 8%, A,. Therefore &t,e AA,, and
this completes the proof.
We now apply these lemmas. Let o” be the quadratic transform of
o relative to the directional form g. Since o'¥; no=%;, we have
a fortiori, R'%; no=,;, 1=1,2,- .., m (we assume that §+# 2, and that
therefore o'>R’). Hence, %;:0t,=%;:0om (Lemma 2), A:ot;=A:m
(Lemma 3) and thus R'% no=9% (Lemma 2). Now, ¢(%) is a power
of . 'This implies that R'%=¢,"%, where ¥ is an ideal in R’ which is
either the unit ideal or is primary for the maximal ideal »’ in R’ such
that o'=R’,,. Hence all the prime ideals of R’ are contained in p’.
Therefore o'%N R'=R'Y, and thus o'A No=A. This completes the
proof of Theorem 2.
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4. We now apply the preceding theory to complete ideals in o.
The application is possible since it is not difficult to see that every
complete ideal A in o is in fact a contracted ideal. 'To prove this it is
sufficient to consider the case in which % is primary for m. Let
A=a,Na,N --- N g, be a representation of A as a finite intersection
of valuation ideals (Appendix 4, Corollary to Theorem 3), and let v;
be a valuation with which q; is associated. Each v; has necessarily
center m in o. Let g; be the directional form of z; (Definition 1).
For each 7 such that §;#1 (i.e, such that o; is not the m-adic prime
divisor v, of o) we consider the quadratic transform o’; of o relative to
g; and we denote by o’ the intersection of all those rings 0’;. In view
of the definition of o’; it follows at once from Lemma 1 that v; is non-
negative on o’;. Hence each of the v; is non-negative on o’ (and this
includes the case in which v;=v,, for v, is non-negative on every
quadratic transform of o). Let q;=0 N £,, where £; is an ideal in the
valuation ring of v; and let q’;=9; no’. Then % is the contraction to
o of the ideal q’, N a'y,Nn -+ - N, of o', which proves the assertion.

Let % be a complete ideal in o, primary for m, of order . We can
write then

(28) A=mNaNnan--- Na,

where q; is a valuation ideal in o, associated with a valuation v; which is
non-negative on o and is centered at m, and where we now may assume
that each v; is different from the m-adic prime divisor of o (in view of the
presence of the component m” in (28)). We say that a decomposition
(28) of A into valuation ideals (one of which is m”, where r=order of %)
is irredundant if no q; is superfluous.

Lemma 4. Each prime divisor of the characteristic form c(%) of A is a
directional form of one of the v;. If the decomposition (28) is irredundant
then, conversely, the directional form of each v; (i=1,2, - - - n) is a prime
divisor of c().

PROOF. Let g; be the directional form of v;, let o', be the quadratic
transform of o relative to §; and let o’=0", N 0’500 --- No’,. We have
just seen that % is then the contraction of an ideal in o’. The first part
of the lemma follows therefore from the expression (13) of ¢(2) given in
Proposition 4. To prove the second part of the lemma, assume that
one of the g;, say g,, is not a divisor of ¢(%). We shall show that q,
is superfluous in (28). By assumption, there exists an element x in
A such that the initial form & is of degree 7 and is not divisible by g,.
We have then v,(x)=v,(m") (Lemma 1), and since x € q, and q, is a
v,-ideal, it follows that m"< q,, showing that q, is superfluous.
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Using this simple lemma we can now prove the following important
complement to the factorization theorem (Theorem 1):

THEOREM 1'.  If the ideal % of Theorem 1 is complete, then the factors
B; in (18) and the ideals %; in (19) are also complete.

PROOF. We consider an irredundant decomposition (28) of % into
valuation ideals. By Lemma 4, the set of directional forms of the
valuations vy, v,, - - -, v, coincides with the set (g, 2,, - - -, §,,) of the
irreducible factors of ¢(%). For each i=1,2,--- m, let %; be the
intersection of m” and of those a; for which v, has directional form ;.
Then

A= nAn - 0%,
where each %, is a complete ideal, and again by Lemma 4, ¢(%,) is a
power of g, Furthermore, we have obviously 7(¥;)=7. From the
uniqueness of the decomposition (22) (Theorem 1, Corollary 3) it
follows that %; =%, and thus %; is a complete ideal. The complete-
ness of B; now follows directly from the relation (20) in Theorem 1.

CororLARY 1. If W is a complete ideal and q is any integer =1, then
also maA is a complete ideal.

We may assume that % is primary for m. Let 8=m, let B’ be
the completion of B and let 7 be the order of . It is clear that the
complete ideal B’ n me+” (which is primary for m) has order g+
(since ¥ has order g+7 and B<= B’ n me™). If, then, we denote by o
the degree of the characteristic form ¢(%’ n me+7) of B’ N m?*” we have,
by Theorem 1, B’ n metr=me+—eB, where B, =(B' N ma+r): matr—o,
Now, (B’ nmetr) divides ¢(B) and ¢(B)=c(Y), while the degree of
) is 7. Henceo=r. Let € be the completion of m"—®B,. Then
from B'Nnme7=me- P, follows that B'nme7=m (since
B’ nme7 is complete). We have m€@EcB'=(maA) and mA=
BB nmitr=mQ, ie, mE<(m) and mA<mE. Applying
property (g) of Proposition 1, Appendix 4, and observing that % and
€ are complete ideals, we conclude that =€ and that consequently
maY =B’ n ma*7, showing that m9¥A is a complete ideal.

CoOROLLARY 2. If the ideals %B,, B, ---,9B,, of Corollary 2 to
Theorem 1 are complete, then also the product BB, - - - B,, is complete.

We refer to the proof of Corollary 2 to Theorem 1. All the pre-
liminary reductions carried out in that proof are applicable also in the
present case. In the last part of that proof (where we dealt with the
case 7;,=s;, i=1,2,---,m) we found that if we set A=3,8,---9B,
then A=A, NA, N --- NY,, where A, =B, m*. Since B, is com-
plete, %; is also complete by the preceding Corollary 1, and thus also
A is complete.
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The further development of the theory of complete ideals in o
depends on the repeated application of successive quadratic trans-
formations. If o’ is a quadratic transform of o then we may consider
any (of the infinitely many) quadratic transforms o” of o', and this
procedure can be continued indefinitely, leading to infinite, strictly
ascending sequences 0 <o’ <0”< --- <0< ... of regular rings o)
of dimension 2, each o being a quadratic transform of its immediate
predecessor 0G~D(0(® =p). For each ideal % in o we have defined its
transform 2’ in o’ [see (4)]. The property of % of being a contracted
ideal is not preserved under quadratic transformations, i.e., the ideal
A’ in o’ is not necessarily a contracted ideal (in the sense of the definition
given immediately after the proof of Proposition 4, with o being
replaced by o’; see p. 373). However, for complete ideals we have the
possibility of using an inductive process, in view of the following
property of these ideals:

ProrosITION 5. If U is a complete ideal in v and if o' is a quadratic
transform of v, then the transform %' of A in v’ is also a complete ideal.

PROOF. Since o'¥ differs from %’ only by a principal ideal factor, it
is sufficient to prove that o' is a complete ideal in o’. We may assume
that % is primary for m, for any ideal B in o differs from such an ideal %
only by a principal ideal factor (unless ¥ itself is a principal ideal, in
which case 0’98 is also principal, hence complete, as o’ is integrally
closed).

Let the quadratic transform o’ of o be relative to the directional
form g. We may assume that g#z,. Let 7 be the order of A. If
does not divide ¢(%), then 0'A =o't,” (Proposition 2, part (a)), and thus
09 is complete. Assume therefore that § divides ¢(¥) and let g,, g,,
-+ -, 8, be the irreducible factors of ¢(%), where we assume that g,=4.
We apply-the factorization % =m"—8,B, - - - B, given in Theorem 1.
We have 0'8;=0',% if i>1, since ¢(B;) is a power of g; and hence §
does not divide ¢(®B,) if i>1. Therefore o'A=¢;"10"B,; and it is
sufficient to prove that 0’9, is a complete ideal in o’. We therefore
may assume that ¢(X) originally was a power of §. (Recall that, by
Theorem 1, the ideals B; are complete.)

By Lemma 4, the valuation ideals q; which occur in some irredun-
dant decomposition (28) of % into valuation ideals are associated with
valuations v, having g as directional form. Therefore, in order to
prove that an element ¢ of o belongs to % it is not necessary to prove
that we have 9(§) 2 9(¥) for all valuations v which are non-negative
on o; it is sufficient to prove this only for those valuations v, non-negative
on o, whose directional form is either § or 1 (in the latter case, v is the
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m-adic prime divisor of v). In other words: it is sufficient to prove that
v(€) 2 v(Y) for all valuations v which are non-negative on v’. We shall
make use of this observation.

Let y/x be any element of o’ which belongs to the completion of the
ideal 0'%; here x and y are elements of o, # is not divisible by g, and if
n is the order of x then y e m”. If v is any valuation which is non-
negative on o’ then we must have o(y/x) = v(0'%)=v(¥), v(y)=v(x) L
(). Hence v(y)=v(m™A). Now m™ is a complete ideal (Theorem
1", Corollary 1), and its characteristic form is ¢(%), hence a power of 3.
Therefore, by the above observation, applied to m™, the validity of
the inequality o(y)=v(m™X) for all v which are non-negative on o’
implies that y € m"%. Hence y € ¢, 0¥, and since x=1¢,"-x" where &’
is a unit in o, it follows that y/x € o'%. This completes the proof.

By Theorem 3 of Appendix 4, every complete ideal! % in o has a
decomposition into valuation ideals belonging to discrete valuations of
rank 1. Let

(29 A=09,00,0 -+ Na,

be such a decomposition of % and let v,, v,, - - -, v, be the corres-
ponding valuations. Let q'; be the v;-ideal determined by the con-
dition v{a’;)=v,(%). Since A<gq; we have v, (A)=v,(q;), hence
a';<q;and 9';nq’yN -+ Ng, <A Since A< q’; for all 7, it follows
that A=q';n 4’50 --- nq’,. Thus we may impose on the decom-
position (29) the following further condition:

(30) (W) =v{q), i=12,---,n

A decomposition (29) of % into valuation ideals belonging to discrete
valuations v, vy, - - - ;0,, of rank 1, shall be called a standard decom-
position of U if the relations (30) are satisfied.

Each standard decomposition (29) of % determines the non-negative
integer max {v,(%), vy(A), - - -, v(A)}. We denote by (%) the mini-
mum value attained by this integer as the decomposition (29) ranges
over the set of all standard decompositions of %. Then w(¥) is a
numerical character of %. It is a non-negative integer, and it is clear
that w(%)=0 if and only if A=o.

Let now o’ be a quadratic transform of o, relative to a directional
form g (which we shall assume to be different from z,), let r=order of
A and let o'A=1¢,"A’, so that A’ is the transform of A ino. We wish to
prove that if % is primary for m then

(31) w(W') < w(A). -
We need the following simple lemma:
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Lemma 5. Let (29) be a decomposition of a complete ideal U into
valuation ideals o; and let v; be a valuation (non-negative on o) such that
q; 15 a v;-ideal (we do not assume that the v; are discrete). Assume that
A is primary for m and that the decomposition (29) satisfies conditions
(30). Let h be an arbitrary integer, let r be the order of N and let &; be
the v;-ideal determined by the condition: v(§,)=v,(m" ). Then

(32) mA = §,N§,0n --- N§, nmh

PROOF. Denote by ® the ideal on the right-hand side of (32).
Since m has order r+ % and since m"MA<D< m ™tk also D has order
r+h. Therefore ¢(®D) divides ¢(¥), and the difference between the
order r - of D and the degree of ¢(D) is at least equal to A. Therefore,
m” factors out from ® (Theorem 1). Let ®=m"E. Since mMA<
Dcf; and v (mA)=20,§;), it follows that v,(D)=7v,(§,). Thus
v(mF) + v,(€) = v(D) = v(mMA) = v,(mk) + v(A), ie., v(€)=0v,(A), and
E<g;. Consequently €<% and D<m Y, showing that D=m'L.
Q.E.D.

We now proceed to the proof of the inequality (31). We fix a stan-
dard decomposition (29) of %A such that

(33) w(¥) = max {v,(X), vx(%), - - -, v (AW}

If () is not divisible by £ then A'=0’, whence w(A") =0 while w() > 0.
We may assume therefore that g divides ¢(%). Then g is the directional
form of at least one of the n valuations v; (Lemma 4). Let g,(=
), 8 -+, &, be the (distinct) directional forms of vy, 7, ---,9,
[m<n; if one of the v; is the m-adic prime divisor of o (so that q; is a
power of m) we omit that particular 9;]. Let r be the order of ¥, let
9; be the partial intersection of those g, for which the corresponding v;
has directional form £; and let %;=%; n m”. Then

%_%10%2 "ﬂ?l

each ; is a complete ideal, ¢(¥;) is a power of g, and r(¥; )_r r(?I)
We know that a decomposmon of % with these properties is unique
(Theorem 1, Corollary 3). Hence, by (19) (Theorem 1), we have
A, =0'ANo, whence o'W, =0'U, and thus the o'-transform A of A
coincides with the o'-transform of %,. Now, if, for a suitable labeling
of the vy, vy, -+ -, v, we have that v, v,, - -+, v, are the valuations
whose directional form is g, then

%l—qlan > nq,, ﬂmr

This is a standard decomposition of the complete ideal %,. In fact,
we have v,(q;)Sv;(U)Sv;(Wy=vLq;), for 1=1,2,---,n’, whence
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v{a;)=v;(%;). Furthermore, m” is a v -ideal, where v, is the m-adic
prime divisor of o, and since 7(2,)=r it follows that v, (%) = v, (m") =7.
Now, max {vy(%,), v5(¥y), -, U(Uy), 7} S max {vy(ay), vo(05), - - -,
v,(0a,)} (since va)=v,(¥)=r, for 7=1,2,---,n)=w(). Hence
w(A;) Sw(¥), and it will be sufficient to prove that w(%") <w(¥,).
We may therefore assume that already our original ideal % has the
property that ¢() is a power of . If none of the v; (1=1,2,---,n)is
the m-adic prime divisor v,,, we can add to the standard decomposition
(29) of % the v,-ideal m, i.e., we may write

(34) A= q;NgeN --- N, N,

and this will still be a standard decomposition of %, since from A< m7,
A ¢ mr+1 follows v, (A)=r=v,(m’). Relation (33) is not affected, since
from %< m” follows v,(A)=r. We therefore use the decomposition (34)
and we now assume that v,, v, - - -, v, are different from v,,. Since
() is 2 power of g, any q; such that the directional form of ; is different
from g is superfluous in (34) (Lemma 4), and the omission of that
particular component g; will obviously not affect condition (33). We
therefore assume that g is the directional form of each of the n valuations v;.

This being so, each v; is non-negative on o', and its center in o’ is
the maximal ideal m’. Let ', be the v,-ideal in o’ such that v,(q";)=
v, (%). Since 0'A=1¢,"A" and v,(¢,")=v,(m") (in view of our assumption
that §+#z2,), we have

2,(q";) = v(W)—v(m") < v,(%),
and hence
max {v,(a'y), Uo(q's), - - -, 0(0,)} < w().
We shall now show that

(34) A =4q' 1 na'yn---nay
and this will establish inequality (31).

We have only to prove the inclusion o’;naq’,0 --- na,cA.
Let then ¢’ be any element of ¢'; N g’y 1 - - - 0 q', and let us write the

element ¢,7¢’ in the form y/x, where # is not divisible by g, and v € m*
if & is the order of x. We have to show that £ e %', or—what is the
same thing—that

(35) y/x € 0"

Since £ €qa’;, we have v(£)Zv,(U'), or v(y/x)=v,(0"U)=v,(A).
Since x € m*, it follows that

(36) v y) = v (mRA), i=1,2,---,n



COMPLETE IDEALS IN REGULAR RINGS OF DIM. 2 385

For the m-adic prime divisor v,, of 0 we have v, (§)20, v,(v/x)=7,
whence v, (y)2r+h, showing that ye m”  From this and (36) we
conclude, by Lemma 5, that y € m", and this establishes (35) and
completes the proof of the inequality (31).

Proposition 5 and inequality (31) complete our preparation of a
basis for the inductive proofs of the theorems concerning complete
ideals in o, given below.

THEOREM 2'.  Any product of complete ideals in o is a complete ideal.

PROOF. Let %;, Ay, - - -, A, be complete ideals in 0. It is obviously
sufficient to consider the case in which each %, is primary for m.
Using the factorization theorem for complete ideals (Theorem 1’) and
also Corollary 2 to Theorem 1’, we achieve at once a reduction to the
case in which all the characteristic forms ¢(%;) (:1=1,2,--.,n) are
powers of one and the same irreducible form g. In this case, let o’
be the quadratic transform of o relative to the directional form g and
let &’; be the o’-transform of %;. We now use induction with respect to
max {w(2A,), w(Wy), - - -, w(N,)}, for the theorem is trivial when that
maximum is zero. Since w(A’;)<w(%;), our induction hypothesis
implies that A’ A’, - - - A’, is a complete ideal in o’. If we denote then
by % the product %,%, - - - %, and by r the order of %, we have 0'U =
£ A, - - - A, (assuming—as we may—that g+#%,), and hence also
o'W is a complete ideal. On the other hand, we have by Theorem 2
that A =0'A No. Hence also A is a complete ideal. Q.E.D.

The culminating point of our theory of complete ideals is a theorem
of unique factorization of complete ideals into simple (complete) ideals.
We shall say that an ideal P is simple if it is not the unit ideal and has no
non-trivial factorizations, i.e., if from Z=%B, where % and B are
ideals in o, follows necessarily that one of the ideals %, % is the unit
ideal. A principal ideal in o (not the unit ideal) is simple if and only
if it is prime, for it is easily seen that every ideal factor of a principal
idea! in o must be principal. In a noetherian ring, the ascending
chain condition leads immediately to the conclusion that every ideal
(different from the unit ideal) can be factored into simple ideals. For
complete ideals we have also the following fact: if a complete ideal
A= (1) admits at all non-trivial factorizations, it also admits a non-
trivial factorization into complete ideals. For, if A=A A, - - - A, then
A=A DA Ay - A, DU,y - - - A=A, whence A=A, --- A,
where ' denotes the operation of completion (and where, therefore, if
A, #(1) then also A';#(1)). It follows again by the ascending chain
condition, that every complete ideal (#0) can be factored into simple
complete ideals.
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THEOREM 3. (Unique factorization theorem for complete ideals): In a
regular local ring o, of dimension 2, every complete ideal % (#0, o) has a
UNIQUE factorization into simple complete ideals.

PROOF. We shall use induction with respect to the numerical char-
acter w(¥) introduced earlier in this appendix, for if w(A)=1 then
necessarily % =m,+ and m is obviously a simple ideal. The induction
is based on a lemma which we shall state immediately after the following
observation.

If 2 is a simple contracted ideal (in the sense defined at the end of
the proof of Proposition 4), primary for m, then it follows from the
factorization theorem for contracted ideals (Theorem 1) that ¢(&) is a
power of an irreducible form g in klz,, 2,1 (a positive power of g,
unless Z=m). Let 0o’ be the quadratic transform of o, relative to the
directional form g, and let &' be the o-transform of Z. We shall
refer to P’ as the transform of P (if P =m, then #' =v0’).

Lemma 6. If P is a simple CONTRACTED ideal, different from m (but
not necessarily complete), then the transform P’ of P is a simple ideal.

PROOF. If & is a principal ideal, then the statement is trivial. We
therefore assume that & is primary for m. Let r be the order of 2,
whence 0'P=¢;P" (we assume that gs#z,). Let =AUV’ be a
factorization of &' in o’. We have to show that either %’ or 8B’ is the
unit ideal. Let a be the smallest (non-negative) integer with the
property that #,°%’ is the extension of an ideal in o (there exist integers
with that property, since any ideal in o’ has a finite basis consisting of
elements of the ring ol#,/#,1). Similarly, let b be the similar integer,
relative to the ideal ®B’. Since an extended ideal in o’ is also the
extension of its contracted ideal, it follows that if we set

A=12"Ano, B=1¢8"no,
then
o' = 4,2, 0'B = t,5B".

We have o' mUAB = 4,7+ 0Y'B' =¢,712+0P =o' ms+P, Thus mUB and
ma-t2 have the same extension in o’. On the other hand, both these
ideals are contractions of ideals in o’ (Theorem 2). Hence mAB =
matdP.  Now, m does not factor out from either % or B, for if say,
A =mA, then 0'Y, =¢,2"1’, in contradiction with the minimality of a.
Hence the characteristic form ¢(%) of % is a power of g and its degree is

4+ If r=order of % and 0’ =¢,"A’, where 0’ is a quadratic transform of o,
relative to a directional form g (§# 2,), then w(A")< w(A) (see (31));1.e., w(A')=0,
A’ =o', and hence g does not divide () (Proposition 2). 'This holds true for

any irreducible form & in kl2,, 2,]. Hence ¢(%)=1 and A is a power of m
(Proposition 4), and therefore % =t since w(Y)=1.
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equal to the order a of ¥ (Proposition 3), and similarly for 8. Hence
the order of m™ VB is a+b-+r and the degree of c(mAB) isa~b. The
degree of ¢(me*2) is obviously r. Hence r=a -, and from Theorem
1 it now follows that Z=%AB. Hence either A or B must be the unit
ideal, showing that either A’ or B’ is the unit ideal. This completes
the proof of the lemma.

The proof of the theorem can now be rapidly completed.

Suppose that we have two factorizations of a complete ideal % into
simple complete ideals. Among the simple factors there may occur
the maximal ideal m. We therefore put into evidence the power of m
which occurs in both factorizations:

A= mPP, .. P, = PP, . P,

where the 2; and &; are simple complete ideals, all different from m.
Let » be the order of % and s the degree of the characteristic form ¢(%)
of A. The latter is a product of the characteristic forms ¢(%)), i=
1,2,-.-,n, and since each &, is simple, the degree of ¢(%;) is equal
to the order of Z; (otherwise, by Proposition 3, m would factor out
from #,). Hence h=r—s. Similarly A=r—s, and thus h=h. Each
directional form g of % (i.e., each irreducible factor of ¢()) is the
directional form of at least one of the &, and also of at least one of the
2, and, furthermore, the directional form of each Z; and of each &;
1s a directional formof A. Letg,, g,,-- -, 2, be the distinct directional
forms of ¢(), let B, (or B,) be the product of those &, (or 2, whose
directional formis g,. Then A=m"—B;B,--- B —m"’%liBz B,
and the characteristic form of 9B; (or ?f%,.) is a power of g;. Hence by
Theorem 1, we must have 8,=%,, i=1,2,---,m. This reduces the
proof of the theorem to the case in which 2=0 and all the ideals Z;, Z;
have the same directional form, say g. In this case we introduce, as
usual, our quadratic transform o’ of o, relative to the directional form g,
and we denote by %', #, ﬁ’j the o’-transforms of %, £, ﬁj respect-
tvely. 'Then, clearly, passing to extensions in o’ and cancelling the
common factor ‘¢,", we find &' P, . P =P P, - -P;=%.
Since the ideals #’; and &'; in o’ are simple (by the above lemma) and
complete (by Proposition 5), and since w(') <w(A), we have, by our
induction hypothesis, that #=7 and that for a suitable labeling of the
2; and the &; we must have #'; =", If a, is the least integer such
that #,%%', is an extended ideal, then #,%Z”; is the extension of both
2, and P, and we have Z;=P, =4 no. This completes the
proof of the theorem.

REMARK. It is not difficult to show that every contracted ideal
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A (5#0) can be factored into simple contracted ideals. The proof is as
follows:

Let A=A, - - - A, be a non-trivial factorization of A. Let {g,, ,,
-+-, 8.} be the set of directional forms of A, %A, ---, A, and let
o'=0"yN0’yN --- No’,, where o; is the quadratic transform of o,
relative to the directional form g, Let o'%;No=9%; and let €=
B,B,--- B, Itisclear that {g,, g,, - -, g,.} is the set of directional
forms of . Therefore o'% N o= (Proposition 4, Corollary 1). By
Theorem 2 (and Proposition 4, Corollary 1) we also have 0’'€no=¢
(since each directional form of 9, is also a directional form of % and
since, therefore, the directional forms of € are in the set {g,, g,, - - -
g} Since o' =0'C, it follows that A=C, whence A=V, B, --- B,
and this yields a factorization of % such that 8;,25%;. If one of the %,
is not a contracted ideal then 8, >%;. If one of the B, is not a simple
ideal (and is not the unit ideal) we factor it into simple ideals. Pro-
ceeding in this fashion and using the ascending chain condition in o,
we arrive after a finite number of steps at a factorization of % into
simple contracted ideals.

However, the theorem of unigue factorization of complete ideals into
simple complete ideals does not generalize to contracted ideals, i.e., a
contracted ideal does not necessarily have a unique factorization into
simple contracted ideals. The reason for this is that Proposition 5
does not generalize to contracted ideals, i.e., the extension of an ideal
in o which 1s the contraction of an ideal in o’ is not necessarily a con-
tracted ideal in the regular ring o’.  For example, let o’ be the quadratic
transform of o, relative to the directional form 2,, and let % be the ideal
(1,3, m%) in o. It is easily seen that ¥ is the contracted ideal of its
extension 7,%(¢',2, ¢,%) in o', where t',=1¢,/t, (¢, and t', are regular
parameters in o'). However, the transform %'=(#',2, ¢,2) of A isnota
contracted ideal in o’ (we have ¢(%')=1, but %’ is not a power of m’;
see Corollary to Proposition 2). Note that as a consequence of this
and in view of Proposition 5, % cannot be a complete ideal; but this is
also easily seen directly, because we have #,% #,* € %, t,%, ¢ %, while
t,%, 1s integrally dependent on ¥ ((¢,%2,)2=1¢,,%). We note also that
A is a simple ideal and that m% =23, where 2 =(¢,, m?) is also a simple
(complete ideal). Thus the contracted ideal m% (see Corollary to
Theorem 1) admits two distinct factorizations into simple contracted
ideals.

5. We shall conclude this appendix with some miscellaneous pro-
perties of simple complete ideals.

(A) Let g be an irreducible form in k{2, 2,], let o’ be the quadratic

b
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transform of o, relative to the directional form g, and let M be the set
of all simple complete ideals in o having g as directional form. Then
P — P, where P € My and P’ is the transform of P (in 0'), is a (1, 1)
mapping of M; onto the set of all simple complete ideals in o'.

For the proof, we shall assume that z,%#g. We note that if # — &’
then #=t,%' no, where a is the least integer such that ¢,4%' is the
extension of an ideal in 0. This shows that the mapping Z — &£’ is
univalent. Now, given any simple complete ideal &' in o', define a
and # as above. Then £ is a complete ideal in o', and we have
o'?=t,°7". Clearly, ¢(#) must be a power of § (Proposition 3), and
2 must be simple, for in the contrary case we would find at once that
Z' 1s not simple. This completes the proof.

(B) Starting with a given simple complete ideal £, different from m,
we consider its transform &’ (this transform is an ideal in o’ introduced
in (A), if ZeM,). If Z#m' (m'=maximal ideal in o’) we may
repeat the procedure and consider the transform.2” of &’ in a suitable
quadratic transform o” of o’. Since w(?) > w(#') > w(P")> - - -, this
process is finite. We thus obtain a finite strictly ascending sequence
of regular rings

o<o'<o"< - <o)

each ring in the sequence being a quadratic transform of its immediate
predecessor, and in each ring o we have a simple complete ideal ()
such that 20 is the transform of Z¢-1 (P =) and such that Z®
is the maximal ideal m® of o®. This sequence of rings 0®) and the
integer /4 are uniquely determined by &; we say that & is a simple ideal
of rank h. We denote by vg the m®-adic prime divisor of o®. Then
vy is a prime divisor of the quotient field of o, and the center of vz in
o is m (in other words: vz is of the second kind with respect to o; see
VI, §5, p. 19). Itis clear that we have vg=vg .= - - - =Vgpn-0 =Vgw,
where P = m®),

(C) Z is a vg-ideal in o.

Proof is by induction with respect to the integer A, since if £=0
then Z=m and vy is the m-adic prime divisor of o. The integer 4 is
the number of successive quadratic transforms which are necessary to
transform & into the maximal ideal of a suitable regular ring o®.
It is clear that 2’ is a simple ideal of rank 2—1. Therefore, by our
induction hypothesis, 2’ is a vg-ideal in o’. Now, let 0’P =127,
where we assume that §# 2, so that a is the order of 2. Let q be the
vg-ideal in o determined by the condition: v#(q)=v5(%). Then
g2, and we have to show that actually ¢=¢. We first show that
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P=msngq. We have only to prove that Z>man q. Let x be any
element of ména. Since x € m%, we have x=¢,%’", with x’ in o'
Since x€ a, we have vp(t,%") 2 va(P)=v2(t,°P"), vo(x')2va(P'),
whence x'€ #' (since &' is a vg-ideal) and thus x €, no=2,
which proves the equality Z=m?n q. We now have to show that
g<m4,  Suppose the contrary to be true, and let b be the order of g
(whence b<a). The characteristic form ¢(q) of q is then at most of
degree b, and since me~bq< 2, also the degree of ¢(Z) is at most equal
to b.  On the other hand, the order a of 2 is greater than 5. Hence,
by Proposition 3, m factors out from £, in contradiction with the fact
that £ is a simple ideal.

(D) The method of proof in (C) can be used to derive a general
result which concerns arbitrary valuations centered at m and which
we shall want to use later on.

Let v be a valuation centered at m, different from the m-adic prime
divisor of o, let ¢ be the directional form of v (we assume that g z,),
and let o' =0, be the quadratic transform of o, relative to g. In the
well ordered set of v-ideals in o we consider the initial infinite simple
sequence {q;} where 1=1,2,--- n,---; here q;=o (if v has rank 1,
then this sequence is in fact the entire set of v-ideals in o). Since we
have assumed that v is different from the m-adic prime divisor of o,
v is also centered at the maximal ideal m’ of o’. We consider in o’
the initial infinite simple sequence {q';} of v-ideals, j=1,2,-..,n,-- -
(q'y=0"). Since the characteristic form of any q, is a power of g
(Lemma 4), we can speak of the transform of a; in »’. We denote this
transform by £';. For any q’; there exists a smallest integer a; such
that #,%q’; is the extension of an ideal ino. Then we set ©,=¢,%0a"; N o,
so that £,%q"; is also the extension of £, We call Q, the inverse
transform of o ;.

The result which we wish to prove describes the relationship between
the two sequences {q,}, {a’,} and is as follows:

(1) The transform Q; of any q; is a member of the sequence {q’;}.

(2) The inverse transform Q. of any o'; is a member of the sequence
{0,} (and hence any q'; is the transform of some q,).

(3) Any q; is of the form mrQ;, where ., is the inverse transform of
some q';.

(4) If ©,> D then o' ;> o',

Assertion (1) follows directly from relations (34) and (34'), as applied
to the ideal %= g;.

Let q be the v-ideal in o such that v(a)=9(2)). Since o'Q;=1,%0a’},

£; has order a;. It is clear that £;cms n q. By the same reasoning
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as the one used in (C) we find that, in the first place, we must have
2;=m4 N q, and—next—that q<m? (always using the fact that the
degree of the characteristic form ¢(2;) of ©; is equal to the order a; of
£;). Hence £;= g, and this proves assertion (2).

Let ©/;=q’; be the transform of q; and let ¢=9; be the inverse
transform of q';. If a and b are the orders of q and q; respectively,
then b>a. The two ideals g; and m?—4q have the same extension in
o', namely the ideal #,5¢";. Since they are both contracted ideals, it
follows that q;=m’-2q=mb-20, and this proves assertion (3).

Let a and b be the orders of £, and £, respectively (a <), whence
o'Q, =10, 0'0Qy=1,%0"5, and thus o'mé—2Q,=¢,b¢",. Assume that
assertion (4) is false and that we have therefore q',< q’g- Then it
follows that o'mb—4Q c0o'Q,, and therefore mé—2Q, <0y, since both
these ideals are contracted ideals. The equality b=a is excluded since
2,>9,; Hence b—a>0, i.e., m factors out from £, and this is in
contradiction with the fact that b is the least integer such that #,°¢; is
an extended ideal. This establishes assertion (4).

(E) The correspondence P — vg is a (1, 1) mapping of the set of all
simple complete ideals in v onto the set of all prime divisors of the quotient
field of o which are of the second kind with respect to o.

We first observe that if Z# m then vp#on. In fact, assuming that
the directional form g of £ is different from z,, we have vm(x)=r for
every element x of o such that x € m”, x ¢ m”*?, while if the initial form
% of x is divisible by g then vg(x) >r (Lemma 1). Now, if #, and 2,
are two arbitrary distinct simple complete ideals in o, then our assertion
that Vg £V, is, in the first place, obvious if the directiona! forms of
P, and P, (which are also the directional forms of the valuations
Vg, and vg 2) are distinct, and, in the second place, if #, and &, have the
same directional form then the assertion follows immediately by
induction with respect to the integer s=max {rank #,, rank £,}, by
passing to transforms &', #’,, since we have just proved the assertion
Vg # V2, in the case s=1. We have thus shown that the mapping
P — vgp is univalent.

To complete the proof we now have to show that given any prime
divisor v of o (i.e., any valuation of the quotient field of o such that
has o-dimension 1) there exists a simple complete ideal £ in o such
that v=vp. If v is the m-adic prime divisor of o, there is nothing to
prove: we have Z=m. In the contrary case, v has a well defined
directional form g, and if o’ is the quadratic transform of o, relative to
the directional form g, then v is still of the second kind with respect to
o', its center in o’ being the maximal ideal m’. If v is the m'-adic
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divisor of o', then we have v=vg, where £ is the simple ideal (of rank 1)
in o whose transform is m’. In the contrary case, v has a well defined
directional form in o’, and if 0" denotes the corresponding quadratic
transform of o’, then v is of the second kind with respect to 0”. If »
is the m"-adic prime divisor of 0”, then we have v=1vg, where £ is the
simple complete ideal (of rank 2) in o whose (second) transform in o0”
is m’. In the contrary case we go on to a suitable quadratic transform
0” of v”.  We have to show that after a finite number of steps we obtain
a ring o® such that v is the m®-adic prime divisor of 0™, where m®
is the maximal ideal of 0™®. We shall show that the assumption that
the above process does not terminate after a finite number of steps leads
to a contradiction. Under such an assumption we will have an infinite
strictly ascending chain of rings

0<oM<cp@<« ... coP< ...

with the following properties:

(1) Each ring o® is a quadratic transform of its immediate pre-
decessor.

(2) v is non-negative on any o®, and its center in 0® is the maximal
ideal m® of o®,

We now fix an element w in the quotient field of o such that the
v-residue of w is transcendental over the residue field & (=o/m) of o.
Since the residue field of o® is an algebraic extension of the residue
field of o®-b, it follows that the v-residue of w is also transcendental
over o®/m®,  Now let us write w in the form w=y/x, where x, y € 0.
Both x and y necessarily belong to m. Assuming—as we may—that
the directional form of v is different from z,, then we can write x=¢#,x,,
y=t,y,, with x;, y; in o’. Then w=y,/x, and v(x) >2(x,). Since v
is also of the second kind with respect to o, it follows again that both
xy, y, are in nt’, and thus we find another representation of w, of the
form w=y,/x,, with x,, ¥, in 0” and o(x,) > v(x,). Proceeding in this
fashion we obtain an infinite, strictly decreasing sequence z(x)>
o(x,) > v(xy) > - - - of positive integers, which is absurd.

(F) Let £ be a simple complete ideal, of rank A, let 0 <0’ <0"< - - -
< o™ be the sequence of successive quadratic transforms of o which is
determined by & (see (B)), and let &, be the simple complete ideal in o
whose transform in o is the maximal ideal of o® (1=1,2,.--,h).
Then:

N m>P,>P,> .- >P,=Z.

(2) Each of the h+1 ideals m, P, P,, - - -, P, is a vg-ideal in o,
and every vg-ideal in o is a power product of these h+ 1 simple ideals.
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If h=0 then assertion (1) is vacuous, while (2) is obvious, since v
is in that case the m-adic prime divisor of o, and therefore every vg-
ideal is in that case a power of m. We therefore proceed by induction
with respect to A.

Let ©'; be the transform of &; in o’ (i=1,2,---,k). Then £’;
is 2 simple complete ideal #’;_, in o/, of rank i— 1, and vp=vs., where
P =0/, =transform of &. We have therefore, by our induction
hypothesis:

m=0,>0,> - >0, =P

Since Z; is the inverse transform of £'; (in the sense of (D)), it follows
from statement (4) in (D) that

P>Py> - >P, =P

Since the strict inclusion m > 2, is obvious, assertion (1) is proved.

That each of the A+1 ideals m, 2#,, P, ---,P, is a vg-ideal
follows from statement (2) of (D) and from our induction hypothesis.
Now, if ¢’ is any vg-ideal in o', then by our induction hypothesis, we
have q'=8'y10'y"2 - - - Q. The inverse transform of q’ is clearly
PPy - - - Py, and assertion (2) now follows from statement (3)
in (D).

This result characterized the simple complete ideal &, of rank A,
by means of the sequence {q,} of valuation ideals in o which are associ-
ated with the corresponding prime divisor v: that sequence contains
precisely £+ 1 simple ideals, and & is the smallest of these simple
ideals (£ is the last simple ideal which occurs in the sequence {q,}).

The arithmetic theory of complete ideals in 0 which we have developed
in this appendix has also geometric interpretations, since all the known
results of the geometric theory of infinitely near points on an algebraic
non-singular surface are included in this arithmetic theory. For these
geometric interpretations we refer the reader to the original paper of
O. Zariski (quoted in the beginning of this appendix).
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MACAULAY RINGS

Let A be a noetherian ring, a an ideal in 4 and a an element of A.
We say that a is prime to a if a: Ada=a. This means that a does not
belong to any associated prime ideal of a (Vol. I, Ch. IV, § 7, Corollary

2 to Theorem 11). We say that a sequence {a,,---,a,} of non-
invertible elements of A is a prime sequence if, for every j, a; is prime
to the ideal Aa,+ --- +Aa; ;. (For j=0 we follow our usual con-

vention that the empty set generates the zero ideal. Thus, a single
element a constitutes a prime sequence if and only if it is not a zero
divisor.) It follows easily from Vol. I, Ch. IV, § 14, Theorems 30 and

31, that, if {a,, - - -, a,} is a prime sequence in A4, and if p is an associ-
ated prime ideal of Aa,+ - - - +Aa,, then we have
(1 h(v) = m,
equality holding if and only if b is isolated.

We note that {a,, a,, - - -, a,} is a prime sequence if and only if for each
i1=1,2,---,4q, a; is not a zero divisor in the ring A|(Aa,+~Aa,~ --- +
Aai—l)'

We are going to devote several lemmas to the study of prime sequences
in local rings.

Lemva 1. Let A be a local ring, a an ideal in A, b a non-invertible
element prime to a, and v an associated prime ideal of a. Then there
exists an associated prime ideal v’ of a+ Ab such that »'> v (thus »' > p).

This has been implicitly established in the proof of Theorem 44,
VII, § 13, but we prove it again for the reader’s convenience. Suppose
the conclusion is not true. Then, for every associated prime ideal
p’; of a- Ab, we have p ¢ »';, and hence there exists an element x of p
such that x ¢ p'; for every j (Vol. I, Ch. IV, § 6, Remark, p. 215). We
thus have (a+A4b):Ax=a+Ab. Now, if v is an element of 4 such
that xv € a, we have xv € a+ 4b, whence v € a+ Ab; setting v=a'+v'b
(@' €qa, v' € A), we have xv'b=xv—xa’ € a, whence xv' € a since b is
prime to a. In other words, we have a: Ax<a+b(a: Ax)=a -+ m(a: Ax)

394



MACAULAY RINGS 395

(where m denotes the maximal ideal of A), whence a: Ax=a+ m(a: Ax).
From this we conclude that a: Ax=a (VIII, § 4, Theorem 9, (f)), in con-
tradiction with the fact that x belongs to the associated prime ideal
pofa. Q.E.D.

LemMa 2. Let A be a local ring, {a,, - - -, a,} a prime sequence in A,
and j—i(j) a permutation of the indexing set {1,2,---,n}. Then
{@;1y @icay -+ + > Ai(ny} 15 @ prime sequence in A.

By elementary properties of permutations, it is sufficient to prove
that, for every j, {ay,---,4a; ;,8;.1,8;,8;,5---,8} is a prime
sequence. The property that a; is prime to the ideal generated by the
elements a, which precede it in this sequence is obviously true for
i=1,---,7=1,7+2,---,n It remains to be proved that this pro-
perty is also true for i=j+1 and for i=;j. We set a=4a,;+ --- +
Aa;_,. If a;, , were not prime to q, there would exist an associated
prime ideal v of a such that a;,, € p; by Lemma 1, » would then be
contained in an associated prime ideal p’ of a+Aa;, in contradiction
with the fact that a1y is prxme to a+ Aa;; thus a,+1 is prime to a.
Now we prove that q; is prime to a+ A4a;,;. If an element x of 4 is
such that xa; ea—!—AaHl, we have xa; =Y+ b (ve 4, bea), hence
ya;.1 € a—l—Aa and y € a+ Aaj, since a;,, is prime to a-—Aa Setting
y=b'+za; (b €a, € A), we have xa;=b'a;,,+za; a]+1+b whence
(x—=za q)a €a, and x—za;,, € a since a; is prime to a. We therefore
have x € a+- Aa;_;, and this proves our assertion.

In the case of a local ring A, it has therefore a meaning to say that a
finite subset S of A is a prime sequence in 4, since, by Lemma 2, the
property of S being a prime sequence is independent of the order in
which the elements of S are considered.

Lemma 3. Let A be a local ring, m its maximal ideal, {a,, - - -, a,}
and {a'y, - - -, a’',} two prime sequences in A with the same number of
elements, and a, o' the ideals they generate in A. Then the A-modules
(a:m)/a and (a’:m)/a’ are isomorphic.

We proceed by induction on n. In the case n=1 the hypothesis
means that a=a, and a’=a’, are not zero-divisors. Let T be the total
quotient ring of 4 and let f be the 4-linear mapping ¥—a'a=lx of T
into itself. If xe Ada:m, then xa’ € Aa (since, by definition, the
elements of a prime sequence are non-invertible elements), whence
f(xye A. On the other hand, since xmc<Aa, we have f(x)m=
a'a~‘xmc Aa’, whence f maps Aa:m into 4a’:m. Similarly, the 4-
linear mapping g defined by g(x)=aa’~x (x€ T) maps Aa’:m into
Aa:m. Since fg and gf are the identity mappings, it follows that f is
an isomorphism of the 4-module Aa:m onto the A-module Aa’:m.
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Since we have obviously f(4a)= Aa’, we deduce that (4a:m)/Aa and
(Aa':m)/Aa’ are isomorphic.

In the general case, since a, is non-invertible, no associated prime
ideal p; of Aa1+ s —'.—Aa,,_1 is equal to m; similarly no associated
prime ideal p’; of Aa’;+- --- +~Aa’, ; is equal tom. Let b be an
element of m Wthh does not belong to any v, nor to any p’; (Vol. I,
Ch. IV, §6, Remark, p. 215). Then {a,,-- -, a,_,, b} and {a _
a',_,, b} are prime sequences in 4; let b and 5" be the ideals they
generate. Applying the case n=1 to the ring 4/(4a,+ - - - + Aa,_,)
and to the prime sequences constituted by the classes of a, and of b
respectively, we see that (a:m)/a and (b:m)/b are isomorphic as
(4/(4a;+ - - - +Aa,_,))-modules, and therefore also as A-modules.
Similarly the 4-modules (a":m)/a" and (b":m)/b’ are isomorphic. We
apply now the induction hypothesis to the ring 4/4b. For x € A4, let
us denote by & the (A4b)-residue of x. Since {b,a,,---,a, 4} is a
prime sequence in 4 (Lemma 2), {d,, - - -, ,_,} is a prime sequence in
A|Ab; similarly for {@'y,---,d’,_;}. Thus the induction hypothesis
shows, as above, that the 4-modules (5:m)/b and (b':m)/b’ are iso-
morphic. This proves our assertion since the product of three iso-
morphisms is an isomorphism. Q.E.D.

Formula (1) shows that, in a local ring 4, the number of elements of
a prime sequence is bounded by dim (4). Thus, in a local ring, there
exist maximal prime sequences.

THEOREM 1. Let A be a local ring.  Any two maximal prime sequences
in A have the same number of elements.

PROOF. Let {a;,---,a,} and {a'},-- -, a';} be two maximal prime
sequences in 4. It is sufficient to show that the assumption “p<gq”
leads to a contradiction. In fact, if p<gq, let us consider the ideals
a,a’ generated by a,,---,a, and a'y,-- -, a', respectively. Since
a’:Aa’, . =a’ by hypothesis, we have a fortiori o’:m=aqa" (m:maximal
ideal of A), whence (a’:m)/a’=(0). By Lemma 3 we have therefore
(a:m)/a=(0), i.e., a:m=a. Thus m is not an associated prime ideal
of a, and there exists an element b of m which does not belong to any
associated prime ideal of a (Vol. I, Ch. IV, § 6, Remark, p. 215). Then
{ay, - - -, a,, b} is a prime sequence, in contradiction with the maxi-
mality of {ay, - - -, a,}.

DeriNiTION 1. Let A be a local ring. The common number of ele-
ments of the maximal prime sequences in A is called the homological
codimension (or the grade) of A, and is denoted by codh (4). If codh (4)
=dim (A4), we say that A is a Macaulay ring (or a Cohen—Macaulay

ring).
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We have seen that in any local ring 4, we have the inequality
(2) codh (4) < dim (4).

It follows from the definition of codh (4) that every prime sequence in
A may be included in a prime sequence with codh (4) elements. To
say that A is a Macaulay ring is equivalent to saying that there exists
a system of parameters of A which is a prime sequence (by formula (1)).

EXAMPLES. (1) Any regular local ring A is a Macaulay ring. In fact
any regular system of parameters of 4 is a primé sequence by VIII,
Theorem 26, § 11.

(2) Any local domain 4 of dimension 1 is a Macaulay ring. In fact
any single element #0 of the maximal ideal of A constitutes a prime
sequence. More generally, for a local ring A4 of dimension 1 to be a
Macaulay ring, it is necessary and sufficient that the maximal ideal m
of A4 is not an associated prime ideal of (0).

(3) Any integrally closed domain A4 of dimension 2 is a Macaulay
ring. In fact, if we choose a non-invertible element x# 0 of 4, all the
associated prime ideals p; of Ax have height 1 (Vol. I, Ch. V, § 6,
Theorem 14), and are therefore distinct from the maximal ideal m.
Hence there exists an element yem such that y¢p; for every
and {x, y} is a prime sequence.

Before giving the main property of Macaulay rings, we need a
lemma:

LeMMA 4. Let A be a local ring, d its dimension, a,, - - -, a, distinct
elements of A. For dim (A/(Aa,+ - - - + Aa;)) to be equal to d—j, it
is necessary and sufficient that {ay, - - -, a,} be a subset of a system of
parameters of A.

The sufficiency has been proved in VIII, §9 (see p. 292).
Conversely, if A/(4a;+ --- + Aa;) has dimension d—j, we consider
d—j elements a;,,, - - -, a; whose residue classes form a system of
parameters of A/(Aa,+ --- +Aa;). Then the ideal in 4 generated
by ay, - -, a; a;4, -+, a, is primary for the maximal ideal of 4,
whence {ay, - - -, a;} is a system of parameters of 4. Q.E.D.

THEOREM 2. Let A be a Macaulay ring, d its dimension, a,, - - -, a;
distinct elements of A and a the ideal generated by these j elements. If
dim (Afa)=d—j, then {ay, - - -, a;} is a prime sequence, and for every
associated prime ideal p of a, we have h(p)=j and dim (A[p)=d—j. In
particular, a has no imbedded prime ideals, and is unmixed.

PROOF. We proceed by induction on j. If j=0, the given set is
empty and is a prime sequence. We then have a=(0). We consider
an associated prime ideal p of (0). Let {b,, - - -, bs} be a prime sequence
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in 4. By repeated applications of Lemma 1, we find a strictly increas-
ing sequence of prime ideals b<p, < - - - <p, such that p; is an associ-
ated prime ideal of A4b,+ --. +A4b, This proves that we have
dim (A4/v) > d, whence dim (4/v)=d since dim (4)=d. On the other
hand we have 2(p)=0 since, otherwise, we would get a chain of prime
ideals in 4 with d+2 distinct terms. This proves Theorem 2 in case
j=0.

We now suppose that Theorem 2 is true forj—1. Weset o' = 4a,+

- +Aa;_,. Since dim (4fa)=d~j, {ay,---,a;} is a subset of a
system of parameters (Lemma 4). Hence dim (4/a’ ) d- ]-1-1
(Lemma 4). By the induction hypothesw, {al, -+, a; 4} is a prime
sequence, and all the associated prime ideals of a’ have helght j—1and
dimension d—j+1. If a; were contained in some associated prime
ideal " of a’, we would have acp’, whence dim (4/a)>dim (4/p")=
d-j+1, in contradiction with the hypothesis. Therefore {a,,-- -,
a;_,, a;} is a prime sequence. This prime sequence is contained in

some maximal prime sequence, say {a,, - - -, a;, a,,,, - - -, ag}, which
has d elements (and is therefore a system of parameters), since 4 is a
Macaulay ring. The a-residues of a;,,, - - -, @, form a prime sequence

and a system of parameters in the ring A/a, which is therefore a
Macaulay ring. Applying the case j=0 to the ring 4/a, we see that
we have dim (4/p)=d —j for every associated prime ideal p of a. On
the other hand, such an ideal p contains some associated prime ideal
p’ of a’, and we have p# b’ sincea; € v and a; ¢ v’ ({a,, - - -, a;} being
a prime sequence); we therefore have A(p)>h(p")+1=(j-1)+1=j.
Since the inequality dim (A4/»)+ k(b) <d holds for every prime ideal in
a local ring 4 of dimension d (otherwise 4 would admit a chain of
prime ideals with d+2 terms), the relations dim (4/p)=d—j and
h(p)>j give h(p)=j. Q.E.D.

REMARK. Since a regular local ring is a Macaulay ring, Theorem 2
gives a new proof of Cohen-Macaulay’s Theorem (VIII, § 12, Theorem
29), and generalizes it to a regular local ring of unequal characteristic.
It may also be noticed that Macaulay’s Theorem about polynomial
rings (VI1I, § 8, Theorem 26) is an easy consequence of Theorem 2.
In fact, let & be a field, and %A be an ideal in R=k[X,, - - -, Xl of dimen-
sion d—h and generated by % elements u,,---,u,. Let B be an
associated prime ideal of ¥, and M a maximal ideal in R containing B.
The local ring Ry has dimension 4 and, since M may be generated by
d elements (VII, § 7, Theorem 24), is regular. Since dim (Rgn/%Ran) =
d—h, Theorem 2 shows that dim (Rw/BRm)=d—-h (BRm being an
associated prime ideal of ARy ; see Vol. I, Ch. IV, § 11, Theorem 19).
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Since this relation holds for every maximal ideal @ containing B,
the depth of B, whence also its dimension, is d—A.

Theorem 2 has many consequences.

CoROLLARY 1. Let A be a local ring. The following properties are
equivalent :

(a) A4 is a Macaulay ring;

(b) There exists a system of parameters of A which is a prime sequence;

(c) Ewvery system of parameters of A is a prime sequence.

The equivalence of (a) and (b) has already been established. It is
clear that (c) implies (b) since a local ring admits at least one system of
parameters. Now, if 4 is a Macaulay ring and if {a,,---,a,} is a
system of parameters of 4, we have dim (4/(da,+ --- +4a,))=0=
d—d, whence Theorem 2 shows that {a,, - - -, a,} is a prime sequence;
thus (a) implies (c). Q.E.D.

CoroLLARY 2. Let A be a Macaulay ring. For a finite subset S of A
to be a prime sequence, it is necessary and sufficient that it be a subset of
some system of parameters.

In fact, if S is a prime sequence, it is contained in a maximal prime
sequence, i.e., In a system of parameters. The converse follows from
Corollary 1 ((a) implies (c)), since any subset of a prime sequence is a
prime sequence (Lemma 2).

CoroLLARY 3. Let A be a Macaulay ring. For every prime ideal
p in A, we have h(p)+dim (4/p)=dim (4).

In fact, among the prime sequences which are contained in v, we
consider a maximal one, say {a,, - - -, a;}. Let {p’;} be the set of associ-
ated prime ideals of a=Aa,+ --- +4a;. We have p<= [ Jv';, for in

the contrary case p would contain an element & such that a: 4b=aq, and
then {a,, - - -, a;, b} would be a prime sequence, in contradiction with
the maximality of {a,,---,a;. Therefore there exists an index I
such that p<yp’, (Vol. I, Ch. IV, § 6, Remark, p. 215). On the other
hand, since p contains a, p contains some isolated prime ideal p’, of a.
Since a is generated by a subset of a system of parameters (Corollary 1),
we have dim (4/a)=dim (4)—j (Lemma 4), and therefore, by Theorem
2, a is unmixed. Hence p=yp’;=p’, and p is an associated prime
ideal of a. Thus our assertion follows from Theorem 2.

COROLLARY 4. Let A be a Macaulay ring. For every prime ideal v
in A, the local ring Ay is a Macaulay ring.

In’fact, as in Corollary 3, we construct a prime sequence {a,, - - -, a;}
such that p is an associated prime ideal of 4a,+ - -- +A4a;. Let fbe
the canonical mapping of 4 into 4,. Since p is an isolated prime ideal
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of Aa,+ ... +Aa; and since h(p)=j (Theorem 2), {f(a,), - - -, f(a,)}
is a system of parameters of Ay, and it remains to be proved that it is
also a prime sequence. Now this is immediate, since for every ¢<j,
we have the formula (f(ay),-- -, f(a,1):(f(a))=(ay, - -, a,_,):
(@)Ay (see Vol. I, Ch. IV, §10)=(a,, -, a,_)Ap=(f(ay), - - -,
ay_).

CoROLLARY 5. Let A be a Macaulay ring. For every prime sequence
{a), ---,a;} in A, the local ring Al(Aa;+ --- +Aa)=A" is a
Macaulay ring.

In fact, the given prime sequence is contained in a maximal prime
sequence {a;, -, @, a1, """, 4y, i.e., in a system of parameters
(d=dim (4)). We have dim (4)=d—j (Lemma 4), whence the resi-
due classes of @;,,, - - -, ¢, in A’ form a system of parameters. Since
they obviously form a prime sequence, Corollary 5 is proved.

REMARK. It follows from Corollary 5 that, if W is an irreducible
subvariety of a variety I, and if V'is a hypersurface in affine or projective
space (more generally a complete intersection of hypersurfaces), then
the local ring o(W; V) is a Macaulay ring.

COROLLARY 6. Let A be a local ring, A its completion. For A to be
a Macaulay ring, it is necessary and sufficient that A be a Macaulay
ring.

Let a,,---,a; be elements of 4. By Corollary 5 to VIII, §4,
Theorem 11, and since b4 n A="5 for every ideal b in 4 (VIII, §2,
Corollary 2 to Theorem 5), the relations (4a, + - - - +14aj_1) :Aa;=
da,+ - +4a;_ and (da;+ - - - +Aa;_)): Aa;=Aa,+ - - +A4a;_,
are equivalent. Thu'; for a qubeet S of 4 to be a prime sequence in A
it is necessary and sufficient that it be a prime sequence in 4. Now,
if 4 is a Macaulay ring, we take for S a system of parameters of 4
(which is therefore a prime sequence in 4). Then 4 is a Macaulay
ring since S is a system of parameters of 4. Conversely, if 4 is a
Macaulay ring, then any system of parameters S of 4 is a prime
sequence in A since it is a system of parameters of 4 (Corollary 1);
thus S is also a prime sequence in 4, and 4 is a Macaulay ring. Q.E.D.

THEOREM 3. Let A be a local ring. The following properties are
equivalent:

(a) A4 is a Macaulay ring

(b) There exists an ideal g in A, generated by a system of parameters,
such that e(a)=1I(A4]q).

(b") For every ideal q in A generated by a system of parameters, we
have e(q)=1I(4]q).

(c) There exists an ideal q in A generated by a system of parameters
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such that the associated graded ring G (A) is isomorphic to a polynomial
ring in dim (A) variables over A/q.

(") For every system of parameters x,, - - - , x, of A, the initial forms %;
of the elements x; in Go(A) (a=Ax,+ --- +Ax,) are algebraically
independent over A|q (whence Go(A) is isomorphic to a polynomial ring in
d variables over A]q).

PROOF. The equivalence of (b) and (c) follows from VIII, § 10,
Theorem 23. Similarly (b’) and (c’) are equivalent. It is obvious
that (b’) implies (b). We are going to show that (a) implies (b") and
that (c) implies (a), and the proof will then be complete.

For proving that (a) implies (b"), we can, if 4/m is an infinite field
(m: maximal ideal of 4), use the discussion preceding Theorem 23 in
VIII, § 10. Infact, in the course of that discussion we have constructed
a suitable system of parameters {y,, - - -, y,} generating q, and we have
shown that if that system satisfies the condition (4y,+ - -+ + 4y, ,):
Ay,=Ay,+ - - - +Ay,_,, then e(q)=[(A/q). Now the above relation
obviously holds since every system of parameters in a Macaulay
ring is a prime sequence (Corollary 1 to Theorem 2). The process
of adjoining an indeterminate to A could then take care of the case
of a finite residue field A/m. However, we prefer to give a direct
proof of the fact that (a) implies (b’), since this proof uses two lemmas
which are of interest in themselves.

Lemwma 5. Let A be a Macaulay ring, and a an ideal in A generated
by a prime sequence. For every exponent n, the ideal o" is unmixed
(and admits, therefore, the same associated prime ideals as a; see
Theorem 2).

We proceed by induction on n. The case n=1 is covered by
Theorem 2. We suppose that our assertion is proved for », and prove
it for n+1. We have to show that if ¢ is prime to a and if x is an
element of 4 such that cx €a"t?, then x belongs to a*l. Since
¢x € o, the induction hypothesis shows that x € a®. Let {ay,-- -, a;}
be a prime sequence generating a. By a suitable grouping of the
monomials of degree 7 in a,, - - -, @, we see that x may be written in
the form x=ux,a,+ - +x,a, where ¢<j and x;€(da,+ --- +
Aa;y-t. We prove that x € a**! by induction on ¢q. The case ¢=0
is trivial For ¢>0, we write x=x"+x,a, (where x'=x,a,+ -+ - +
X, 1) and we denote by b the 1dea1 generated by ay, -, a,_4,
aq_Ll, e ; we have a=5+ A4a,. Since a**'=5b""1+a"a,, the relation

ox'+x,a, Z cx € ar? shows the existence of an element y of a” such
that cx’ +cx @, = ¥4 € 57+l Since x’ € b”, this implies (¢cx,—y)a, € b
Now, a, belng prime to b (Lemma 2), the induction hypothesis on 7
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shows that cx,—y € b%, whence cx, € a” since y € a”. Again the induc-
tion hypothesis on n shows that x, € a” (¢ being prime to a). From

=x"+xa, we then deduce that cx’ belongs to a**l. Therefore
¥’ €ea1 by the induction hypothesis on ¢. Since x=x"-+ax, and
since x, € a”, we have x e a*+1. Q.E.D.

Lemma 6. Let A be a Macaulay ring and o an ideal in A generated by
a prime sequence {ay, - - -, a;}. We have a*: Aa;=a""1 for every n.

Let x be an element of A such thatxa; ea”. Wesetb=Aa,+ --- +
Aa; ;. Since a"=9"+a""1g;, there exists an element y of a"~* such
that (x—y)a; € ". As q; is prime to b, it is prime to b” (Lemma 5),
whence x—y eb®. Therefore x€a"?, and we have proved the
inclusion a":Aa;=a"-1. Since the opposite inclusion is obvious,
Lemma 6 is proved.

CONTINUATION OF THE PROOF OF THEOREM 3. We are going to prove
that (a) implies (b"). For this we proceed by induction on the dimen-
sion d of A. The case d=0 is trivial since we then have q=(0),
e(q)=UA)=1(A]q). For d>0, let {a,,---,a;} be a system of para-
meters generating q. We set 4'=4/Aa,, q'=q/Aa,;. Since {a,, - - -,
a,} is a prime sequence, we have q":Aa,;=q*! (Lemma 6), whence
the formula Pq.(n)=Py(n)—Xq*:Aa;) (Lemma 3, VIII, §8) gives
Pqy.(n)=Py(n)—Py(n—1) and therefore e(a")=e(q). Since A’ is a
Macaulay ring (Corollary 5 to Theorem 2), the induction hypothesis
gives e(q)=I(A4'[q"). As A'[a’ is isomorphic to A/q, we have e(q)=
l(A]q). Thus(a) implies (b").

We finally prove that (c) implies (a). Suppose that q is an ideal
generated by a system of parameters such that G,(A4) is generated
over A/q by d (=dim (A4)) algebraically independent elements 4;, and
let a; be an element of q admitting a; as (q?)-residue. It is sufficient

to prove that {a,,---,a,} is a prime sequence (since d=dim (4)).
We set a=Aa;+ --- +Aa;_, and prove that a:Aa;=a. Let y be an
element of A such that ya;€a; we set ya;=xa,+ - -+ +x; ya;
(x; € 4).

d
This is a relation of the type > 2;¢;=0. Let us denote by v the
=1

order function in 4 (for x€ A4, 'we have x € q¥® and x ¢ qv?*!; see
VIII, §1). Let I be the set of indices 7 for which o(2;) takes its mini-

mum value, say s. We have > 3,q; € ¢**1, whence, by passage to the
iel

initial forms, Z £,a;=0. Choosing a fixed index k in I, we see that,

in the polynomxal ring Gy(4)=(4/0)dy, - - -, d;l, 5,d, is in the ideal
generated by the mdetermmates a; (iel, i#k). Thus £, is in this
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ideal, and there exist elements b; of g5~ (f€ I, i#k) such that %,=
N ba,, i.e., such that z,— > b,a; is an element 24 of g**1. Setting

iel,i i

2i;=z;+ba, for icl, i#k, and 2';=2; for i¢ I, we get a relation
d

> 2';a;=0 in which o(2’,) > v(2;) for every 7 and v(2'}) > ©(2).

i=1
-1

Now, among the relations ya;= Z a; (x; € A) we choose one which

has the following two propertles (a) min; (v(x ) has the greatest
possible value, say s; (b) the number of 1nd1ces 7 such that v(x,)—s is
the smallest possible. Then we have s=2(v). In fact s>o(y) is
obviously impossible. On the other hand, if s<wo(y), we transform,

-
as above, the relation ya;— > xa;=0: the coefficient y of a; is then
=1

unchanged, whereas, either s is increased, or the number of indices ¢

such that o(x;)=s is decreased. This is impossible. Thus o(y)=
j—1
min, (v(x,)). Transforming, as above, the relation ya;— z x;a;,=0,

thls time with ya; playing the part of za;, we get a relatlon ya;—
Z x";a;=0 with y, € ¢*®*! and y—y, €a. Since ¥, € a: 4a;, we can
<

apply the same process to v,. By repeated applications we get an
element v, of av®+7 such that y—y,€a. We thus have y € a+ qvO)*»
for every n, whence y € a since a is closed. Consequently we have
a:Aa;<a. The opposite inclusion being obvious, we have a: 4a;=a.
Q.E.D.

REMARKS. (1) Let R=k[X,,---, X,] be a polynomial ring over a
field k&, and ¥ an ideal of the principal class of R. By passage to quo-
tient rings Rax (M: maximal ideals) and using Lemma 5, one proves,
as in the Remark following Theorem 2, that % is unmixed for every ».

(2) Let 4 be a Macaulay ring. It is easily seen that the local ring
ATX]] is a Macaulay ring.
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UNIQUE FACTORIZATION IN REGULAR LOCAL RINGS

In the present appendix we are going to prove that every regular
local ring is a UFD. The method of proof, due to M. Auslander and
D. Buchsbaum, uses the notion of cohomological dimension (VII,
§13).

Lemma 1. Let A be a local domain. The following assertions are
equivalent :

(a) A isa UFD.

(b) Ewvery irreducible element of A generates a prime ideal.

(c) For any two elements a, b of A, the ideal Aa 0 Ab is principal.

(d) For any two elements a,b#0 of A, the cohomological dimension
8(Aa+ Ab)is <1 (i.e., considered as an A-module, Aa+ Ab is isomorphic
with a factor module F|F’ with F and F' free).

For the equivalence of (a) and (b) we first notice that (b) is nothing
else but condition UF.3 of Vol. I, Ch. I, § 14; on the other hand every
non-unit of 4 is a finite product of irreducible factors since A is
noetherian (Vol. I, Ch. IV, § 1, Example 3), whence A satisfies UF.1.

It is clear that (a) implies (c) since the ideal 4a n Ab is obviously
generated by the least common multiple of @ and &.

We now prove that (c) implies (b). Let p be an irreducible element
of A, x'and y two elements of A such that xy e Ap and x ¢ Ap. We
set Ax N Ap=Am. Since m divides xp, mx~ (which is an element of
A) is a divisor of p; it is not a unit since m is a multiple of p and x is not.
Since p is irreducible it follows that mx~! and p, and therefore also
m and «xp, are associates. Thus Ax n Ap=Axp. The hypothesis
xy € Ap implies xy € Ax n Ap=Axp, whence xy is a multiple of xp
and therefore y is a multiple of p.

Let us prove that (c) is equivalent to (d). Let f be the A-linear
mapping of (the free A-module) Ax A onto Aa+ Ab defined by
f(x,y)=xa--yb. Its kernel F, is the set of pairs (x,y) such that
xa=1yb, and the mapping (x, y) — xa is obviously an isomorphism of
F, onto the idea! 4a n 4b. If (c) holds, this ideal is principal, hence a

404
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free A-module, and therefore (d) is true. Conversely, if (d) is true,
Aa+ Ab is isomorphic with a factor module F/F' with F and F' free.
Then the kernel F of f is equivalent to F’ in the sense of VII, § 13
(VII, § 13, Lemma 2) and i1s therefore a free module, since 4 is a local
ring (VII, § 13, Lemma 3). Since Aa n Ab is isomorphic with F,, it
is a principal ideal, and (¢) is true. Q.E.D.

Lemwma 2. A4 regular local ring A of dimension 1 or 2 is a UFD.

Let a and b be any two elements of 4. Since Aa+ Abis a submodule
of a free module, we have 8(4a+ Ab) < dim (4)—1 by the theorem on
syzygies (VII, § 13, Theorem 43). Hence 8(4a+ Ab)<1, and we use
Lemma 1.

Notice that, if dim (4)=1 (or 0), 4 is a discrete valuation ring (or a
field), and that the unique factorization properly is obvious in this case.

Lemma 3. A regular local ring A of dimension 3 is a UFD.

Let a and b be any two elements of 4. By the theorem on syzygies,
we have 8(4a+ Ab)<2. In the proof of Lemma 1, we have seen that
Aa 0 Ab is a first module of syzygies of 4a+ Ab, whence 8(Aa n Ab)< 1.
Since x — ax is an isomorphism of Ab: Aa onto Aa n Ab, we also have
8(Ab: Aa)<1. From this we are going to deduce that 4b:Aa is free,
therefore a principal ideal, and this will complete the proof since
Aa n Ab will then be principal.

We set q=Ab: Aa, we denote by m the maximal ideal of 4, and we
pick an element &' € q, &' ¢ mq. We have b’'a=a’b witha' € 4. Since
the relations xa’ =yb" and xa=1yb are equivalent, so are xa’' € Ab' and
xa € Ab, whence Ab':Aa’=Ab:Aa=q. We are going to prove that
g=Ab'. For this it is sufficient to prove that q=Ab'+mq (apply
Theorem 9, Condition (f), of VIII, § 4, to the local ring A/Ab" and to
the ideal q/A44"). In the contrary case, there exists an element ¢ of g
such that the classes of ¢ and 4" mod mq are linearly independent
over A/m. We consider a system of elements (b',¢, ¢y, ---,¢,) of q
the mg-residues of which form a basis of g/mq over 4/m; these ele-
ments generate q (loc. cit.). Consider q as a factor module F/F’ of a
free module F with generators (B, y, ¥1, - - - » ¥,) (these generators being
mapped onto (¥, ¢, ¢y, - -+, ¢,)). The module of relations F' is free,
since 8(q)<1. We have F'cmF since the elements &',¢,¢,,---, ¢,
are linearly independent mod ma.

Let us write ca’=db’ with de A. We have a'y—dB e F’ and evi-
dently also b’y —cB e F’. We take a free basis (a;) of F’ and write

6] ay—dg =2 x;a;
2 by —cB = 2 %
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Since b'(a'y —dB)=a'(b'y — ¢B), we have b'x;=a’y; for every j, whence
¥;€a. On the other hand, each «; is a linear combination of the
elements B, y, yy, - - -, ¥, of the basis of F. Let m; be the coefficient
of y in this representation of «;. We have m; e m since F'cmF.
Comparing the coefficients of y in both sides of (2), we getb'=3 ym;,
whence "€ mq. This contradicts our choice of " and proves the
lemma.

THEOREM. Ewvery regular local ring A is a UFD.

PROOF. We proceed by induction on dim (4). By lemmas 2 and 3
we may assume that dim (4)>4. We consider two elements a, b of
A, set b=Aa+ Ab and prove that §(b)<1 (Lemma 1). Let m be the

maximal ideal of 4. The ideals b,b:m,..-,b:m" ... form an
increasing sequence, whence there exists an integer 7z such that
brmP=b:m* 1= ...  Setting a=b:m" we have a:m=a, whence m

is not an associated prime ideal of a, and there exists an element x of m,
not in m? such that a:Ax=a.* Since A/Ax is a regular local ring of
dimension dim (4)—1 (VIII, § 9, Theorem 20, Corollary 2 and VIII,
§ 11, Theorem 26), the induction hypothesis shows that the cohomo-
logical dimension 8 4,4, (b + Ax)/Ax) of (b+ Ax)/Ax, considered as an
(A/Ax)-module, is <1. We set S=b+4x, S=S/4Ax, A=A|Ax.

Since 84(S)<1, we have an exact sequence
0>F >F->S8—0,

where F’ and F are free modules over 4. Considering F’ and F as
modules over A4 we have 8,4(S)<1+max (8 (F), §,F") (VIL, § 13,
formula (7)). Now, F may be written in the form F/xF, where Fis a free
A-module; since also xF is a free 4-module we see that §,(F)<1;
similarly 8 ,(F")<1. We therefore have 8, (S/Ax)=38,4(S)<2. Since
Ax is free, it follows from the formula 8 4(.S) < max (8 ,(S/Ax), 8 4(Ax))
(VII, § 13, formula (5)) that 8,(S)=358,(6-4x)<2. It follows then
from formula (4) of VII, § 13, that §(4/(b+ Ax))< 3.

From this and from VII, § 13, Theorem 44 it follows that, if p is any
associated prime ideal of b+ Ax, we have A(p)<3. Since d'm (4)>4,

4+ The existence of such an element x can be proved as follows:
Let 9y, Py, - . ., Pn be the prime ideals of a and let y be an element of m,
3
not in m2  Assume that yep, NP, N--- NP, (0=g=h), y¢i Ul P;.  Since
=g+

g
M2N Py N NPpED,i=1,2,---, g itfollowsthatm2np,, N--- NP ‘L_let
(Vol. I, Ch. IV, §6, Remark, p. 215). Let 2 be an element belonging to
g
m2N Py N---NP,and not to U p;. Then set x=y+ 2.
=1
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m is not an associated prime ideal of 5+ A4x. In other words we have
(6+Ax):m="5-+ Ax, whence (b+Ax):m"=H+4x. Now, since a=
b:m" we have ac (6 + Ax): m"=b+ Ax, and evidently b<a. For every
a € a, we may write a=b+cx with b€ b and ¢ € 4; since b<a, we have
cx € a, whence ¢ € a since a: Ax=a. In other words we have acb+ax,
whence a=5-+ ma and therefore a=5.

Now, since b:Ax="5 and since we obviously may assume that the
elements a, b belong to m (whence b= m), we have §(b+ Ax)=1-+8(9)
(VII, § 13, Lemma 6), whence §(b)<1. Q.E.D.
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. VI, 15, 101

Graded module, VII, 12, 230

Graded ring, V11, 2, 150
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rings), V11, 2, 150
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graded modules), VII, 12, 231
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Homogeneous module, App. 4, 352

151
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V11, 7, 198
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(case of power series rings), VII,
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Homologica! codimension {of a local
ring), App. 6, 396
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1deal (of an algebraic affine variety),
V1, 5bis, 22

Ideal (of the principal class), VII,
13, 245
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350
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V11, 3, 163

Irreducible variety, VI, 5bis, 22 and .
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Join (of two models), VI, 17, 121
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4, 356
Linear system, App. 4, 358
Local ring of a point (affine case),

VI, 5bis, 23

' Local ring of a point, of a subvariety

(projective case), VII, 4bis, 173
Locally normal variety (affine case),
VI, 14, 94

" Locally normal variety ‘(projective

case), V11, 4bis, 174
Lost (prime ideal lost in an over-

ring), App. 1, 325

. m-adic completion, VIII, 2, 256

m-adic prime divisor (of a regular
local ring), VIII, 11, 302

m-topology, VIII, 2, 253

Macaulay ring, App. 6, 396

Macaulay’s theorem, V1I, 8, 203

© Majorant, VII, 1, 142
. Maximally algebraic subfield, VI1I, 11,

227

_ Model of a field, VI, 17, 116
. Module (graded), VII, 12, 230

Module of relations, VII, 13, 237

. Module of syzygies, V11, 13, 237

Multiplicity (of an ideal, of a semi-
local ring), VIII, 10, 294

' Normal model, VI, 18, 124

Normal system of integrity, VII, 9,
213

Normal variety (affine case), VI, 14,
94

Normal variety (projective case),
V11, 4bis, 174

Normalization theorem, VII, 7, 200

 Null divisor of a function, VI, 14, 97

Large ramification group (of a valua-
tion), VI, 12, 75 ‘

Leading ideal (or submodule), VIII,
1, 250

Lexicographic order (of a direct prod-
uct of ordered groups), VI, 10, 49

Limit of a Cauchy sequence, VIII, 2,
254

Null sequence, VIII, 2, 254

Order function, VIII, 1, 249

Order of a function at a prime divisor,
Vi, 14, 97

Order of an ideal (in a local ring),
App. 5, 362

Order of a power series, VII, 1, 130



INDEX OF DEFINITIONS

413

Order of a projective variety, VII,
12, 236

p-adic integers, VIII, 7, 278

p-place (in a Dedekind domain), VI,
2,4

p-adic place (in a unique factorization
domain), VI, 2, 4

p-adic valuation (in a Dedekind do-
main), VI, 9, 39

p-adic valuation (in a unique factori-
zation domain), VI, 9, 38

Place VI, 2, 3

Place of the first or of the second
kind, VI, 5, 19

Point at finite distance, at infinity,
VI, 6, 188

Polar divisor of a function, VI, 14,
97

Power series (formal or convergent),
V11, 1, 129 and 142

Prime divisor (of an algebraic func-
tion field), VI, 14, 88

Prime divisor (of the first or of the
second kind), VI, 14, 95

Prime divisor (of a local domain),
App. 2, 339

Prime ideal of a place, VI, 2, 5

Prime ideal of a point on a variety,
V1, 5bis, 22

Prime ideal of a valuation, VI, 8,
34

Prime sequence (in a ring), App. 6,
394

Principal class (ideal of), VII, 13,
245

Projective dimension of a homoge-
neous ideal, VII, 4, 171 and VI1I,
7, 196

Projective extension of an affine va-
riety, VII, 6, 188

Projective limit (of an inverse sys-
tem), VT, 17, 122

Projective mode!, VI, 17, 119

Projective space, VII, 4, 168

Projective variety, VI1I, 4, 169

! Proper specialization of a place, VI,
3,7

- Quadratic transformation, App. 5,
367
Quadratic transform (of a local ring
or of an ideal), App. 5, 367
Quasi absolutely prime ideal, VII, 11,
226
. Quasi-compact topological space, VI,
17, 113
Quasi-local ring, VI, 17, 115
Quasi maximally algebraic subfield,
V11, 11, 227
Ramification deficiency, VI, 11, 58
Ramification groups, VI, 12, 78
Ramification index of a valuation, VI,
11, 53
Ramified prime ideal (under ground
field extension), VII, 11, 226
Rank of a place, VI, 3, 9
Rank of a valuation, VI, 10, 39
Rational place, VI, 2, 5
Rational rank of a valuation, VI, 10,
50
Rational valuation, VI, 10, 50
Real valuation, V1, 10, 45
Reduced ramification index of a valu-
ation, VI, 11, 53
Reducible affine variety, VII, 3, 162
Regular extension, VII, 11, 229
Regular local ring, VIII, 11, 301
Regular system of parameters, VIII,
11, 301
Relative degree of a place, VI, 6, 26
Relative degree of a valuation, VI,
11, 53
Relative dimension of a place, VI, 6,
25
Representative cone of a projective
variety, V11, 4, 172
i Residue of an element with respect to
I

a valuation, VI, 8, 34
Residue field of a place, VI, 2, 4
! Residue field of a valuation, VI, 8, 34
Riemann surface (of a field over a
subring), VI, 17, 110
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Second kind (place of), VI, 5, 19

Second kind (prime divisor of), VI, |

14, 95

Segment (of an ordered set), VI, 10,
40

Semi-local ring, VIII, 4, 264

Simple ideal, App. 5, 385

Specialization, VI, 1, 1

Specialization chain for a place, VI,
3, 10

Specialization of a place, VI, 3, 7

Specialization of a point (affine case),
VI, 5bis, 23

Specialization of a point (projective
case), VII, 4, 170

Specialization ring, VI, 1, 2

Standard decomposition of a complete
ideal, App. 5, 382

Strictly complete linear system, App.
4, 358

Strictly homogeneous
VII, 4, 168

Substitution of power series, VII, 1,
135

Superficial element, VIII, 8, 285

System of integrity (homogeneous),

VI, 9, 210

coordinates,

| Topological module, or ring, VIII, 2,

251

i Topology of K* VII, 3, 161

. Topology ((a,)-topology), VIII, 5,

L 270

1 Topology (m-adic), VIII, 2, 253
Transform of an ideal (under a quad-

* ratic transformation), App. 5, 367

Trivial place, VI, 2, 5

Trivial valuation, VI, 8, 32

Universal domain, VI, 5bis, 22

Unmixed ideal, VII, 7, 196

Unramified prime ideal (under ground
field extension), VII, 11, 226

Valuation, VI, 8, 32
Valuation ideal, App. 3, 340
Valuation ring, VI, 2, 4, 9, 34
. Value of an element at a place, VI, 2,
., 4

Value group of a valuation, VI, 8, 32
. Variety (algebraic affine), VI, 5bis,
21
" Variety (algebraic projective), VII,

4, 169

System of integrity (normal), VII 9, ‘

213
System of integrity (power series
case), VII, 9, 216
System of parameters, VIII, 9, 292
System of parameters (regular),
VIII, 11, 301
Syzygies (chain of), VII, 13, 237
Syzygies (module of), VII, 13, 237

Weierstrass
VII, 1, 139

preparation theorem,

' Zariski ring, VIII, 4, 263
Zero of an ideal (affine case), VII,
L3, 160
Zero of an ideal (projective case),
VII, 4, 169
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